operator.cc 112.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/operators/isfinite_op.h"
31
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
32
#include "paddle/fluid/platform/enforce.h"
33
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
34
#include "paddle/fluid/platform/profiler/event_tracing.h"
35
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
63
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75 76
static DDim GetDimsDebug(const ScopeBase& scope,
                         const std::string& name,
77
                         bool get_actual_dim = false) {
78
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
79 80
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
81 82
  }

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
86
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
87
    if (get_actual_dim) {
88
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
89
    } else {
90
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
91
    }
S
Steffy-zxf 已提交
92 93
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
94 95 96 97 98
  } else {
    return DDim({-1});
  }
}

99
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
100 101 102 103 104
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

105
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
106 107 108 109
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
110

M
minqiyang 已提交
111 112 113
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
114 115
      return "";
    }
116
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
117 118
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
119 120 121
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
122
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
123
    }
S
Steffy-zxf 已提交
124 125
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
126 127 128 129 130
  } else {
    return "";
  }
}

131
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
148 149
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

160
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
161 162 163 164 165
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

166 167
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
168 169 170 171 172
  }

  return -1;
}

173
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
174 175 176 177 178 179 180
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
181 182 183
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
184 185 186 187 188
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
189 190 191 192 193
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
194
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
195 196 197 198 199 200
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
201
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
202 203 204 205 206 207
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

208
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
209 210 211
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
212
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
213 214 215 216
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
217
#else
218
      auto dev_id = place.device;
P
peizhilin 已提交
219
      platform::SetDeviceId(dev_id);
220 221 222
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
223 224 225 226
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
227
#else
228
      auto dev_id = place.device;
229
      platform::SetXPUDeviceId(dev_id);
230 231 232 233 234 235 236 237
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
238
      auto dev_id = place.device;
239
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
240 241 242 243 244 245 246 247
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
248
      auto dev_id = place.device;
F
fwenguang 已提交
249
      platform::SetMLUDeviceId(dev_id);
250 251 252 253 254 255 256 257
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
258
      phi::DeviceManager::SetDevice(place);
259
#endif
P
peizhilin 已提交
260
    }
P
peizhilin 已提交
261

262
    {
263 264 265
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
266
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
267
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
268 269
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
270 271
          op_name,
          platform::TracerEventType::Operator,
C
chenjian 已提交
272
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299
  PADDLE_ENFORCE_LE(
300 301
      ins.size(),
      1UL,
302
      platform::errors::InvalidArgument(
303 304
          "Operator %s's input %s should contain only one variable.",
          type_,
305
          name));
Y
Yu Yang 已提交
306
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
307 308
}

Y
Yu Yang 已提交
309 310
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
311
  auto it = inputs_.find(name);
312
  PADDLE_ENFORCE_NE(
313 314 315 316
      it,
      inputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have the input %s.", type_, name));
Y
Yu Yang 已提交
317
  return it->second;
Y
Yan Chunwei 已提交
318 319
}

320
bool OperatorBase::HasOutputs(const std::string& name) const {
321
  if (outputs_.find(name) != outputs_.end()) {
322 323 324 325 326 327
    return true;
  } else {
    return false;
  }
}

328
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
329
  auto& outs = Outputs(name);
330
  PADDLE_ENFORCE_LE(
331 332
      outs.size(),
      1UL,
333
      platform::errors::InvalidArgument(
334 335
          "Operator %s's output %s should contain only one variable.",
          type_,
336
          name));
Y
Yu Yang 已提交
337
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
338 339
}

Y
Yu Yang 已提交
340 341
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
342
  auto it = outputs_.find(name);
343
  PADDLE_ENFORCE_NE(
344 345
      it,
      outputs_.end(),
346 347
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
348
  return it->second;
Y
Yan Chunwei 已提交
349 350
}

351
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
352
  std::stringstream ss;
Y
Yu Yang 已提交
353
  ss << "Op(" << type_ << "), inputs:{";
354

355
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
356 357
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
358 359
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
360 361
  }

Y
Yu Yang 已提交
362 363
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
364 365
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
366 367
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
368 369
      auto var_name = input.second[i];
      ss << var_name;
370
      if (scope) {
Q
Qiao Longfei 已提交
371 372 373 374 375 376 377
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
378 379 380
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
381
          ss << ":" << dtype;
382 383
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
384
          ss << "(" << GetPlace(*scope, var_name) << ")";
385
        }
386
      }
Y
Yu Yang 已提交
387 388 389
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
390
    }
Y
Yu Yang 已提交
391
    ss << "]";
Y
Yu Yang 已提交
392 393
    ++it;
    if (it != inputs_.end()) {
394 395
      ss << ", ";
    }
Q
Qiao Longfei 已提交
396
  }
Y
Yu Yang 已提交
397
  ss << "}, outputs:{";
Y
Yu Yang 已提交
398 399
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
400 401
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
402 403
      auto var_name = output.second[i];
      ss << var_name;
404
      if (scope) {
Q
Qiao Longfei 已提交
405 406 407 408 409 410 411
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
412 413
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
414 415
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
416
          ss << "(" << GetPlace(*scope, var_name) << ")";
417
        }
418
      }
Y
Yu Yang 已提交
419 420 421
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
422
    }
Y
Yu Yang 已提交
423
    ss << "]";
Y
Yu Yang 已提交
424 425
    ++it;
    if (it != outputs_.end()) {
426 427
      ss << ", ";
    }
Q
Qiao Longfei 已提交
428
  }
Y
Yu Yang 已提交
429
  ss << "}.";
Q
Qiao Longfei 已提交
430 431 432
  return ss.str();
}

Y
Yu Yang 已提交
433
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
434 435
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
436
                           const AttributeMap& attrs)
S
sneaxiy 已提交
437 438 439 440 441 442
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
443 444 445 446 447 448 449 450
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
451
  // In OperatorBase level, all attributes with VarDesc type will be considered
452 453 454 455 456 457
  // as Input.
  for (auto& attr : FilterAttrVar(attrs)) {
    VLOG(3) << "found Attribute with Variable type: " << attr.first;
    inputs_[attr.first] = std::move(AttrVarNames(attr.second));
    attrs_.erase(attr.first);
  }
Y
Yu Yang 已提交
458
}
459

Q
qijun 已提交
460 461
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
462
  for (auto& o : inputs_) {
Q
qijun 已提交
463 464 465 466 467 468
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
469 470 471 472 473 474 475 476 477 478
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
479
  auto& info = Info();
Y
Yu Yang 已提交
480 481

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
482
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
492 493
}

494
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
495
  if (info_ == nullptr || info_->proto_ == nullptr) return;
496

S
sneaxiy 已提交
497
  for (auto& in : info_->Proto().inputs()) {
498
    if (!in.dispensable() && !in.extra()) {
499
      PADDLE_ENFORCE_NE(
500 501 502 503
          inputs_.find(in.name()),
          inputs_.end(),
          platform::errors::NotFound(
              "Operator %s's input (%s) is not set.", Type(), in.name()));
504
    }
505 506
  }

