operator.cc 102.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
11

12 13
#include "paddle/fluid/framework/operator.h"

14
#include <glog/logging.h>
15

P
peizhilin 已提交
16 17
#include <sstream>
#include <string>
18

19
#include "gflags/gflags.h"
20
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/data_transform.h"
22
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
23
#include "paddle/fluid/framework/details/nan_inf_utils.h"
24
#include "paddle/fluid/framework/op_call_stack.h"
25
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/framework/shape_inference.h"
27
#include "paddle/fluid/framework/transfer_scope_cache.h"
28
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
29
#include "paddle/fluid/framework/var_type.h"
30
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
31
#include "paddle/fluid/platform/enforce.h"
32
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
33
#include "paddle/fluid/platform/profiler/event_tracing.h"
34
#include "paddle/phi/common/int_array.h"
35
#include "paddle/phi/common/scalar.h"
36
#include "paddle/phi/core/kernel_context.h"
37 38
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
39

40
namespace phi {
41
class DenseTensor;
42
}  // namespace phi
43

44
#ifdef PADDLE_WITH_XPU
45 46
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
47
#endif
Q
Qiao Longfei 已提交
48

49 50 51 52
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
53 54 55 56
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
57
DECLARE_bool(benchmark);
58
DECLARE_bool(check_nan_inf);
59
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
60
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
61
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
62

Q
Qiao Longfei 已提交
63 64 65
namespace paddle {
namespace framework {

66 67 68 69 70 71
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
72

73
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
74
                         bool get_actual_dim = false) {
75
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
76 77
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
78 79
  }

M
minqiyang 已提交
80 81 82
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
83
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
84
    if (get_actual_dim) {
85
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
86
    } else {
87
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
88
    }
S
Steffy-zxf 已提交
89 90
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
91 92 93 94 95
  } else {
    return DDim({-1});
  }
}

96
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
97 98 99 100 101
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

102
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
103 104 105 106
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
107

M
minqiyang 已提交
108 109 110
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
111 112
      return "";
    }
113
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
114 115
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
116 117 118
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
119
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
120
    }
S
Steffy-zxf 已提交
121 122
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
123 124 125 126 127
  } else {
    return "";
  }
}

128
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
145 146
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
147 148 149 150 151 152 153 154 155 156
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

157
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
158 159 160 161 162
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

163 164
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
165 166 167 168 169
  }

  return -1;
}

170
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
171 172 173 174 175 176 177
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
178 179 180
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
181 182 183 184 185
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
186 187 188 189 190
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
191
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
192 193 194 195 196 197
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
198
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
199 200 201 202 203 204
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

205
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
206 207 208
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
209
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
210 211 212 213
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
214
#else
215
      auto dev_id = place.device;
P
peizhilin 已提交
216
      platform::SetDeviceId(dev_id);
217 218 219
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
220 221 222 223
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
224
#else
225
      auto dev_id = place.device;
226
      platform::SetXPUDeviceId(dev_id);
227 228 229 230 231 232 233 234
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
235
      auto dev_id = place.device;
236
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
237 238 239 240 241 242 243 244
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
245
      auto dev_id = place.device;
F
fwenguang 已提交
246
      platform::SetMLUDeviceId(dev_id);
247 248 249 250 251 252 253 254
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
255
      phi::DeviceManager::SetDevice(place);
256
#endif
P
peizhilin 已提交
257
    }
P
peizhilin 已提交
258

259
    {
260 261 262
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
263
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
264
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
265 266
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
267 268
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
269
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
270 271
      RunImpl(scope, place);
    }
272

Z
Zhang Ting 已提交
273
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
274
  } catch (platform::EnforceNotMet& exception) {
275
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
276
    throw std::move(exception);
277 278 279 280 281 282
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
283
  } catch (...) {
284
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
285
    std::rethrow_exception(std::current_exception());
286
  }
287 288
}

289
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
290
  return inputs_.find(name) != inputs_.end();
291 292
}

293
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
294
  auto& ins = Inputs(name);
295 296
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
297
      platform::errors::InvalidArgument(
298 299
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
300
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
301 302
}

Y
Yu Yang 已提交
303 304
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
305
  auto it = inputs_.find(name);
306 307 308 309
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
310
  return it->second;
Y
Yan Chunwei 已提交
311 312
}

313
bool OperatorBase::HasOutputs(const std::string& name) const {
314
  if (outputs_.find(name) != outputs_.end()) {
315 316 317 318 319 320
    return true;
  } else {
    return false;
  }
}

321
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
322
  auto& outs = Outputs(name);
323 324 325 326 327
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
328
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
329 330
}

Y
Yu Yang 已提交
331 332
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
333
  auto it = outputs_.find(name);
334 335 336 337
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
338
  return it->second;
Y
Yan Chunwei 已提交
339 340
}

