operator.cc 98.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
62
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
63
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
64

Q
Qiao Longfei 已提交
65 66 67
namespace paddle {
namespace framework {

68 69 70 71 72 73
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
74

75
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
76
                         bool get_actual_dim = false) {
77
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
78 79
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
80 81
  }

M
minqiyang 已提交
82 83 84
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
85
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
86
    if (get_actual_dim) {
87
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
88
    } else {
89
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
90
    }
S
Steffy-zxf 已提交
91 92
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
93 94 95 96 97
  } else {
    return DDim({-1});
  }
}

98
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
99 100 101 102 103
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

104
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
105 106 107 108
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
109

M
minqiyang 已提交
110 111 112
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
113 114
      return "";
    }
115
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
116 117
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
118 119 120
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
121
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
122
    }
S
Steffy-zxf 已提交
123 124
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
125 126 127 128 129
  } else {
    return "";
  }
}

130
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
147 148
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
149 150 151 152 153 154 155 156 157 158
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

159
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
160 161 162 163 164
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

165 166
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
167 168 169 170 171
  }

  return -1;
}

172
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
173 174 175 176 177 178 179
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
180 181 182
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
183 184 185 186 187
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
188 189 190 191 192
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
193
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
194 195 196 197 198 199
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
200
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
201 202 203 204 205 206
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

207
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
208 209 210
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
211
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
212 213 214 215
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
216
#else
217
      auto dev_id = place.device;
P
peizhilin 已提交
218
      platform::SetDeviceId(dev_id);
219 220 221
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
222 223 224 225
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
226
#else
227
      auto dev_id = place.device;
228
      platform::SetXPUDeviceId(dev_id);
229 230 231 232 233 234 235 236
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
237
      auto dev_id = place.device;
238
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
239 240 241 242 243 244 245 246
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
247
      auto dev_id = place.device;
F
fwenguang 已提交
248
      platform::SetMLUDeviceId(dev_id);
249 250 251 252 253 254 255 256
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
257
      phi::DeviceManager::SetDevice(place);
258
#endif
P
peizhilin 已提交
259
    }
P
peizhilin 已提交
260

261
    {
262 263 264
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
265
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
266
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
267 268
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
269 270
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
271
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
272 273
      RunImpl(scope, place);
    }
274

Z
Zhang Ting 已提交
275
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
276
  } catch (platform::EnforceNotMet& exception) {
277
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
278
    throw std::move(exception);
279 280 281 282 283 284
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
285
  } catch (...) {
286
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
287
    std::rethrow_exception(std::current_exception());
288
  }
289 290
}

291
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
292
  return inputs_.find(name) != inputs_.end();
293 294
}

295
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
296
  auto& ins = Inputs(name);
297 298
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
299
      platform::errors::InvalidArgument(
300 301
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
302
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
303 304
}

Y
Yu Yang 已提交
305 306
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
307
  auto it = inputs_.find(name);
308 309 310 311
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
312
  return it->second;
Y
Yan Chunwei 已提交
313 314
}

315
bool OperatorBase::HasOutputs(const std::string& name) const {
316
  if (outputs_.find(name) != outputs_.end()) {
317 318 319 320 321 322
    return true;
  } else {
    return false;
  }
}

323
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
324
  auto& outs = Outputs(name);
325 326 327 328 329
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
330
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
331 332
}

Y
Yu Yang 已提交
333 334
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
335
  auto it = outputs_.find(name);
336 337 338 339
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
340
  return it->second;
Y
Yan Chunwei 已提交
341 342
}

343
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
344
  std::stringstream ss;
Y
Yu Yang 已提交
345
  ss << "Op(" << type_ << "), inputs:{";
346

347
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
348 349
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
350 351
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
352 353
  }