S
sneaxiy 已提交
507
  for (auto& out : info_->Proto().outputs()) {
508
    if (!out.dispensable() && !out.extra()) {
509
      PADDLE_ENFORCE_NE(
510 511 512 513
          outputs_.find(out.name()),
          outputs_.end(),
          platform::errors::NotFound(
              "Operator %s's output (%s) is not set.", Type(), out.name()));
514
    }
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
530

C
chengduo 已提交
531
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
532 533
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
534 535
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
536
  } else {
537 538 539
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
540 541 542
  }
}

C
chengduo 已提交
543
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
544
  if (var->IsType<LoDTensor>()) {
545
    return var->GetMutable<LoDTensor>();
546 547
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
548
  } else {
549 550 551
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
552 553 554
  }
}

555
bool ExecutionContext::HasInput(const std::string& name) const {
556
  auto* var = InputVar(name);
557 558 559
  return var != nullptr;
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

574
bool ExecutionContext::HasOutput(const std::string& name) const {
575
  auto* var = OutputVar(name);
576 577 578
  return var != nullptr;
}

X
Xin Pan 已提交
579
const Variable* ExecutionContext::InputVar(const std::string& name) const {
580 581
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
582 583 584
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

585
  PADDLE_ENFORCE_LE(
586 587
      it->second.size(),
      1UL,
588
      platform::errors::InvalidArgument(
589
          "Operator %s's input %s should contain only one variable.",
590 591
          op_.Type(),
          name));
X
Xin Pan 已提交
592 593 594
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
595
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
596 597 598
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

599
  PADDLE_ENFORCE_LE(
600 601
      it->second.size(),
      1UL,
602 603
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
604 605
          op_.Type(),
          name));
X
Xin Pan 已提交
606 607 608
  return it->second.empty() ? nullptr : it->second[0];
}

609
template <>
610
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
611
    const std::string& name) const {
612 613
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
614 615
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
616 617 618 619
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
620 621 622
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
H
hong 已提交
623
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
624
                   if (var == nullptr) return nullptr;
625 626
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(),
                                     true,
627 628 629 630
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
631 632 633 634 635
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

636
template <>
637
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
638
    const std::string& name) const {
H
hong 已提交
639 640 641
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
642 643
    return {};
  }
644
  std::vector<Tensor*> res;
645
  res.reserve(vars.size());
646 647 648
  std::transform(vars.begin(),
                 vars.end(),
                 std::back_inserter(res),
649 650 651
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
652
                 });
653 654 655
  return res;
}

Y
Yu Yang 已提交
656
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
657
  // check in new Function kernel first
658
  bool has_phi_kernel = false;
659
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
660
  auto kernel_key_map =
661
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
662
  for (auto& kernel : kernel_key_map) {
663
    has_phi_kernel = true;
664
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
665 666 667 668
      return true;
    }
  }

Y
Yu Yang 已提交
669 670
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
671 672 673 674 675 676 677 678 679 680 681 682 683
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
684 685 686
      return true;
    }
  }
H
hong 已提交
687

Y
Yu Yang 已提交
688 689 690
  return false;
}

691 692
class RuntimeInferShapeContext : public InferShapeContext {
 public:
693
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
694
      : op_(op), ctx_(ctx) {}
695 696

  bool HasInput(const std::string& name) const override {
697
    // has only one input
X
Xin Pan 已提交
698
    const auto& ins = ctx_.inputs;
699 700
    auto it = ins.find(name);
    if (it == ins.end()) {
701 702
      return false;
    }
703
    const auto& in = it->second;
X
Xin Pan 已提交
704
    if (in.size() == 0) return false;
705
    PADDLE_ENFORCE_EQ(
706 707
        in.size(),
        1UL,
708 709
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
710
    return in[0] != nullptr;
711 712 713
  }

  bool HasOutput(const std::string& name) const override {
714
    // has only one output
X
Xin Pan 已提交
715
    const auto& outs = ctx_.outputs;
716 717
    auto it = outs.find(name);
    if (it == outs.end()) {
718 719
      return false;
    }
720
    const auto& out = it->second;
X
Xin Pan 已提交
721
    if (out.size() == 0) {
722 723
      return false;
    }
724
    PADDLE_ENFORCE_EQ(
725 726
        out.size(),
        1UL,
727 728
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
729
    return out[0] != nullptr;
730 731
  }

732 733 734 735
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

736
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
737 738
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
739
    if (it == ins.end() || it->second.empty()) {
740 741
      return false;
    }
X
Xin Pan 已提交
742 743
    for (auto& input : it->second) {
      if (input == nullptr) {
744 745 746 747 748 749
        return false;
      }
    }
    return true;
  }

750 751
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
752 753
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
754
    if (it == outs.end() || it->second.empty()) {
755 756
      return false;
    }
757 758 759 760 761 762 763 764
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
765
      }
766
      return true;
767 768 769
    }
  }

770 771 772
  AttrReader Attrs() const override {
    return AttrReader(op_.Attrs(), op_.RuntimeAttrs());
  }
773

H
hong 已提交
774
  std::vector<std::string> Inputs(const std::string& name) const override {
775 776 777
    return op_.Inputs(name);
  }

H
hong 已提交
778
  std::vector<std::string> Outputs(const std::string& name) const override {
779 780 781
    return op_.Outputs(name);
  }

782 783 784
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
785 786
    PADDLE_ENFORCE_LT(idx,
                      op_proto->inputs().size(),
787 788 789
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
790 791 792
                          op_.Type(),
                          idx,
                          op_proto->inputs().size()));
793 794 795 796 797 798 799
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
800 801
        idx,
        op_proto->outputs().size(),
802 803 804
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
805 806 807
            op_.Type(),
            idx,
            op_proto->outputs().size()));
808 809 810
    return op_proto->outputs()[idx].name();
  }

811 812 813
  void ShareDim(const std::string& in,
                const std::string& out,
                size_t i = 0,
814
                size_t j = 0) override {
X
Xin Pan 已提交
815 816
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
817
    PADDLE_ENFORCE_NE(
818 819
        in_it,
        ctx_.inputs.end(),
820 821
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
822 823
        out_it,
        ctx_.outputs.end(),
824
        platform::errors::NotFound("Output %s does not exist.", out));
825 826
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
827 828 829
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
830 831 832 833
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
834 835 836
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
837 838
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
839 840 841

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
842

843
    PADDLE_ENFORCE_EQ(
844 845
        in_var->Type(),
        out_var->Type(),
846
        platform::errors::InvalidArgument(
847 848
            "The type of input (%s) and output (%s) are inconsistent.",
            in,
849
            out));
850

851 852 853
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
854 855 856 857 858 859 860 861
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
862
      PADDLE_THROW(platform::errors::Unimplemented(
863
          "Currently, the input type of ShareDim only can be LoDTensor "
864
          "or SelectedRows."));
865 866 867
    }
  }