341
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
342
  std::stringstream ss;
Y
Yu Yang 已提交
343
  ss << "Op(" << type_ << "), inputs:{";
344

345
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
346 347
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
348 349
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
350 351
  }

Y
Yu Yang 已提交
352 353
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
354 355
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
356 357
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
358 359
      auto var_name = input.second[i];
      ss << var_name;
360
      if (scope) {
Q
Qiao Longfei 已提交
361 362 363 364 365 366 367
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
368 369 370
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
371
          ss << ":" << dtype;
372 373
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
374
          ss << "(" << GetPlace(*scope, var_name) << ")";
375
        }
376
      }
Y
Yu Yang 已提交
377 378 379
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
380
    }
Y
Yu Yang 已提交
381
    ss << "]";
Y
Yu Yang 已提交
382 383
    ++it;
    if (it != inputs_.end()) {
384 385
      ss << ", ";
    }
Q
Qiao Longfei 已提交
386
  }
Y
Yu Yang 已提交
387
  ss << "}, outputs:{";
Y
Yu Yang 已提交
388 389
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
390 391
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
392 393
      auto var_name = output.second[i];
      ss << var_name;
394
      if (scope) {
Q
Qiao Longfei 已提交
395 396 397 398 399 400 401
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
402 403
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
404 405
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
406
          ss << "(" << GetPlace(*scope, var_name) << ")";
407
        }
408
      }
Y
Yu Yang 已提交
409 410 411
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
412
    }
Y
Yu Yang 已提交
413
    ss << "]";
Y
Yu Yang 已提交
414 415
    ++it;
    if (it != outputs_.end()) {
416 417
      ss << ", ";
    }
Q
Qiao Longfei 已提交
418
  }
Y
Yu Yang 已提交
419
  ss << "}.";
Q
Qiao Longfei 已提交
420 421 422
  return ss.str();
}

Y
Yu Yang 已提交
423
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
424 425
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
426
                           const AttributeMap& attrs)
S
sneaxiy 已提交
427 428 429 430 431 432
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
433 434 435 436 437 438 439 440
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
441
}
442

Q
qijun 已提交
443 444
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
445
  for (auto& o : inputs_) {
Q
qijun 已提交
446 447 448 449 450 451
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
452 453 454 455 456 457 458 459 460 461
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
462
  auto& info = Info();
Y
Yu Yang 已提交
463 464

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
465
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
466 467 468 469 470 471 472 473 474
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
475 476
}

477
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
478
  if (info_ == nullptr || info_->proto_ == nullptr) return;
479

S
sneaxiy 已提交
480
  for (auto& in : info_->Proto().inputs()) {
481
    if (!in.dispensable() && !in.extra()) {
482 483 484 485
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
486
    }
487 488
  }

S
sneaxiy 已提交
489
  for (auto& out : info_->Proto().outputs()) {
490
    if (!out.dispensable() && !out.extra()) {
491 492 493 494
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
495
    }
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
511

C
chengduo 已提交
512
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
513 514
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
515 516
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
517
  } else {
518 519 520
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
521 522 523
  }
}

C
chengduo 已提交
524
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
525
  if (var->IsType<LoDTensor>()) {
526
    return var->GetMutable<LoDTensor>();
527 528
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
529
  } else {
530 531 532
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
533 534 535
  }
}

536
bool ExecutionContext::HasInput(const std::string& name) const {
537
  auto* var = InputVar(name);
538 539 540
  return var != nullptr;
}

541 542 543 544 545 546 547 548 549 550 551 552 553 554
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

555
bool ExecutionContext::HasOutput(const std::string& name) const {
556
  auto* var = OutputVar(name);
557 558 559
  return var != nullptr;
}

X
Xin Pan 已提交
560
const Variable* ExecutionContext::InputVar(const std::string& name) const {
561 562
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
563 564 565
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

566 567
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
568
      platform::errors::InvalidArgument(
569 570
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
571 572 573
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
574
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
575 576 577
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

578 579 580 581 582
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
583 584 585
  return it->second.empty() ? nullptr : it->second[0];
}

586
template <>
587
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
588
    const std::string& name) const {
589 590
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
591 592
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
593 594 595 596 597
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
598
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
599
                   if (var == nullptr) return nullptr;
600 601 602 603 604
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
605 606 607 608 609
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

610
template <>
611
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
612
    const std::string& name) const {
H
hong 已提交
613 614 615
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
616 617
    return {};
  }
618
  std::vector<Tensor*> res;
619 620 621 622 623
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
624
                 });
625 626 627
  return res;
}