Y
Yu Yang 已提交
354 355
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
356 357
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
358 359
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
360 361
      auto var_name = input.second[i];
      ss << var_name;
362
      if (scope) {
Q
Qiao Longfei 已提交
363 364 365 366 367 368 369
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
370 371 372
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
373
          ss << ":" << dtype;
374 375
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
376
          ss << "(" << GetPlace(*scope, var_name) << ")";
377
        }
378
      }
Y
Yu Yang 已提交
379 380 381
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
382
    }
Y
Yu Yang 已提交
383
    ss << "]";
Y
Yu Yang 已提交
384 385
    ++it;
    if (it != inputs_.end()) {
386 387
      ss << ", ";
    }
Q
Qiao Longfei 已提交
388
  }
Y
Yu Yang 已提交
389
  ss << "}, outputs:{";
Y
Yu Yang 已提交
390 391
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
392 393
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
394 395
      auto var_name = output.second[i];
      ss << var_name;
396
      if (scope) {
Q
Qiao Longfei 已提交
397 398 399 400 401 402 403
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
404 405
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
406 407
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
408
          ss << "(" << GetPlace(*scope, var_name) << ")";
409
        }
410
      }
Y
Yu Yang 已提交
411 412 413
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
414
    }
Y
Yu Yang 已提交
415
    ss << "]";
Y
Yu Yang 已提交
416 417
    ++it;
    if (it != outputs_.end()) {
418 419
      ss << ", ";
    }
Q
Qiao Longfei 已提交
420
  }
Y
Yu Yang 已提交
421
  ss << "}.";
Q
Qiao Longfei 已提交
422 423 424
  return ss.str();
}

Y
Yu Yang 已提交
425
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
426 427
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
428
                           const AttributeMap& attrs)
S
sneaxiy 已提交
429 430 431 432 433 434
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
435 436 437 438 439 440 441 442
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
443
}
444

Q
qijun 已提交
445 446
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
447
  for (auto& o : inputs_) {
Q
qijun 已提交
448 449 450 451 452 453
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
454 455 456 457 458 459 460 461 462 463
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
464
  auto& info = Info();
Y
Yu Yang 已提交
465 466

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
467
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
468 469 470 471 472 473 474 475 476
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
477 478
}

479
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
480
  if (info_ == nullptr || info_->proto_ == nullptr) return;
481

S
sneaxiy 已提交
482
  for (auto& in : info_->Proto().inputs()) {
483
    if (!in.dispensable() && !in.extra()) {
484 485 486 487
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
488
    }
489 490
  }

S
sneaxiy 已提交
491
  for (auto& out : info_->Proto().outputs()) {
492
    if (!out.dispensable() && !out.extra()) {
493 494 495 496
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
497
    }
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
513

C
chengduo 已提交
514
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
515 516
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
517 518
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
519
  } else {
520 521 522
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
523 524 525
  }
}

C
chengduo 已提交
526
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
527
  if (var->IsType<LoDTensor>()) {
528
    return var->GetMutable<LoDTensor>();
529 530
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
531
  } else {
532 533 534
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
535 536 537
  }
}

538
bool ExecutionContext::HasInput(const std::string& name) const {
539
  auto* var = InputVar(name);
540 541 542
  return var != nullptr;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

557
bool ExecutionContext::HasOutput(const std::string& name) const {
558
  auto* var = OutputVar(name);
559 560 561
  return var != nullptr;
}

X
Xin Pan 已提交
562
const Variable* ExecutionContext::InputVar(const std::string& name) const {
563 564
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
565 566 567
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

568 569
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
570
      platform::errors::InvalidArgument(
571 572
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
573 574 575
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
576
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
577 578 579
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

580 581 582 583 584
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
585 586 587
  return it->second.empty() ? nullptr : it->second[0];
}

588
template <>
589
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
590
    const std::string& name) const {
591 592
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
593 594
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
595 596 597 598 599
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
600
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
601
                   if (var == nullptr) return nullptr;
602 603 604 605 606
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
607 608 609 610 611
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

612
template <>
613
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
614
    const std::string& name) const {
H
hong 已提交
615 616 617
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
618 619
    return {};
  }
620
  std::vector<Tensor*> res;
621 622 623 624 625
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
626
                 });
627 628 629
  return res;
}

Y
Yu Yang 已提交
630
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
631
  // check in new Function kernel first
632
  bool has_phi_kernel = false;
633
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
634
  auto kernel_key_map =
635
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
636
  for (auto& kernel : kernel_key_map) {
637
    has_phi_kernel = true;
638
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
639 640 641 642
      return true;
    }
  }