H
hong 已提交
868 869 870 871
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
872 873
    PADDLE_ENFORCE_NE(in_it,
                      ctx_.inputs.end(),
H
hong 已提交
874 875 876
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
877 878 879 880
        out_it,
        ctx_.outputs.end(),
        platform::errors::NotFound(
            "Output [%s] found error in Op [%s]", out, op_.Type()));
H
hong 已提交
881 882 883 884 885

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
886 887
        in_var_list.size(),
        out_var_list.size(),
H
hong 已提交
888
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
889
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
890 891 892 893 894 895 896 897 898 899 900 901
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
902 903
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(),
                        true,
H
hong 已提交
904 905
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
906 907
                            i,
                            out_var_names[i]));
H
hong 已提交
908 909 910 911 912 913 914 915 916 917
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

918 919 920
  void ShareLoD(const std::string& in,
                const std::string& out,
                size_t i = 0,
Q
Qiao Longfei 已提交
921
                size_t j = 0) const override {
X
Xin Pan 已提交
922 923
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
924
    PADDLE_ENFORCE_NE(
925 926
        in_it,
        ctx_.inputs.end(),
927 928
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
929 930
        out_it,
        ctx_.outputs.end(),
931
        platform::errors::NotFound("Output %s does not exist.", out));
932 933
    PADDLE_ENFORCE_LT(i,
                      in_it->second.size(),
934 935 936
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
937 938 939 940
                          in_it->second.size(),
                          i));
    PADDLE_ENFORCE_LT(j,
                      out_it->second.size(),
941 942 943
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
944 945
                          out_it->second.size(),
                          j));
X
Xin Pan 已提交
946 947

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
948
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
949
    Variable* out_var = out_it->second.at(j);
950
    PADDLE_ENFORCE_EQ(
951 952
        out_var->IsType<LoDTensor>(),
        true,
953 954
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
955
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
956 957
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
958

M
mozga-intel 已提交
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
978 979
  }

980
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
981
    PADDLE_THROW(platform::errors::PreconditionNotMet(
982
        "GetLoDLevel is only used in compile time. The calculation of "
983
        "output's actual lod is different among operators so that should be "
984
        "set in the runtime kernel."));
985 986
  }

987 988
  void SetLoDLevel(const std::string& out,
                   int32_t lod_level,
989
                   size_t j = 0) const override {
990
    PADDLE_THROW(platform::errors::PreconditionNotMet(
991
        "SetLoDLevel is only used in compile time. The calculation of "
992
        "output's actual lod is different among operators so that should be "
993
        "set in the runtime kernel."));
C
chengduo 已提交
994 995
  }

996 997
  bool IsRuntime() const override { return true; }

998 999 1000 1001 1002 1003
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
1004
    } catch (const std::bad_cast& exp) {
1005 1006 1007 1008
      return false;
    }
  }

1009
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
1010
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
1011
  GetInputVarPtrs(const std::string& name) const override {
1012
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
1013
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
1014 1015 1016 1017 1018
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
1019
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
1020
  GetOutputVarPtrs(const std::string& name) const override {
1021
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
1022
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
1023 1024 1025 1026 1027
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
1028 1029
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
1030
    PADDLE_ENFORCE_EQ(
1031 1032
        vars.size(),
        1UL,
1033 1034
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
1035 1036
            name,
            vars.size()));
X
Xin Pan 已提交
1037 1038 1039 1040 1041 1042 1043 1044
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

1045 1046 1047 1048
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
1059 1060
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
1061
    PADDLE_ENFORCE_EQ(
1062 1063
        vars.size(),
        1UL,
1064 1065
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
1066 1067
                                          name,
                                          vars.size()));
X
Xin Pan 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1077 1078 1079 1080 1081 1082 1083 1084
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1085
 protected:
X
Xin Pan 已提交
1086
  DDim GetDim(Variable* var) const {
1087 1088
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1089 1090
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1091 1092
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1093
    } else {
1094 1095 1096 1097
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1098 1099 1100
    }
  }

X
Xin Pan 已提交
1101 1102 1103
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
1104 1105 1106
    std::transform(vars.begin(),
                   vars.end(),
                   std::back_inserter(ret),
X
Xin Pan 已提交
1107 1108 1109 1110
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1111
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1112 1113
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1114 1115
  }

X
Xin Pan 已提交
1116
  void SetDim(Variable* var, const DDim& dim) {
1117 1118
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1119 1120
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1121
    } else {
1122 1123 1124 1125
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1126 1127 1128 1129 1130 1131
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1132 1133
    PADDLE_ENFORCE_EQ(length,
                      dims.size(),
1134 1135 1136 1137
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
1138 1139
                          length,
                          dims.size()));
X
Xin Pan 已提交
1140 1141 1142 1143 1144
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1145 1146 1147
    }
  }

F
fengjiayi 已提交
1148 1149
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1150 1151
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1152 1153
  }

X
Xin Pan 已提交
1154 1155 1156 1157
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
1158 1159 1160
    std::transform(vars.begin(),
                   vars.end(),
                   retv.begin(),
X
Xin Pan 已提交
1161
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
1162 1163
                             this,
                             std::placeholders::_1));
X
Xin Pan 已提交
1164 1165 1166 1167
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1168 1169 1170
    return ToVarType(var->Type());
  }

1171 1172 1173
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1174
    PADDLE_ENFORCE_NE(
1175 1176
        it,
        ctx_.inputs.end(),
1177 1178
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1179 1180 1181 1182 1183
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1184
    PADDLE_ENFORCE_NE(
1185 1186
        it,
        ctx_.outputs.end(),
1187 1188
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1189
    return it->second;
F
fengjiayi 已提交
1190 1191
  }

1192
  const OperatorBase& op_;
X
Xin Pan 已提交
1193
  const RuntimeContext& ctx_;
1194 1195
};

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1211 1212
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1213 1214 1215 1216
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1217 1218
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1219 1220
    return;
  }
1221
  PADDLE_ENFORCE_NE(
1222 1223 1224 1225
      framework::TensorContainsInf(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains Inf.", op_type, name));
1226
  PADDLE_ENFORCE_NE(
1227 1228 1229 1230
      framework::TensorContainsNAN(tensor),
      true,
      platform::errors::Fatal(
          "Operator %s output Tensor %s contains NAN.", op_type, name));
C
chengduoZH 已提交
1231 1232
}

1233 1234 1235 1236
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1237 1238
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1251 1252
          op_kernels.begin(),
          op_kernels.end(),
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
1264 1265
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
1278 1279
          op_kernels.begin(),
          op_kernels.end(),
1280 1281 1282 1283 1284 1285 1286
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
bool OperatorWithKernel::SupportXPU() const {
#ifdef PADDLE_WITH_XPU
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::XPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [this](OpKernelMap::const_reference kern_pair) {
            return platform::is_xpu_place(kern_pair.first.place_) &&
                   paddle::platform::is_xpu_support_op(type_,
                                                       kern_pair.first) &&
                   !paddle::platform::is_in_xpu_black_list(type_);
          });
    }
  }
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "should not call OperatorWithKernel::SupportXPU() when not compiled with "
      "XPU support."));
  return false;
#endif
}