Y
Yu Yang 已提交
628
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
629
  // check in new Function kernel first
630
  bool has_phi_kernel = false;
631
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
632
  auto kernel_key_map =
633
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
634
  for (auto& kernel : kernel_key_map) {
635
    has_phi_kernel = true;
636
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
637 638 639 640
      return true;
    }
  }

Y
Yu Yang 已提交
641 642
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
643 644 645 646 647 648 649 650 651 652 653 654 655
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
656 657 658
      return true;
    }
  }
H
hong 已提交
659

Y
Yu Yang 已提交
660 661 662
  return false;
}

663 664
class RuntimeInferShapeContext : public InferShapeContext {
 public:
665
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
666
      : op_(op), ctx_(ctx) {}
667 668

  bool HasInput(const std::string& name) const override {
669
    // has only one input
X
Xin Pan 已提交
670
    const auto& ins = ctx_.inputs;
671 672
    auto it = ins.find(name);
    if (it == ins.end()) {
673 674
      return false;
    }
675
    const auto& in = it->second;
X
Xin Pan 已提交
676
    if (in.size() == 0) return false;
677 678 679 680
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
681
    return in[0] != nullptr;
682 683 684
  }

  bool HasOutput(const std::string& name) const override {
685
    // has only one output
X
Xin Pan 已提交
686
    const auto& outs = ctx_.outputs;
687 688
    auto it = outs.find(name);
    if (it == outs.end()) {
689 690
      return false;
    }
691
    const auto& out = it->second;
X
Xin Pan 已提交
692
    if (out.size() == 0) {
693 694
      return false;
    }
695 696 697 698
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
699
    return out[0] != nullptr;
700 701
  }

702 703 704 705
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

706
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
707 708
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
709
    if (it == ins.end() || it->second.empty()) {
710 711
      return false;
    }
X
Xin Pan 已提交
712 713
    for (auto& input : it->second) {
      if (input == nullptr) {
714 715 716 717 718 719
        return false;
      }
    }
    return true;
  }

720 721
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
722 723
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
724
    if (it == outs.end() || it->second.empty()) {
725 726
      return false;
    }
727 728 729 730 731 732 733 734
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
735
      }
736
      return true;
737 738 739 740 741
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
742
  std::vector<std::string> Inputs(const std::string& name) const override {
743 744 745
    return op_.Inputs(name);
  }

H
hong 已提交
746
  std::vector<std::string> Outputs(const std::string& name) const override {
747 748 749
    return op_.Outputs(name);
  }

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

773 774
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
775 776
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
793 794 795

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
796

797 798 799 800 801
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
802

803 804 805
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
806 807 808 809 810 811 812 813
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
814
      PADDLE_THROW(platform::errors::Unimplemented(
815
          "Currently, the input type of ShareDim only can be LoDTensor "
816
          "or SelectedRows."));
817 818 819
    }
  }

H
hong 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
838
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
865 866
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
867 868
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
885 886

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
887
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
888
    Variable* out_var = out_it->second.at(j);
889 890 891 892
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
893
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
894 895
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
896

M
mozga-intel 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
916 917
  }

918
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
919
    PADDLE_THROW(platform::errors::PreconditionNotMet(
920
        "GetLoDLevel is only used in compile time. The calculation of "
921
        "output's actual lod is different among operators so that should be "
922
        "set in the runtime kernel."));
923 924
  }

925 926
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
927
    PADDLE_THROW(platform::errors::PreconditionNotMet(
928
        "SetLoDLevel is only used in compile time. The calculation of "
929
        "output's actual lod is different among operators so that should be "
930
        "set in the runtime kernel."));
C
chengduo 已提交
931 932
  }

933 934
  bool IsRuntime() const override { return true; }

935 936 937 938 939 940
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
941
    } catch (const std::bad_cast& exp) {
942 943 944 945
      return false;
    }
  }

946
  // TODO(paddle-dev): Can this be template?
C
Chen Weihang 已提交
947
  paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize>
948
  GetInputVarPtrs(const std::string& name) const override {
949
    const std::vector<Variable*>& vars = InputVars(name);
C
Chen Weihang 已提交
950
    paddle::small_vector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
951 952 953 954 955
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

C
Chen Weihang 已提交
956
  paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
957
  GetOutputVarPtrs(const std::string& name) const override {
958
    const std::vector<Variable*>& vars = OutputVars(name);
C
Chen Weihang 已提交
959
    paddle::small_vector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
960 961 962 963 964
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
965 966
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
967 968 969 970 971
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
972 973 974 975 976 977 978 979
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

980 981 982 983
  proto::VarType::Type GetInputVarType(const std::string& name) const override {
    return GetVarType(InputVars(name).at(0));
  }