Y
Yu Yang 已提交
643 644
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
645 646 647 648 649 650 651 652 653 654 655 656 657
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
658 659 660
      return true;
    }
  }
H
hong 已提交
661

Y
Yu Yang 已提交
662 663 664
  return false;
}

665 666
class RuntimeInferShapeContext : public InferShapeContext {
 public:
667
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
668
      : op_(op), ctx_(ctx) {}
669 670

  bool HasInput(const std::string& name) const override {
671
    // has only one input
X
Xin Pan 已提交
672
    const auto& ins = ctx_.inputs;
673 674
    auto it = ins.find(name);
    if (it == ins.end()) {
675 676
      return false;
    }
677
    const auto& in = it->second;
X
Xin Pan 已提交
678
    if (in.size() == 0) return false;
679 680 681 682
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
683
    return in[0] != nullptr;
684 685 686
  }

  bool HasOutput(const std::string& name) const override {
687
    // has only one output
X
Xin Pan 已提交
688
    const auto& outs = ctx_.outputs;
689 690
    auto it = outs.find(name);
    if (it == outs.end()) {
691 692
      return false;
    }
693
    const auto& out = it->second;
X
Xin Pan 已提交
694
    if (out.size() == 0) {
695 696
      return false;
    }
697 698 699 700
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
701
    return out[0] != nullptr;
702 703
  }

704 705 706 707
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

708
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
709 710
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
711
    if (it == ins.end() || it->second.empty()) {
712 713
      return false;
    }
X
Xin Pan 已提交
714 715
    for (auto& input : it->second) {
      if (input == nullptr) {
716 717 718 719 720 721
        return false;
      }
    }
    return true;
  }

722 723
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
724 725
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
726
    if (it == outs.end() || it->second.empty()) {
727 728
      return false;
    }
729 730 731 732 733 734 735 736
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
737
      }
738
      return true;
739 740 741 742 743
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
744
  std::vector<std::string> Inputs(const std::string& name) const override {
745 746 747
    return op_.Inputs(name);
  }

H
hong 已提交
748
  std::vector<std::string> Outputs(const std::string& name) const override {
749 750 751
    return op_.Outputs(name);
  }

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

775 776
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
777 778
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
795 796 797

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
798

799 800 801 802 803
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
804

805 806 807
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
808 809 810 811 812 813 814 815
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
816
      PADDLE_THROW(platform::errors::Unimplemented(
817
          "Currently, the input type of ShareDim only can be LoDTensor "
818
          "or SelectedRows."));
819 820 821
    }
  }

H
hong 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
840
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
867 868
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
869 870
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
887 888

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
889
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
890
    Variable* out_var = out_it->second.at(j);
891 892 893 894
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
895
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
896 897
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
898

M
mozga-intel 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
918 919
  }

920
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
921
    PADDLE_THROW(platform::errors::PreconditionNotMet(
922
        "GetLoDLevel is only used in compile time. The calculation of "
923
        "output's actual lod is different among operators so that should be "
924
        "set in the runtime kernel."));
925 926
  }

927 928
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
929
    PADDLE_THROW(platform::errors::PreconditionNotMet(
930
        "SetLoDLevel is only used in compile time. The calculation of "
931
        "output's actual lod is different among operators so that should be "
932
        "set in the runtime kernel."));
C
chengduo 已提交
933 934
  }

935 936
  bool IsRuntime() const override { return true; }

937 938 939 940 941 942
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
943
    } catch (const std::bad_cast& exp) {
944 945 946 947
      return false;
    }
  }

948
  // TODO(paddle-dev): Can this be template?
949 950
  paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override {
951
    const std::vector<Variable*>& vars = InputVars(name);
952
    paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
953 954 955 956 957
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

958 959
  paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override {
960
    const std::vector<Variable*>& vars = OutputVars(name);
961
    paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
962 963 964 965 966
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
967 968
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
969 970 971 972 973
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
974 975 976 977 978 979 980 981
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
982 983 984 985 986 987 988 989 990 991
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
992 993
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
994 995 996 997 998
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1008 1009 1010 1011 1012 1013 1014 1015
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1016
 protected:
X
Xin Pan 已提交
1017
  DDim GetDim(Variable* var) const {
1018 1019
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1020 1021
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1022 1023
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1024
    } else {
1025 1026 1027 1028
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1029 1030 1031
    }
  }