1324 1325
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1326 1327 1328 1329 1330
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(),
                  phi_kernels.end(),
Y
YuanRisheng 已提交
1331 1332 1333 1334
                  [data_type](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::ONEDNN &&
                           kern_pair.first.dtype() ==
                               framework::TransToPhiDataType(data_type);
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = op_kernel_iter->second;
      return std::any_of(
          op_kernels.begin(),
          op_kernels.end(),
          [data_type](OpKernelMap::const_reference kern_pair) {
            return platform::is_cpu_place(kern_pair.first.place_) &&
                   kern_pair.first.library_type_ == LibraryType::kMKLDNN &&
                   kern_pair.first.data_type_ == data_type;
          });
    }
1353
  }
1354 1355
}

1356 1357 1358 1359
bool OperatorWithKernel::SupportsKernelType(
    const OpKernelType& kernel_type) const {
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
1360 1361 1362 1363 1364
  if (kernels_iter == all_op_kernels.end()) return false;
  OpKernelMap& kernels = kernels_iter->second;
  auto kernel_iter = kernels.find(kernel_type);

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1365
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
1366 1367 1368
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
1369 1370
  }
#endif
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

#ifdef PADDLE_WITH_XPU_KP
  if (paddle::platform::is_xpu_place(kernel_type.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, kernel_type);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
      auto tmp_kernel_type = kernel_type;
      tmp_kernel_type.library_type_ = LibraryType::kKP;
      return kernels.find(tmp_kernel_type) != kernels.end();
    }
    return kernel_iter != kernels.end() &&
           paddle::platform::is_xpu_support_op(type_, kernel_type) &&
           !paddle::platform::is_in_xpu_black_list(type_);
  }
#endif

  return kernel_iter != kernels.end();
1392 1393
}

1394 1395
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1396 1397 1398
  const std::string use_mkldnn_attr = "use_mkldnn";
  bool use_mkldnn_ctx = ctx.HasAttr(use_mkldnn_attr) &&
                        ctx.Attr<bool>(use_mkldnn_attr) &&
1399
                        platform::is_cpu_place(ctx.GetPlace());
1400
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1401 1402
}

1403 1404 1405 1406 1407 1408 1409
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1410
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1411 1412
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1413
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1414
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1415 1416
}

L
luotao1 已提交
1417 1418
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1419 1420
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1421 1422 1423
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1424
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1425
    all_kernels_must_compute_runtime_shape_ = true;
1426
  const Scope* cur_scope = &scope;
1427
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1428 1429
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1430
    pre_scope_ = cur_scope;
1431 1432 1433 1434 1435
  } else if (run_phi_kernel_ && impl_ != nullptr && !need_prepare_data_ &&
             !need_prepare_phi_data_) {
    if (!all_kernels_must_compute_runtime_shape_)
      this->Info().infer_shape_(impl_->getRuntimeInferShapeContext());
    (*phi_kernel_)(impl_->getKernelContext());
L
luotao1 已提交
1436
  } else {
1437 1438 1439 1440 1441 1442
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1443
    }
1444
    RunImpl(scope, place, runtime_ctx_.get());
L
luotao1 已提交
1445 1446 1447 1448 1449 1450
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1451
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1452
  bool fallback_to_cpu = false;
1453
  auto* dev_ctx = pool.Get(place);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1465
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1466 1467 1468 1469
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1470

1471 1472 1473 1474 1475 1476
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1477 1478 1479 1480 1481
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1482 1483
  phi::KernelKey phi_kernel_key;
  std::string phi_kernel_name;
1484
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1485
    if (kernel_signature_ == nullptr || phi_kernel_ == nullptr) {
1486 1487 1488
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1489 1490 1491 1492 1493

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1494
      phi_kernel_name = kernel_signature_->name;
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1517
                  << phi_kernel_name
1518
                  << ", using_kernel_key:" << *kernel_type_.get();
1519
          auto try_phi_kernel_key =
1520
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1521 1522
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1523 1524
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1525
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1526 1527 1528
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1529
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1530 1531 1532 1533
          }
        }
      }
#endif
1534 1535
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
      phi_kernel_.reset(
1536
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1537
              phi_kernel_name, phi_kernel_key)));
1538

1539
      if (phi_kernel_->IsValid()) {
1540
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1541 1542
                << phi_kernel_name << " | kernel key: " << phi_kernel_key
                << " | kernel: " << *phi_kernel_;
1543
      } else {
1544
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1545 1546
                << "` not found.";
      }
1547
    } else {
1548
      phi_kernel_name = kernel_signature_->name;
1549 1550 1551
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1570
          VLOG(3) << "modifing XPU KP kernel in static graph: "
1571
                  << phi_kernel_name
1572
                  << ", using_kernel_key:" << *kernel_type_.get();
1573
          auto try_phi_kernel_key =
1574
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1575 1576
          if (!phi::KernelFactory::Instance().HasKernel(phi_kernel_name,
                                                        try_phi_kernel_key)) {
1577
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1578
            VLOG(3) << "modify XPU KP kernel in static graph: "
1579
                    << phi_kernel_name << " is failed " << *kernel_type_.get();
1580 1581 1582
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
1583
                    << phi_kernel_name << " is succeed " << *kernel_type_.get();
1584 1585 1586 1587
          }
        }
      }
#endif
1588
      phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1589
    }
1590 1591 1592 1593

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1594
#if defined(PADDLE_WITH_XPU)
1595 1596 1597 1598 1599
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1611
    if (phi_kernel_->IsValid()
1612
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1613 1614
        && !is_xpu_unsupport
#endif
1615 1616 1617
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1618
    ) {
1619
      run_phi_kernel_ = true;
1620 1621 1622
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1633 1634 1635
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1636
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1637
          || is_xpu_unsupport
1638
#endif
1639 1640 1641
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1642
      ) {
1643
        fallback_to_cpu = true;
1644 1645 1646
        auto phi_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), phi_kernel_key, *this);
        phi_kernel_.reset(
1647
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1648
                phi_kernel_name, phi_cpu_kernel_key)));
1649 1650

        dev_ctx = pool.Get(platform::CPUPlace());
1651 1652 1653 1654
        if (phi_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: "
                  << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key
                  << " | kernel: " << *phi_kernel_;
1655
          run_phi_kernel_ = true;
1656 1657
        }
      }
1658 1659
    }
  }
1660
  if (!run_phi_kernel_) {
1661 1662
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1663
      dev_ctx = pool.Get(kernel_type_->place_);
1664
    }
1665 1666
  }