X
Xin Pan 已提交
984 985 986 987 988 989 990 991 992 993
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
994 995
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
996 997 998 999 1000
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1010 1011 1012 1013 1014 1015 1016 1017
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1018
 protected:
X
Xin Pan 已提交
1019
  DDim GetDim(Variable* var) const {
1020 1021
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1022 1023
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1024 1025
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1026
    } else {
1027 1028 1029 1030
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1031 1032 1033
    }
  }

X
Xin Pan 已提交
1034 1035 1036 1037 1038 1039 1040 1041
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1042
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1043 1044
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1045 1046
  }

X
Xin Pan 已提交
1047
  void SetDim(Variable* var, const DDim& dim) {
1048 1049
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1050 1051
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1052
    } else {
1053 1054 1055 1056
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1063 1064 1065 1066 1067 1068
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1069 1070 1071 1072 1073
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1074 1075 1076
    }
  }

F
fengjiayi 已提交
1077 1078
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1079 1080
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1081 1082
  }

X
Xin Pan 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1094 1095 1096
    return ToVarType(var->Type());
  }

1097 1098 1099
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1100 1101 1102 1103
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1104 1105 1106 1107 1108
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1109 1110 1111 1112
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1113
    return it->second;
F
fengjiayi 已提交
1114 1115
  }

1116
  const OperatorBase& op_;
X
Xin Pan 已提交
1117
  const RuntimeContext& ctx_;
1118 1119
};

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
struct OperatorWithKernel::CacheImpl {
  explicit CacheImpl(phi::KernelContext* kernel_ctx,
                     RuntimeInferShapeContext* infer_shape_ctx)
      : kernel_ctx_(kernel_ctx), infer_shape_ctx_(infer_shape_ctx) {}

  phi::KernelContext* getKernelContext() { return kernel_ctx_.get(); }
  RuntimeInferShapeContext* getRuntimeInferShapeContext() {
    return infer_shape_ctx_.get();
  }

 private:
  std::unique_ptr<phi::KernelContext> kernel_ctx_;
  std::unique_ptr<RuntimeInferShapeContext> infer_shape_ctx_;
};

1135 1136
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1137 1138 1139 1140
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1141 1142
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1143 1144
    return;
  }
1145 1146 1147 1148 1149 1150 1151 1152
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1153 1154
}

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1205 1206
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1207 1208
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
1209 1210 1211 1212 1213
    VLOG(6) << "Warning: " << type_
            << " don't find its MKLDNN Kernel in Fluid "
               "Registered Kernels. And We don't "
               "search its kernels in phi lib, "
               "SupportsMKLDNN() return false.";
1214 1215 1216
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1217
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1218
                     [data_type](OpKernelMap::const_reference kern_pair) {
1219 1220
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1221 1222
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1223 1224 1225
                     });
}

1226 1227
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1228 1229 1230 1231
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1232
                        platform::is_cpu_place(ctx.GetPlace());
1233
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1234 1235
}

1236 1237 1238 1239 1240 1241 1242
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1243
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1244 1245
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1246
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1247
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1248 1249
}

L
luotao1 已提交
1250 1251
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1252 1253
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1254 1255 1256
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1257
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1258
    all_kernels_must_compute_runtime_shape_ = true;
1259
  const Scope* cur_scope = &scope;
1260
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1261 1262
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1263
    pre_scope_ = cur_scope;
L
luotao1 已提交
1264
  } else {
1265 1266 1267 1268 1269 1270
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1271 1272 1273 1274 1275 1276 1277 1278
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1279
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1280
  auto* dev_ctx = pool.Get(place);
1281

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1292
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1293 1294 1295 1296
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1297

1298 1299 1300 1301 1302 1303
// TODO(Liu-xiandong): Now we are using too much if-else and hard code in XPU
// device, it's ugly, and we will refactor in the future.
#if defined(PADDLE_WITH_XPU_KP)
  bool use_phi_xpu_kp = false;
#endif

1304 1305 1306 1307 1308
  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1309
  phi::KernelKey pt_kernel_key;
1310
  std::string pt_kernel_name;
1311
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1312 1313 1314 1315
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1316 1317 1318 1319 1320

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1321
      pt_kernel_name = kernel_signature_->name;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
          }
        }
      }
#endif
1361
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1362
      pt_kernel_.reset(
1363
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1364 1365 1366
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1367
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1368 1369 1370
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1371
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1372 1373
                << "` not found.";
      }
1374
    } else {
1375
      pt_kernel_name = kernel_signature_->name;
1376 1377 1378
// NOTE(Liu-xiandong):In my ctest, this branch do not be executed,
// I can't understand it, it's really confusing.
// But we still need to keep this to avoid errors.
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
1397 1398
          VLOG(3) << "modifing XPU KP kernel in static graph: "
                  << pt_kernel_name
1399 1400 1401
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1402 1403
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1404
            kernel_type_->library_type_ = expected_kernel_key_library_type;
1405 1406 1407 1408 1409 1410
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is failed " << *kernel_type_.get();
          } else {
            use_phi_xpu_kp = true;
            VLOG(3) << "modify XPU KP kernel in static graph: "
                    << pt_kernel_name << " is succeed " << *kernel_type_.get();
1411 1412 1413 1414
          }
        }
      }
#endif
1415
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1416
    }
1417 1418 1419 1420