X
Xin Pan 已提交
1032 1033 1034 1035 1036 1037 1038 1039
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1040
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1041 1042
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1043 1044
  }

X
Xin Pan 已提交
1045
  void SetDim(Variable* var, const DDim& dim) {
1046 1047
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1048 1049
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1050
    } else {
1051 1052 1053 1054
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1055 1056 1057 1058 1059 1060
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1061 1062 1063 1064 1065 1066
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1067 1068 1069 1070 1071
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1072 1073 1074
    }
  }

F
fengjiayi 已提交
1075 1076
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1077 1078
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1079 1080
  }

X
Xin Pan 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1092 1093 1094
    return ToVarType(var->Type());
  }

1095 1096 1097
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1098 1099 1100 1101
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1102 1103 1104 1105 1106
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1107 1108 1109 1110
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1111
    return it->second;
F
fengjiayi 已提交
1112 1113
  }

1114
  const OperatorBase& op_;
X
Xin Pan 已提交
1115
  const RuntimeContext& ctx_;
1116 1117
};

1118 1119
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1120 1121 1122 1123
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1124 1125
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1126 1127
    return;
  }
1128 1129 1130 1131 1132 1133 1134 1135
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1136 1137
}

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1188 1189
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1190 1191 1192 1193 1194 1195 1196 1197 1198
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1199
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1200
                     [data_type](OpKernelMap::const_reference kern_pair) {
1201 1202
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1203 1204
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1205 1206 1207
                     });
}

1208 1209
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1210 1211 1212 1213
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1214
                        platform::is_cpu_place(ctx.GetPlace());
1215
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1216 1217
}

1218 1219 1220 1221 1222 1223 1224
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1225
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1226 1227
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1228
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1229
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1230 1231
}

L
luotao1 已提交
1232 1233
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1234 1235
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1236 1237 1238
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1239
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1240
    all_kernels_must_compute_runtime_shape_ = true;
1241
  const Scope* cur_scope = &scope;
1242
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1243 1244
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1245
    pre_scope_ = cur_scope;
L
luotao1 已提交
1246
  } else {
1247 1248 1249 1250 1251 1252
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1253 1254 1255 1256 1257 1258 1259 1260
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1261
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1262
  auto* dev_ctx = pool.Get(place);
1263

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1274
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1275 1276 1277 1278
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1279 1280 1281 1282 1283 1284

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1285
  phi::KernelKey pt_kernel_key;
1286
  std::string pt_kernel_name;
1287
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1288 1289 1290 1291
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1292 1293 1294 1295 1296

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1297
      pt_kernel_name = kernel_signature_->name;
1298
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1299
      pt_kernel_.reset(
1300
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1301 1302 1303
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1304
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1305 1306 1307
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1308
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1309 1310
                << "` not found.";
      }
1311
    } else {
1312
      pt_kernel_name = kernel_signature_->name;
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1338 1339
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1340 1341 1342 1343 1344 1345 1346
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1347
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1348
    }
1349 1350 1351 1352

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1353
#if defined(PADDLE_WITH_XPU)
1354 1355 1356 1357 1358 1359
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1360
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1361 1362 1363
        && !is_xpu_unsupport
#endif
        ) {
1364
      run_phi_kernel_ = true;
1365 1366 1367
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1387 1388 1389
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1390
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1391
          || is_xpu_unsupport
1392
#endif
1393 1394 1395 1396
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1397 1398 1399
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1400
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1401 1402 1403 1404 1405 1406 1407
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1408
          run_phi_kernel_ = true;
1409 1410
        }
      }
1411 1412
    }
  }
1413
  if (!run_phi_kernel_) {
1414 1415
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1416
      dev_ctx = pool.Get(kernel_type_->place_);
1417
    }
1418 1419
  }