Y
yuyang18 已提交
1667 1668
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1669 1670
  Scope* transfer_scope = nullptr;
  {
1671
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1672
                                       platform::TracerEventType::OperatorInner,
1673 1674
                                       1,
                                       platform::EventRole::kInnerOp);
1675
    if (need_prepare_data_) {
1676 1677
      transfer_scope = PrepareData(
          scope, *kernel_type_, &transfered_inplace_vars, runtime_ctx);
1678
    }
1679
  }
Y
yuyang18 已提交
1680 1681 1682 1683
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1684
  if (!all_kernels_must_compute_runtime_shape_) {
1685
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1686
                                       platform::TracerEventType::OperatorInner,
1687 1688
                                       1,
                                       platform::EventRole::kInnerOp);
1689
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1690
    this->Info().infer_shape_(&infer_shape_ctx);
1691 1692 1693
    record_event.End();
    platform::RecordOpInfoSupplement(
        Type(), Attrs(), infer_shape_ctx, *runtime_ctx);
1694
  }
1695 1696 1697 1698 1699

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1700 1701
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1702
  {
1703
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1704
                                       platform::TracerEventType::OperatorInner,
1705 1706
                                       1,
                                       platform::EventRole::kInnerOp);
1707
    if (run_phi_kernel_) {
1708
      phi::KernelContext phi_kernel_context;
1709 1710
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
1711 1712 1713
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
1714
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
1715
        (*phi_kernel_)(impl_->getKernelContext());
1716
      } else {
1717
        phi::KernelContext phi_kernel_context;
1718 1719
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
1720 1721
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &phi_kernel_context);
        (*phi_kernel_)(&phi_kernel_context);
1722
      }
1723 1724 1725 1726
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1727 1728 1729
    if (fallback_to_cpu) {
      phi_kernel_.release();
    }
1730
  }
D
dzhwinter 已提交
1731

Y
yuyang18 已提交
1732
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1733
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1734
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1735
  }
1736 1737 1738 1739 1740 1741 1742

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1743 1744 1745 1746 1747 1748 1749 1750
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1751

D
dzhwinter 已提交
1752
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1753
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1754
    dev_ctx->Wait();
1755 1756
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1757 1758
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1759
  }
C
chengduoZH 已提交
1760 1761

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1762
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1763
  }
1764 1765 1766 1767 1768 1769 1770

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1771
}
X
Xin Pan 已提交
1772

1773 1774 1775
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1776 1777 1778
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1789 1790 1791
      // when the Op that does not have GPUKernel is assigned to GPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
1792 1793
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1794
      if (SupportGPU()) {
1795
        auto& dev_ctx = ctx.device_context();
1796
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1797 1798
      }
#endif
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("npu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have NPUKernel is assigned to NPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
1818 1819 1820
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1821
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1822 1823 1824
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1825 1826
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
            << ") has no NPU implementation. It will be assigned to CPUPlace.";
      }
    } else if (Attr<std::string>("op_device").find("xpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
      // when the Op that does not have XPUKernel is assigned to XPU, the
      // CPUKernel will be executed and a warning will be given at the same
      // time.
      expected_kernel_key.place_ = platform::CPUPlace();
#ifdef PADDLE_WITH_XPU
      if (SupportXPU()) {
        auto& dev_ctx = ctx.device_context();
        expected_kernel_key.place_ = dev_ctx.GetPlace();
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no XPU implementation. It will be assigned to CPUPlace.";
1853 1854 1855
      }
    }
  }
C
cc 已提交
1856 1857
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1858 1859 1860
  return expected_kernel_key;
}

1861
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1862
    const ExecutionContext& ctx) const {
1863 1864 1865
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1866 1867 1868 1869

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1870 1871 1872 1873
  auto phi_kernel_name = kernel_signature_->name;
  auto phi_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
  phi_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      phi_kernel_name, phi_kernel_key)));
1874

1875 1876 1877 1878
  if (phi_kernel_->IsValid()) {
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << phi_kernel_name
            << " | kernel key: " << phi_kernel_key
            << " | kernel: " << *phi_kernel_;
1879
  } else {
1880
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << phi_kernel_name
1881 1882
            << "` not found.";
  }
1883
  return phi_kernel_key;
1884 1885 1886 1887 1888 1889 1890
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
1891 1892
      kernels_iter,
      all_op_kernels.end(),
1893
      platform::errors::Unimplemented(
1894 1895 1896 1897 1898 1899
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1900 1901

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1902

L
Liu Yiqun 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1912
#endif
1913 1914

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1915
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1916 1917 1918
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1919
    VLOG(3) << "fluid missing XPU kernel: " << type_
1920 1921 1922 1923 1924
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1925
#endif
L
Liu-xiandong 已提交
1926 1927

#ifdef PADDLE_WITH_XPU_KP
1928 1929 1930 1931 1932 1933 1934
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1935
      VLOG(3) << "fluid xpu_kp using rt mode ";
1936 1937
    }
    if (use_xpu_kp_kernel_debug) {
1938
      VLOG(3) << "fluid xpu_kp using debug mode ";
1939 1940 1941
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1942 1943
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1944 1945
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1946 1947 1948 1949 1950 1951 1952 1953 1954
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1955
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1956 1957
                << ", using_kernel_key:" << expected_kernel_key;
      }
1958 1959 1960 1961 1962 1963
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1964
      VLOG(3) << "fluid missing XPU kernel: " << type_
1965 1966 1967 1968 1969
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1970 1971 1972
  }
#endif

A
Allen Guo 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1983 1984
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1985
      platform::is_npu_place(expected_kernel_key.place_)) {
1986 1987 1988 1989 1990 1991
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1992 1993 1994
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1995
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1996 1997 1998
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
2010 2011 2012
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
2013
#endif
2014 2015 2016 2017 2018 2019
  PADDLE_ENFORCE_NE(
      kernel_iter,
      kernels.end(),
      platform::errors::NotFound("Operator (%s) does not have kernel for %s.",
                                 type_,
                                 KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
2020

2021 2022 2023 2024 2025
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
2026 2027
}

Y
yuyang18 已提交
2028
void OperatorWithKernel::TransferInplaceVarsBack(
2029 2030
    const Scope& scope,
    const std::vector<std::string>& inplace_vars,
Y
yuyang18 已提交
2031 2032
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
2033
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
2034
    auto* origin_var = scope.FindVar(var_name);
2035 2036 2037
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2038
    auto* original_tensor =
C
chengduo 已提交
2039
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
2040
    auto* var = transfer_scope.FindVar(var_name);
2041 2042 2043
    PADDLE_ENFORCE_NOT_NULL(var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
2044
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2045
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
2046
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
2047 2048 2049 2050 2051
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
2052 2053 2054
  }
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
2084
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
2104
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
2122
Scope* OperatorWithKernel::PrepareData(
2123 2124
    const Scope& scope,
    const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
2125 2126
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
2127
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
2128

2129
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
2130 2131 2132 2133
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
2134 2135
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
2136 2137 2138
    }
  }