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1421
#if defined(PADDLE_WITH_XPU)
1422 1423 1424 1425 1426
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
#ifdef PADDLE_WITH_XPU_KP
    bool use_xpu_kp_kernel_rt =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
#endif

1438
    if (pt_kernel_->IsValid()
1439
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1440 1441
        && !is_xpu_unsupport
#endif
1442 1443 1444
#if defined(PADDLE_WITH_XPU_KP)
        && (!is_xpu_unsupport || use_phi_xpu_kp)
#endif
1445
    ) {
1446
      run_phi_kernel_ = true;
1447 1448 1449
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1460 1461 1462
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1463
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1464
          || is_xpu_unsupport
1465
#endif
1466 1467 1468
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
1469
      ) {
1470 1471 1472
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1473
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1474 1475 1476 1477 1478 1479 1480
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1481
          run_phi_kernel_ = true;
1482 1483
        }
      }
1484 1485
    }
  }
1486
  if (!run_phi_kernel_) {
1487 1488
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1489
      dev_ctx = pool.Get(kernel_type_->place_);
1490
    }
1491 1492
  }

Y
yuyang18 已提交
1493 1494
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1495 1496
  Scope* transfer_scope = nullptr;
  {
1497
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1498 1499
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1500 1501 1502 1503
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1504
  }
Y
yuyang18 已提交
1505 1506 1507 1508
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1509
  if (!all_kernels_must_compute_runtime_shape_) {
1510
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1511 1512
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1513
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1514
    this->Info().infer_shape_(&infer_shape_ctx);
1515
  }
1516 1517 1518 1519 1520

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1521 1522
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1523
  {
1524
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1525 1526
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1527
    if (run_phi_kernel_) {
1528 1529 1530
      phi::KernelContext pt_kernel_context;
      // Do data transform before building KernelContext
      // TODO(zhiqiu): support TransferInplaceVarsBack
1531
      PreparePhiData(exec_scope, *pt_kernel_, *kernel_signature_, runtime_ctx);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
      if (enable_cache_runtime_context_ && !need_prepare_phi_data_ &&
          !need_prepare_data_) {
        impl_ =
            new CacheImpl(new phi::KernelContext(),
                          new RuntimeInferShapeContext(*this, *runtime_ctx));
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, impl_->getKernelContext());
        (*pt_kernel_)(impl_->getKernelContext());
      } else {
        phi::KernelContext pt_kernel_context;
        // Do data transform before building KernelContext
        // TODO(zhiqiu): support TransferInplaceVarsBack
        BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
        (*pt_kernel_)(&pt_kernel_context);
      }
1546 1547 1548 1549
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1550
  }
D
dzhwinter 已提交
1551

Y
yuyang18 已提交
1552
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1553
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1554
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1555
  }
1556 1557 1558 1559 1560 1561 1562

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1563 1564 1565 1566 1567 1568 1569 1570
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1571

D
dzhwinter 已提交
1572
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1573
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1574
    dev_ctx->Wait();
1575 1576
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1577 1578
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1579
  }
C
chengduoZH 已提交
1580 1581

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1582
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1583
  }
1584 1585 1586 1587 1588 1589 1590

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1591
}
X
Xin Pan 已提交
1592

1593 1594 1595
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1596 1597 1598
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1609 1610
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1611 1612
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1613
      if (SupportGPU()) {
1614
        auto& dev_ctx = ctx.device_context();
1615
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1616 1617 1618 1619 1620
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1621
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1622 1623 1624
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1625 1626 1627 1628 1629 1630
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1631 1632
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1633 1634 1635
  return expected_kernel_key;
}

1636
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1637
    const ExecutionContext& ctx) const {
1638 1639 1640
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1641 1642 1643 1644

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1645
  auto pt_kernel_name = kernel_signature_->name;
1646
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1647 1648
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1649 1650

  if (pt_kernel_->IsValid()) {
1651
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1652 1653 1654
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1655
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1656 1657
            << "` not found.";
  }
1658
  return pt_kernel_key;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1674 1675

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1676

L
Liu Yiqun 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1686
#endif
1687 1688

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1689
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1690 1691 1692
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1693
    VLOG(3) << "fluid missing XPU kernel: " << type_
1694 1695 1696 1697 1698
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1699
#endif
L
Liu-xiandong 已提交
1700 1701