Y
yuyang18 已提交
1420 1421
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1422 1423
  Scope* transfer_scope = nullptr;
  {
1424
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1425 1426
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1427 1428 1429 1430
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1431
  }
Y
yuyang18 已提交
1432 1433 1434 1435
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1436
  if (!all_kernels_must_compute_runtime_shape_) {
1437
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1438 1439
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1440
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1441
    this->Info().infer_shape_(&infer_shape_ctx);
1442
  }
1443 1444 1445 1446 1447

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1448 1449
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1450
  {
1451
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1452 1453
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1454
    if (run_phi_kernel_) {
1455
      phi::KernelContext pt_kernel_context;
1456
      // Do data transform before building KernelContext
1457
      // TODO(zhiqiu): support TransferInplaceVarsBack
1458
      PreparePhiData(exec_scope, *pt_kernel_, *kernel_signature_, runtime_ctx);
1459
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1460
      (*pt_kernel_)(&pt_kernel_context);
1461 1462 1463 1464
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1465
  }
D
dzhwinter 已提交
1466

Y
yuyang18 已提交
1467
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1468
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1469
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1470
  }
1471 1472 1473 1474 1475 1476 1477

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1478 1479 1480 1481 1482 1483 1484 1485
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1486

D
dzhwinter 已提交
1487
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1488
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1489
    dev_ctx->Wait();
1490 1491
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1492 1493
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1494
  }
C
chengduoZH 已提交
1495 1496

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1497
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1498
  }
1499 1500 1501 1502 1503 1504 1505

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1506
}
X
Xin Pan 已提交
1507

1508 1509 1510
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1511 1512 1513
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1524 1525
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1526 1527
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1528
      if (SupportGPU()) {
1529
        auto& dev_ctx = ctx.device_context();
1530
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1531 1532 1533 1534 1535
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1536
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1537 1538 1539
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1540 1541 1542 1543 1544 1545
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1546 1547
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1548 1549 1550
  return expected_kernel_key;
}

1551
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1552
    const ExecutionContext& ctx) const {
1553 1554 1555
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1556 1557 1558 1559

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1560
  auto pt_kernel_name = kernel_signature_->name;
1561
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1562 1563
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1564 1565

  if (pt_kernel_->IsValid()) {
1566
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1567 1568 1569
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1570
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1571 1572
            << "` not found.";
  }
1573
  return pt_kernel_key;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1589 1590

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1591

L
Liu Yiqun 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1601
#endif
1602 1603

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1604
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1605 1606 1607
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1608 1609 1610 1611 1612 1613
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1614
#endif
L
Liu-xiandong 已提交
1615 1616

#ifdef PADDLE_WITH_XPU_KP
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1631 1632
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1633 1634
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1659 1660 1661
  }
#endif

A
Allen Guo 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1672 1673
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1674
      platform::is_npu_place(expected_kernel_key.place_)) {
1675 1676 1677 1678 1679 1680
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1681 1682 1683
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1684
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1685 1686 1687
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1699 1700 1701
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1702
#endif
1703 1704 1705 1706
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1707

1708 1709 1710 1711 1712
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1713 1714
}

Y
yuyang18 已提交
1715 1716 1717 1718
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1719
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1720
    auto* origin_var = scope.FindVar(var_name);
1721 1722 1723
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1724
    auto* original_tensor =
C
chengduo 已提交
1725
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1726
    auto* var = transfer_scope.FindVar(var_name);
1727 1728
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1729
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1730
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1731
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1732 1733 1734 1735 1736
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1737 1738 1739
  }
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1769
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1789
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1807
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1808
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1809 1810
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1811
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1812

1813
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1814 1815 1816 1817
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1818 1819
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1820 1821 1822
    }
  }

Y
yuyang18 已提交
1823
  for (auto& var_name_item : Inputs()) {
1824 1825
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1826

X
Xin Pan 已提交
1827 1828 1829 1830
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1831
      auto* var = input_vars[i];
X
Xin Pan 已提交
1832

Y
yuyang18 已提交
1833
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1834
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1835 1836 1837
        continue;
      }

C
chengduo 已提交
1838
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1854 1855
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1888 1889
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1890