2139 2140 2141 2142 2143 2144 2145 2146 2147
  const auto& name_map = Inputs();
  auto prepare_input_data = [&](const std::string& in_name,
                                std::vector<Variable*>* in_vars,
                                const phi::TensorArgDef* in_def,
                                bool should_skip_input) -> void {
    auto& name_vec = name_map.at(in_name);
    for (size_t i = 0; i < in_vars->size(); ++i) {
      const auto& var_name = name_vec[i];
      auto* var = in_vars->at(i);
X
Xin Pan 已提交
2148

Y
yuyang18 已提交
2149
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
2150
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
2151 2152 2153
        continue;
      }

C
chengduo 已提交
2154
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
2170
            (paddle::platform::MKLDNNDeviceContext::tls()
2171 2172
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
2173 2174 2175 2176 2177
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
2178
          in_vars->at(i) = trans_var;
2179 2180
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
2181 2182
          platform::MatchShapeToLayout(
              out, tensor_in->layout(), DataLayout::kNHWC);
2183 2184
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
2185
                  << in_name << " in Operator " << type_;
2186
        } else {
2187 2188
          VLOG(7) << "Skip scanning input " << in_name << " in Operator "
                  << type_;
2189 2190 2191 2192 2193
        }
#endif
        continue;
      }

Y
yuyang18 已提交
2194 2195 2196 2197
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
      auto kernel_type_for_var =
          GetKernelTypeForVar(in_name, *tensor_in, expected_kernel_key);
      bool need_trans_dtype =
          kernel_type_for_var.data_type_ != expected_kernel_key.data_type_;
      bool need_trans_layout = NeedTransformLayout(
          kernel_type_for_var.data_layout_, expected_kernel_key.data_layout_);
      if (!need_trans_dtype && !need_trans_layout) {
        if (!run_phi_kernel_ &&
            platform::places_are_same_class(kernel_type_for_var.place_,
                                            expected_kernel_key.place_)) {
          continue;
        }
      }
Y
yuyang18 已提交
2211

2212 2213 2214 2215 2216
      std::unique_ptr<OpKernelType> new_expected_kernel_key = nullptr;
      if (run_phi_kernel_ && in_def->backend != phi::Backend::ALL_BACKEND) {
        auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
        if ((in_def->backend != tensor_backend &&
             (in_def->backend != phi::Backend::GPUDNN ||
2217 2218
              tensor_backend != phi::Backend::GPU) &&
             (in_def->backend != phi::Backend::KPS ||
2219 2220 2221
              tensor_backend != phi::Backend::XPU) &&
             (in_def->backend != phi::Backend::ONEDNN ||
              tensor_backend != phi::Backend::CPU)) ||
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
            tensor_in->place().GetType() == AllocationType::GPUPINNED) {
          new_expected_kernel_key = std::make_unique<OpKernelType>(
              expected_kernel_key.data_type_,
              phi::TransToPhiPlace(in_def->backend),
              expected_kernel_key.data_layout_,
              expected_kernel_key.library_type_,
              expected_kernel_key.customized_type_value_);
        }
      }

      if (!need_trans_dtype && !need_trans_layout) {
        if (run_phi_kernel_ && new_expected_kernel_key == nullptr) {
          continue;
        }
Y
yuyang18 已提交
2236 2237
      }

M
minqiyang 已提交
2238
      VLOG(3) << "Transform Variable " << var_name << " from "
2239 2240 2241
              << kernel_type_for_var << " to "
              << (new_expected_kernel_key ? *new_expected_kernel_key
                                          : expected_kernel_key);
Y
yuyang18 已提交
2242

2243 2244 2245
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
2246
      // We use a thread_local cache to fix that issue, the key in the cache is
2247 2248 2249 2250 2251
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
2252 2253
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
2254
      // variables, that behavior a lot different.
2255 2256 2257 2258 2259 2260
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
      if (!run_by_executor_) {
        if (new_expected_kernel_key) {
          if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
               platform::is_gpu_place(new_expected_kernel_key->place_))) {
            new_scope = TryCreateTransferScope(
                kernel_type_for_var, *new_expected_kernel_key, &scope);
            enable_cache_transfer_scope_ = true;
          }
        } else if ((platform::is_gpu_place(kernel_type_for_var.place_) ||
                    platform::is_gpu_place(expected_kernel_key.place_))) {
          new_scope = TryCreateTransferScope(
              kernel_type_for_var, expected_kernel_key, &scope);
          enable_cache_transfer_scope_ = true;
        }
2275
      }
2276

2277
      if (!new_scope) {
Y
yuyang18 已提交
2278 2279
        new_scope = &scope.NewScope();
      }
2280 2281 2282 2283
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2284
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2285 2286
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2287
      if (enable_cache_runtime_context_) {
2288 2289
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2290 2291

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2292
      auto* trans_var = new_scope->Var(var_name);
2293
      in_vars->at(i) = trans_var;
L
Leo Chen 已提交
2294 2295 2296 2297 2298 2299 2300

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
2301
            VLOG(4) << "Found inplace between input(" << in_name
L
Leo Chen 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2311
      Tensor out;
2312 2313 2314 2315 2316
      TransformData(new_expected_kernel_key ? *new_expected_kernel_key
                                            : expected_kernel_key,
                    kernel_type_for_var,
                    *tensor_in,
                    &out);
Y
yuyang18 已提交
2317 2318
      SetTensorToVariable(*var, out, trans_var);
    }
2319 2320 2321 2322
  };

  if (run_phi_kernel_) {
    const auto& input_names = kernel_signature_->input_names;
2323
    const auto& input_defs = phi_kernel_->args_def().input_defs();
2324 2325 2326 2327 2328 2329 2330 2331
    PADDLE_ENFORCE_EQ(input_names.size(),
                      input_defs.size(),
                      platform::errors::InvalidArgument(
                          "The size of inputs_args names (%d) must be equal to "
                          "the size of kernel input_defs (%d).",
                          input_names.size(),
                          input_defs.size()));
    for (size_t i = 0; i < input_defs.size(); ++i) {
2332
      const auto& input_defs = phi_kernel_->args_def().input_defs();
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
      auto& in_def = input_defs.at(i);
      std::string input_name = input_names[i];
      auto iter = ctx->inputs.find(input_name);
      if (iter == ctx->inputs.end()) {
        continue;
      }
      auto& ins_vector = iter->second;
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(input_name) > 0;
      prepare_input_data(input_name, &ins_vector, &in_def, should_skip_input);
    }
  } else {
    for (auto& var_name_item : Inputs()) {
      bool should_skip_input =
          no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

      std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];
      prepare_input_data(
          var_name_item.first, &input_vars, nullptr, should_skip_input);
    }
Y
yuyang18 已提交
2353
  }
L
Leo Chen 已提交
2354

2355 2356 2357 2358 2359 2360
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2361 2362 2363 2364 2365 2366