#ifdef PADDLE_WITH_XPU_KP
1702 1703 1704 1705 1706 1707 1708
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
1709
      VLOG(3) << "fluid xpu_kp using rt mode ";
1710 1711
    }
    if (use_xpu_kp_kernel_debug) {
1712
      VLOG(3) << "fluid xpu_kp using debug mode ";
1713 1714 1715
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1716 1717
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1718 1719
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1720 1721 1722 1723 1724 1725 1726 1727 1728
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
1729
        VLOG(3) << "fluid using XPU KP kernel: " << type_
1730 1731
                << ", using_kernel_key:" << expected_kernel_key;
      }
1732 1733 1734 1735 1736 1737
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
1738
      VLOG(3) << "fluid missing XPU kernel: " << type_
1739 1740 1741 1742 1743
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1744 1745 1746
  }
#endif

A
Allen Guo 已提交
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1757 1758
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1759
      platform::is_npu_place(expected_kernel_key.place_)) {
1760 1761 1762 1763 1764 1765
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1766 1767 1768
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1769
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1770 1771 1772
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1784 1785 1786
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1787
#endif
1788 1789 1790 1791
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1792

1793 1794 1795 1796 1797
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1798 1799
}

Y
yuyang18 已提交
1800 1801 1802 1803
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1804
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1805
    auto* origin_var = scope.FindVar(var_name);
1806 1807 1808
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1809
    auto* original_tensor =
C
chengduo 已提交
1810
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1811
    auto* var = transfer_scope.FindVar(var_name);
1812 1813
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1814
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1815
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1816
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1817 1818 1819 1820 1821
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1822 1823 1824
  }
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1854
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1874
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1892
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1893
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1894 1895
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1896
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1897

1898
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1899 1900 1901 1902
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1903 1904
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1905 1906 1907
    }
  }

Y
yuyang18 已提交
1908
  for (auto& var_name_item : Inputs()) {
1909 1910
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1911

X
Xin Pan 已提交
1912 1913 1914 1915
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1916
      auto* var = input_vars[i];
X
Xin Pan 已提交
1917

Y
yuyang18 已提交
1918
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1919
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1920 1921 1922
        continue;
      }

C
chengduo 已提交
1923
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1939
            (paddle::platform::MKLDNNDeviceContext::tls()
1940 1941
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC) &&
            (tensor_in->dims().size() >= 3)) {
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1974 1975
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1976

1977 1978 1979
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1980
      // We use a thread_local cache to fix that issue, the key in the cache is
1981 1982 1983 1984 1985
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1986 1987
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1988
      // variables, that behavior a lot different.
1989 1990 1991 1992 1993 1994 1995 1996 1997
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1998 1999
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
2000
        enable_cache_transfer_scope_ = true;
2001
      }
2002
      if (!new_scope) {
Y
yuyang18 已提交
2003 2004
        new_scope = &scope.NewScope();
      }
2005 2006 2007 2008
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
2009
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
2010 2011
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
2012
      if (enable_cache_runtime_context_) {
2013 2014
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
2015 2016

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
2017
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
2018
      input_vars[i] = trans_var;
L
Leo Chen 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
2036
      Tensor out;
Y
yuyang18 已提交
2037
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
2038 2039 2040
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
2041

2042 2043 2044 2045 2046 2047
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
2048 2049 2050 2051 2052 2053

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
2054 2055
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
2056 2057 2058

  return new_scope;
}
Q
Qiao Longfei 已提交
2059

2060
void OperatorWithKernel::ParseInputDataType(
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
    const Variable* var, const std::string& name,
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
          t->IsInitialized(), true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(), name));
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2091
    const std::vector<Variable*>& vars, const std::string& name,
2092
    proto::VarType::Type* data_type) const {
2093
  proto::VarType::Type default_data_type =
2094 2095 2096 2097 2098 2099 2100 2101 2102
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2103 2104
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2105
      } else if (var->IsType<LoDTensorArray>()) {
2106 2107 2108 2109
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2110 2111
          }
        }
2112 2113
      }
      if (t != nullptr) {
2114 2115
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
2116 2117 2118
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
2119 2120
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2121 2122 2123 2124 2125 2126 2127 2128 2129
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2130 2131 2132 2133 2134 2135
        *data_type = tmp;
      }
    }
  }
}

2136
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2137
    const ExecutionContext& ctx) const {
2138 2139 2140
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2141 2142 2143 2144 2145 2146
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2147
  }
2148 2149 2150 2151
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2152 2153 2154 2155 2156 2157 2158 2159
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2160 2161 2162 2163 2164
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2165 2166
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2167 2168 2169 2170 2171
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2172
  return data_type;
Y
Yu Yang 已提交
2173
}
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2193 2194
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2226 2227
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2228 2229 2230 2231 2232 2233 2234