1891 1892 1893
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1894
      // We use a thread_local cache to fix that issue, the key in the cache is
1895 1896 1897 1898 1899
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1900 1901
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1902
      // variables, that behavior a lot different.
1903 1904 1905 1906 1907 1908 1909 1910 1911
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1912 1913
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1914
        enable_cache_transfer_scope_ = true;
1915
      }
1916
      if (!new_scope) {
Y
yuyang18 已提交
1917 1918
        new_scope = &scope.NewScope();
      }
1919 1920 1921 1922
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1923
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1924 1925
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1926
      if (enable_cache_runtime_context_) {
1927 1928
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1929 1930

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1931
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1932
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1950
      Tensor out;
Y
yuyang18 已提交
1951
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1952 1953 1954
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1955

1956 1957 1958 1959 1960 1961
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1962 1963 1964 1965 1966 1967

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1968 1969
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1970 1971 1972

  return new_scope;
}
Q
Qiao Longfei 已提交
1973

1974
void OperatorWithKernel::ParseInputDataType(
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
    const Variable* var, const std::string& name,
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
          t->IsInitialized(), true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(), name));
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2005
    const std::vector<Variable*>& vars, const std::string& name,
2006
    proto::VarType::Type* data_type) const {
2007
  proto::VarType::Type default_data_type =
2008 2009 2010 2011 2012 2013 2014 2015 2016
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2017 2018
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2019
      } else if (var->IsType<LoDTensorArray>()) {
2020 2021 2022 2023
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2024 2025
          }
        }
2026 2027
      }
      if (t != nullptr) {
2028 2029
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
2030 2031 2032
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
2033 2034
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2035 2036 2037 2038 2039 2040 2041 2042 2043
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2044 2045 2046 2047 2048 2049
        *data_type = tmp;
      }
    }
  }
}

2050
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2051
    const ExecutionContext& ctx) const {
2052 2053 2054
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2055 2056 2057 2058 2059 2060
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2061
  }
2062 2063 2064 2065
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2066 2067 2068 2069 2070 2071 2072 2073
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2074 2075 2076 2077 2078
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2079 2080
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2081 2082 2083 2084 2085
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2086
  return data_type;
Y
Yu Yang 已提交
2087
}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2107 2108
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2140 2141
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2142 2143 2144 2145 2146 2147 2148

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2149 2150 2151 2152 2153 2154 2155 2156
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2157 2158
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2159 2160
}

2161
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2162
    const ExecutionContext& ctx) const {
2163
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2164
  if (arg_map_fn_ == nullptr) {
2165 2166 2167 2168
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2169 2170
      auto func = [this](
          const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2171 2172 2173 2174
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2175 2176
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2177 2178
}

2179
Scope* OperatorWithKernel::PreparePhiData(
2180
    const Scope& scope, const phi::Kernel& pt_kernel,
2181 2182
    const phi::KernelSignature& pt_kernel_signature,
    RuntimeContext* ctx) const {
2183
  const auto& input_names = pt_kernel_signature.input_names;
2184 2185 2186 2187 2188 2189 2190
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2191
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2202 2203
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2204
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2205 2206
      continue;
    }
2207
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2208
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2209 2210 2211
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2212 2213 2214 2215 2216 2217 2218
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2228 2229 2230 2231
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2232 2233 2234
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2235 2236 2237 2238 2239

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2240 2241 2242
        continue;
      }

2243
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2244
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2245
              << tensor_in->place() << " to " << expected_place;
2246

2247 2248 2249
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2260

2261
      // Create new var with the same name in transfer scopes
2262
      auto* trans_var = new_scope->Var(name_vec[offset]);
2263
      ins_vector[offset] = trans_var;
2264

2265 2266 2267 2268
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2269 2270 2271 2272 2273 2274
    }
  }

  return new_scope;
}

2275
void OperatorWithKernel::BuildPhiKernelContext(
2276
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2277
    phi::KernelContext* pt_kernel_context) const {
2278
  pt_kernel_context->SetDeviceContext(dev_ctx);
2279

2280 2281 2282
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2307
    auto it = ctx.inputs.find(input_names[i]);
2308 2309 2310