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2367 2368
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2369 2370 2371

  return new_scope;
}
Q
Qiao Longfei 已提交
2372

2373
void OperatorWithKernel::ParseInputDataType(
2374 2375
    const Variable* var,
    const std::string& name,
2376 2377 2378 2379 2380 2381 2382 2383 2384
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
    } else if (var->IsType<phi::SparseCooTensor>()) {
      const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
      PADDLE_ENFORCE_EQ(
          sp_t->initialized(),
          true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(),
                                            name));
      *data_type = paddle::framework::TransToProtoVarType(sp_t->dtype());
      return;
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
2406 2407
          t->IsInitialized(),
          true,
2408 2409
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
2410 2411
                                            Type(),
                                            name));
2412 2413 2414 2415 2416 2417
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2418 2419
    const std::vector<Variable*>& vars,
    const std::string& name,
2420
    proto::VarType::Type* data_type) const {
2421
  proto::VarType::Type default_data_type =
2422 2423 2424 2425 2426 2427 2428 2429 2430
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2431 2432
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
      } else if (var->IsType<phi::SparseCooTensor>()) {
        const phi::SparseCooTensor* sp_t = &(var->Get<phi::SparseCooTensor>());
        PADDLE_ENFORCE_EQ(
            sp_t->initialized(),
            true,
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(),
                                              name));
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(sp_t->dtype());
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(),
                           name,
                           DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
        *data_type = tmp;
2456
      } else if (var->IsType<LoDTensorArray>()) {
2457 2458 2459 2460
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2461 2462
          }
        }
2463 2464
      }
      if (t != nullptr) {
2465
        PADDLE_ENFORCE_EQ(
2466 2467
            t->IsInitialized(),
            true,
2468 2469
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
2470 2471
                                              Type(),
                                              name));
2472 2473
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2474 2475 2476 2477 2478 2479 2480
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
2481 2482 2483
                           Type(),
                           name,
                           DataTypeToString(tmp),
2484
                           DataTypeToString(*data_type)));
2485 2486 2487 2488 2489 2490
        *data_type = tmp;
      }
    }
  }
}

2491
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2492
    const ExecutionContext& ctx) const {
2493 2494 2495
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2496 2497 2498 2499 2500 2501
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2502
  }
2503
  PADDLE_ENFORCE_NE(
2504 2505
      data_type,
      dafault_data_type,
2506 2507
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2508 2509 2510 2511 2512 2513 2514 2515
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2516 2517 2518 2519 2520
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2521
  PADDLE_ENFORCE_NE(
2522 2523
      data_type,
      dafault_data_type,
2524 2525 2526 2527
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
2528 2529
          name,
          Type()));
2530
  return data_type;
Y
Yu Yang 已提交
2531
}
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2551 2552
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2553 2554 2555 2556 2557 2558 2559 2560
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
2561 2562
  PADDLE_ENFORCE_EQ(t->IsInitialized(),
                    true,
2563 2564 2565
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
2566 2567 2568
                        Type(),
                        name,
                        ctx.InputName(name)));
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
2580 2581
    const ExecutionContext& ctx,
    const std::string& name1,
2582 2583 2584 2585 2586 2587
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2588 2589
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2590 2591 2592 2593 2594 2595 2596

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2597 2598 2599 2600 2601 2602
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
2603 2604
    const std::string& var_name,
    const Tensor& tensor,
2605
    const OpKernelType& expected_kernel_type) const {
2606 2607
  return OpKernelType(
      expected_kernel_type.data_type_, tensor.place(), tensor.layout());
2608 2609
}

2610
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2611
    const ExecutionContext& ctx) const {
2612
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2613
  if (arg_map_fn_ == nullptr) {
2614 2615 2616 2617
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2618 2619 2620
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2621 2622 2623 2624
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2625 2626
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2627 2628
}

2629
void OperatorWithKernel::BuildPhiKernelContext(
2630 2631
    const RuntimeContext& ctx,
    platform::DeviceContext* dev_ctx,
2632 2633
    phi::KernelContext* phi_kernel_context) const {
  phi_kernel_context->SetDeviceContext(dev_ctx);
2634

2635 2636 2637
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2638

2639 2640 2641
  auto input_defs = phi_kernel_->args_def().input_defs();
  auto attr_defs = phi_kernel_->args_def().attribute_defs();
  auto output_defs = phi_kernel_->args_def().output_defs();
2642

2643 2644
  PADDLE_ENFORCE_EQ(input_names.size(),
                    input_defs.size(),
2645 2646 2647
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
2648 2649
                        input_names.size(),
                        input_defs.size()));
2650

2651 2652
  PADDLE_ENFORCE_EQ(output_names.size(),
                    output_defs.size(),
2653 2654 2655
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
2656 2657
                        output_names.size(),
                        output_defs.size()));
2658

2659 2660
  PADDLE_ENFORCE_EQ(attr_names.size(),
                    attr_defs.size(),
2661 2662 2663
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
2664 2665
                        attr_names.size(),
                        attr_defs.size()));
2666 2667

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2668
    auto it = ctx.inputs.find(input_names[i]);
2669 2670 2671

    // calcute the start and end index of the input tensors
    size_t start_idx =
2672
        (i == 0 ? 0 : phi_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2673
    // deal with optional here
2674
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2675
        (input_defs[i].type_index ==
2676
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2677
         input_defs[i].type_index ==
2678
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2679
         input_defs[i].type_index ==
2680 2681
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
2682
      phi_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
H
hong 已提交
2683
      auto end_idx = start_idx + 1;
2684 2685
      phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                           i);
2686

H
hong 已提交
2687 2688 2689 2690
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2691
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2692
      const phi::TensorBase* tensor_in = nullptr;
2693
      auto* var = ins_vector[offset];
H
hong 已提交
2694 2695
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2696
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2697 2698
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2699
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2700 2701 2702
      } else if (var->IsType<phi::SparseCooTensor>()) {
        tensor_in = &(var->Get<phi::SparseCooTensor>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2703
      } else if (var->IsType<framework::LoDTensorArray>()) {
2704
        need_prepare_phi_data_ = true;
2705 2706
        tensor_in = &(var->Get<framework::LoDTensorArray>());
        phi_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2707 2708 2709 2710
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2711
      }
2712
    }
2713
    // Note: here cannot deal with vector<LoDTensorArray> input
2714
    phi_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2715
  }
2716
  VLOG(4) << "Done inputs";
2717 2718

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2719
    auto it = ctx.outputs.find(output_names[i]);
2720
    size_t start_idx =
2721
        (i == 0 ? 0 : phi_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2722 2723 2724 2725 2726 2727

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
2728
      phi_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
H
hong 已提交
2729
      auto end_idx = start_idx + 1;
2730 2731
      phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                            i);
H
hong 已提交
2732 2733 2734 2735
      continue;
    }
    auto& outs_vector = it->second;