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2235 2236 2237 2238 2239 2240 2241 2242
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2243 2244
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2245 2246
}

2247
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2248
    const ExecutionContext& ctx) const {
2249
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2250
  if (arg_map_fn_ == nullptr) {
2251 2252 2253 2254
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2255 2256 2257
      auto func =
          [this](
              const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2258 2259 2260 2261
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2262 2263
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2264 2265
}

2266
Scope* OperatorWithKernel::PreparePhiData(
2267
    const Scope& scope, const phi::Kernel& pt_kernel,
2268 2269
    const phi::KernelSignature& pt_kernel_signature,
    RuntimeContext* ctx) const {
2270
  const auto& input_names = pt_kernel_signature.input_names;
2271 2272 2273 2274 2275 2276 2277
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2278
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2289 2290
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2291
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2292 2293
      continue;
    }
2294
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2295
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2296 2297 2298
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2299 2300 2301 2302 2303 2304 2305
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2315 2316 2317 2318
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2319 2320 2321
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2322 2323 2324 2325 2326

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2327 2328 2329
        continue;
      }

2330
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2331
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2332
              << tensor_in->place() << " to " << expected_place;
2333

2334 2335 2336
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2347

2348
      // Create new var with the same name in transfer scopes
2349
      auto* trans_var = new_scope->Var(name_vec[offset]);
2350
      ins_vector[offset] = trans_var;
2351

2352 2353 2354 2355
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2356 2357

      need_prepare_phi_data_ = true;
2358 2359 2360 2361 2362 2363
    }
  }

  return new_scope;
}

2364
void OperatorWithKernel::BuildPhiKernelContext(
2365
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2366
    phi::KernelContext* pt_kernel_context) const {
2367
  pt_kernel_context->SetDeviceContext(dev_ctx);
2368

2369 2370 2371
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2396
    auto it = ctx.inputs.find(input_names[i]);
2397 2398 2399

    // calcute the start and end index of the input tensors
    size_t start_idx =
2400
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
H
hong 已提交
2401
    // deal with optional here
2402
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2403
        (input_defs[i].type_index ==
2404
             std::type_index(typeid(paddle::optional<phi::DenseTensor>)) ||
H
hong 已提交
2405
         input_defs[i].type_index ==
2406
             std::type_index(typeid(paddle::optional<phi::SelectedRows>)) ||
2407
         input_defs[i].type_index ==
2408 2409
             std::type_index(typeid(
                 paddle::optional<std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2410 2411 2412 2413
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
2414

H
hong 已提交
2415 2416 2417 2418
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2419
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2420
      const phi::TensorBase* tensor_in = nullptr;
2421
      auto* var = ins_vector[offset];
H
hong 已提交
2422 2423
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2424
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2425 2426
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2427 2428
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
2429
        need_prepare_phi_data_ = true;
C
Chen Weihang 已提交
2430
        paddle::small_vector<const phi::TensorBase*> tensor_vector;
2431 2432 2433 2434 2435 2436
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2437 2438 2439 2440
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2441
      }
2442
    }
2443
    // Note: here cannot deal with vector<LoDTensorArray> input
2444
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2445
  }
2446
  VLOG(4) << "Done inputs";
2447 2448

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2449
    auto it = ctx.outputs.find(output_names[i]);
2450
    size_t start_idx =
2451
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2466
    size_t end_idx = start_idx + outs_vector.size();
2467 2468

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2469
      phi::TensorBase* tensor_out = nullptr;
2470
      auto* var = outs_vector[offset];
2471 2472 2473
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2474
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2475 2476
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2477 2478
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
C
Chen Weihang 已提交
2479
          paddle::small_vector<phi::TensorBase*> tensor_vector;
2480 2481 2482 2483 2484 2485 2486 2487 2488
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2489 2490 2491 2492 2493
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2494 2495
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2496
      }
2497
    }
2498
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2499
  }
2500
  VLOG(4) << "Done outputs";
2501 2502