2736
    size_t end_idx = start_idx + outs_vector.size();
2737 2738

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2739
      phi::TensorBase* tensor_out = nullptr;
2740
      auto* var = outs_vector[offset];
2741 2742 2743
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2744
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2745 2746
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2747
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2748 2749 2750
        } else if (var->template IsType<phi::SparseCooTensor>()) {
          tensor_out = var->template GetMutable<phi::SparseCooTensor>();
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2751
        } else if (var->template IsType<framework::LoDTensorArray>()) {
2752
          tensor_out = var->template GetMutable<framework::LoDTensorArray>();
2753 2754
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
2755
          phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2756 2757 2758 2759 2760
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2761
      } else {
2762
        phi_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2763
      }
2764
    }
2765 2766
    phi_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                          i);
2767
  }
2768
  VLOG(4) << "Done outputs";
2769 2770

  for (size_t i = 0; i < attr_names.size(); ++i) {
2771 2772
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
2773 2774
    // attribute with Variable type has been placed into Inputs(), and
    // we can parse them from RuntimeContext.inputs.
2775 2776 2777 2778 2779 2780 2781
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
2782
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2783
                  phi::Scalar(PADDLE_GET_CONST(float, attr_iter->second))));
2784
              break;
2785 2786 2787 2788
            case proto::AttrType::FLOAT64:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(double, attr_iter->second))));
              break;
2789
            case proto::AttrType::INT:
2790
              phi_kernel_context->EmplaceBackAttr(std::move(
R
Ruibiao Chen 已提交
2791
                  phi::Scalar(PADDLE_GET_CONST(int, attr_iter->second))));
2792
              break;
2793 2794 2795 2796
            case proto::AttrType::LONG:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(int64_t, attr_iter->second))));
              break;
2797
            case proto::AttrType::STRING:
2798
              phi_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
R
Ruibiao Chen 已提交
2799
                  PADDLE_GET_CONST(std::string, attr_iter->second))));
2800
              break;
2801 2802 2803 2804
            case proto::AttrType::BOOLEAN:
              phi_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(PADDLE_GET_CONST(bool, attr_iter->second))));
              break;
2805 2806 2807 2808 2809 2810 2811
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2812
          need_prepare_phi_data_ = true;
2813
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2814
          phi_kernel_context->EmplaceBackAttr(std::move(
2815
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2816
        }
2817 2818 2819 2820 2821
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
2822
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2823
                  PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second))));
2824 2825
              break;
            case proto::AttrType::LONGS:
2826
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2827
                  PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2828 2829
              break;
            case proto::AttrType::INT:
2830
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2831
                  &PADDLE_GET_CONST(int32_t, attr_iter->second), 1)));
2832 2833
              break;
            case proto::AttrType::LONG:
2834
              phi_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
R
Ruibiao Chen 已提交
2835
                  &PADDLE_GET_CONST(int64_t, attr_iter->second), 1)));
2836 2837 2838 2839 2840 2841 2842 2843
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2844
          need_prepare_phi_data_ = true;
2845 2846
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
2847
            phi_kernel_context->EmplaceBackAttr(std::move(
2848 2849
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
2850
            phi_kernel_context->EmplaceBackAttr(std::move(
2851 2852
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2853
        }
2854 2855 2856
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
2857 2858
            attr_iter,
            Attrs().end(),
2859 2860 2861 2862 2863 2864
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2865
                PADDLE_GET_CONST(std::vector<int32_t>, attr_iter->second);
2866 2867 2868 2869 2870
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2871
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2872 2873 2874
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2875
                PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second);
2876 2877 2878 2879 2880
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2881
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2882 2883 2884
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2885
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second);
2886 2887 2888 2889 2890
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2891
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2892 2893 2894
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
R
Ruibiao Chen 已提交
2895
                PADDLE_GET_CONST(std::vector<double>, attr_iter->second);
2896 2897 2898 2899 2900
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2901
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2902 2903 2904
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
R
Ruibiao Chen 已提交
2905
                PADDLE_GET_CONST(std::vector<bool>, attr_iter->second);
2906 2907 2908 2909 2910
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
2911
            phi_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2912 2913 2914 2915 2916
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2917 2918
                attr_names[i]));
        }
2919 2920
      } break;
      default: {
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
        if (attr_iter == Attrs().end()) {
          attr_iter = RuntimeAttrs().find(attr_names[i]);
          PADDLE_ENFORCE_NE(attr_iter,
                            RuntimeAttrs().end(),
                            platform::errors::NotFound(
                                "(%s) is not found in AttributeMap when "
                                "buildind static KernelContext.",
                                attr_names[i]));
        }

2931 2932
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
2933
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2934
                PADDLE_GET_CONST(float, attr_iter->second));
2935
            break;
2936 2937 2938 2939
          case phi::AttributeType::FLOAT64:
            phi_kernel_context->EmplaceBackAttr(
                PADDLE_GET_CONST(double, attr_iter->second));
            break;
2940
          case phi::AttributeType::INT32:
2941
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2942
                PADDLE_GET_CONST(int, attr_iter->second));
2943 2944
            break;
          case phi::AttributeType::BOOL:
2945
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2946
                PADDLE_GET_CONST(bool, attr_iter->second));
2947 2948
            break;
          case phi::AttributeType::INT64:
2949
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2950
                PADDLE_GET_CONST(int64_t, attr_iter->second));
2951 2952
            break;
          case phi::AttributeType::INT32S:
2953
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2954
                PADDLE_GET_CONST(std::vector<int>, attr_iter->second));
2955 2956 2957 2958
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
R
Ruibiao Chen 已提交
2959
                    PADDLE_GET_CONST(int, attr_iter->second)));
2960
            phi_kernel_context->EmplaceBackAttr(data_type);
2961 2962
          } break;
          case phi::AttributeType::STRING:
2963
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2964
                std::move(PADDLE_GET_CONST(std::string, attr_iter->second)));
2965 2966 2967 2968
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
2969
                phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2970
                    PADDLE_GET_CONST(std::vector<int64_t>, attr_iter->second));
2971 2972 2973
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
R
Ruibiao Chen 已提交
2974
                    PADDLE_GET_CONST(std::vector<int>, attr_iter->second);
2975 2976
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
2977
                phi_kernel_context->EmplaceBackAttr(vector_int64_attr);
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
2988
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2989
                PADDLE_GET_CONST(std::vector<float>, attr_iter->second));
2990 2991
            break;
          case phi::AttributeType::STRINGS:
2992
            phi_kernel_context->EmplaceBackAttr(
R
Ruibiao Chen 已提交
2993
                PADDLE_GET_CONST(std::vector<std::string>, attr_iter->second));
2994 2995 2996 2997 2998 2999
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
3000
        }
3001 3002 3003
      }
    }
  }
3004
  VLOG(4) << "Done attributes";
3005 3006
}

Q
Qiao Longfei 已提交
3007
}  // namespace framework
L
liaogang 已提交
3008
}  // namespace paddle