  for (size_t i = 0; i < attr_names.size(); ++i) {
2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
    VLOG(6) << "BuildPhiKernelContext: " << attr_names[i] << ": "
            << attr_defs[i].type_index;
    auto attr_iter = Attrs().find(attr_names[i]);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_iter != Attrs().end()) {
          // scalar is in the attribute
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::FLOAT:
              pt_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(BOOST_GET_CONST(float, attr_iter->second))));
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(
                  phi::Scalar(BOOST_GET_CONST(int, attr_iter->second))));
              break;
            case proto::AttrType::STRING:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::Scalar(
                  BOOST_GET_CONST(std::string, attr_iter->second))));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
        } else {  // scalar is in the input
2530
          need_prepare_phi_data_ = true;
2531
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
2532
          pt_kernel_context->EmplaceBackAttr(std::move(
2533
              experimental::MakePhiScalarFromVar(*ins_vector.front())));
2534
        }
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
        break;
      case phi::AttributeType::INT_ARRAY:
        if (attr_iter != Attrs().end()) {
          switch (AttrTypeID(attr_iter->second)) {
            case proto::AttrType::INTS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
              break;
            case proto::AttrType::LONGS:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
              break;
            case proto::AttrType::INT:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  &BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
              break;
            case proto::AttrType::LONG:
              pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
                  &BOOST_GET_CONST(int64_t, attr_iter->second), 1)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct KernelContext.",
                  attr_names[i]));
          }
        } else {  // shape is in the input
2562
          need_prepare_phi_data_ = true;
2563 2564 2565 2566 2567 2568 2569 2570
          auto& ins_vector = ctx.inputs.at(attr_names[i]);
          if (ins_vector.size() == 1) {  // ShapeTensor
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
          } else {  // ShapeTensorList
            pt_kernel_context->EmplaceBackAttr(std::move(
                experimental::MakePhiIntArrayFromVarList(ins_vector)));
          }
2571
        }
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
        break;
      case phi::AttributeType::SCALARS: {
        PADDLE_ENFORCE_NE(
            attr_iter, Attrs().end(),
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (AttrTypeID(attr_iter->second)) {
          case proto::AttrType::INTS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::LONGS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOATS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<float>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::FLOAT64S: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<double>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          case proto::AttrType::BOOLEANS: {
            const auto& vec =
                BOOST_GET_CONST(std::vector<bool>, attr_iter->second);
            std::vector<phi::Scalar> scalar_list;
            scalar_list.reserve(vec.size());
            for (const auto& val : vec) {
              scalar_list.emplace_back(val);
            }
            pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
          } break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` to vector<Scalar> when "
                "construct KernelContext.",
H
hong 已提交
2634 2635
                attr_names[i]));
        }
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
      } break;
      default: {
        PADDLE_ENFORCE_NE(
            attr_iter, Attrs().end(),
            platform::errors::NotFound("(%s) is not found in AttributeMap when "
                                       "buildind static KernelContext.",
                                       attr_names[i]));
        switch (attr_defs[i].type_index) {
          case phi::AttributeType::FLOAT32:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(float, attr_iter->second));
            break;
          case phi::AttributeType::INT32:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(int, attr_iter->second));
            break;
          case phi::AttributeType::BOOL:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(bool, attr_iter->second));
            break;
          case phi::AttributeType::INT64:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(int64_t, attr_iter->second));
            break;
          case phi::AttributeType::INT32S:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<int>, attr_iter->second));
            break;
          case phi::AttributeType::DATA_TYPE: {
            auto data_type = framework::TransToPhiDataType(
                static_cast<framework::proto::VarType::Type>(
                    BOOST_GET_CONST(int, attr_iter->second)));
            pt_kernel_context->EmplaceBackAttr(data_type);
          } break;
          case phi::AttributeType::STRING:
            pt_kernel_context->EmplaceBackAttr(
                std::move(BOOST_GET_CONST(std::string, attr_iter->second)));
            break;
          case phi::AttributeType::INT64S:
            switch (AttrTypeID(attr_iter->second)) {
              case proto::AttrType::LONGS:
                pt_kernel_context->EmplaceBackAttr(
                    BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second));
                break;
              case proto::AttrType::INTS: {
                const auto& vector_int_attr =
                    BOOST_GET_CONST(std::vector<int>, attr_iter->second);
                const std::vector<int64_t> vector_int64_attr(
                    vector_int_attr.begin(), vector_int_attr.end());
                pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
              } break;
              default:
                PADDLE_THROW(platform::errors::Unimplemented(
                    "Unsupported cast op attribute `%s` to vector<int64_t> "
                    "when "
                    "construct KernelContext.",
                    attr_names[i]));
            }
            break;
          case phi::AttributeType::FLOAT32S:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<float>, attr_iter->second));
            break;
          case phi::AttributeType::STRINGS:
            pt_kernel_context->EmplaceBackAttr(
                BOOST_GET_CONST(std::vector<std::string>, attr_iter->second));
            break;
          default:
            PADDLE_THROW(platform::errors::Unimplemented(
                "Unsupported cast op attribute `%s` when construct "
                "KernelContext in dygraph.",
                attr_names[i]));
2708
        }
2709 2710 2711
      }
    }
  }
2712
  VLOG(4) << "Done attributes";
2713 2714
}

Q
Qiao Longfei 已提交
2715
}  // namespace framework
L
liaogang 已提交
2716
}  // namespace paddle