    // calcute the start and end index of the input tensors
    size_t start_idx =
2311
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2312

H
hong 已提交
2313
    // deal with optional here
2314
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2315
        (input_defs[i].type_index ==
H
hong 已提交
2316 2317 2318 2319
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2320 2321 2322 2323 2324
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2325 2326 2327 2328 2329 2330 2331 2332
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2333
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2334
      const phi::TensorBase* tensor_in = nullptr;
2335
      auto* var = ins_vector[offset];
H
hong 已提交
2336 2337
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2338
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2339 2340
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2341 2342 2343 2344 2345 2346 2347 2348 2349
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2350 2351 2352 2353
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2354
      }
2355
    }
2356
    // Note: here cannot deal with vector<LoDTensorArray> input
2357
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2358
  }
2359
  VLOG(4) << "Done inputs";
2360 2361

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2362
    auto it = ctx.outputs.find(output_names[i]);
2363
    size_t start_idx =
2364
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2379
    size_t end_idx = start_idx + outs_vector.size();
2380 2381

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2382
      phi::TensorBase* tensor_out = nullptr;
2383
      auto* var = outs_vector[offset];
2384 2385 2386
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2387
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2388 2389
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2402 2403 2404 2405 2406
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2407 2408
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2409
      }
2410
    }
2411
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2412
  }
2413
  VLOG(4) << "Done outputs";
2414 2415

  for (size_t i = 0; i < attr_names.size(); ++i) {
2416
    if (attr_defs[i].type_index == phi::AttributeType::INT_ARRAY) {
2417 2418 2419 2420
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2421
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2422
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2423 2424
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2425
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2426
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2427 2428
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2429 2430
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(&BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2431 2432
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2433
              "Unsupported cast op attribute `%s` to IntArray when "
2434 2435 2436 2437 2438 2439
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2440
          pt_kernel_context->EmplaceBackAttr(std::move(
2441
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2442
        } else {  // ShapeTensorList
2443 2444
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2445 2446
        }
      }
2447
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALAR) {
2448 2449 2450
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2451 2452 2453 2454
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2455
          pt_kernel_context->EmplaceBackAttr(
2456
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2457 2458
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2459
          pt_kernel_context->EmplaceBackAttr(
2460
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2461 2462 2463
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2464
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2465 2466 2467 2468 2469 2470
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2471
      } else {
2472
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2473 2474
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2475
      }
2476

2477
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALARS) {
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2521
    } else {
H
hong 已提交
2522
      auto attr_it = attrs_.find(attr_names[i]);
2523
      if (attr_defs[i].type_index == phi::AttributeType::INT32) {
H
hong 已提交
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2540
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32) {
H
hong 已提交
2541 2542
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2543
      } else if (attr_defs[i].type_index == phi::AttributeType::BOOL) {
H
hong 已提交
2544 2545
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
2546
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64) {
H
hong 已提交
2547 2548
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
2549
      } else if (attr_defs[i].type_index == phi::AttributeType::STRING) {
H
hong 已提交
2550 2551
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2552
      } else if (attr_defs[i].type_index == phi::AttributeType::DATA_TYPE) {
2553
        auto data_type = paddle::framework::TransToPhiDataType(
2554
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2555
                BOOST_GET_CONST(int, attr_it->second)));
2556
        pt_kernel_context->EmplaceBackAttr(data_type);
2557
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64S) {
H
hong 已提交
2558
        if (std::type_index(attr_it->second.type()) ==
2559 2560
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2561 2562
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2563
                   std::type_index(typeid(std::vector<int>))) {
2564
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2565 2566
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2567 2568
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2569
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2570
        }
2571
      } else if (attr_defs[i].type_index == phi::AttributeType::INT32S) {
H
hong 已提交
2572 2573
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2574
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2575
      } else if (attr_defs[i].type_index == phi::AttributeType::STRINGS) {
2576 2577
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2578
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32S) {
2579 2580
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2581 2582
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2583
            "Unsupported cast op attribute `%s` when construct "
2584 2585 2586 2587 2588
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2589
  VLOG(4) << "Done attributes";
2590 2591
}

Q
Qiao Longfei 已提交
2592
}  // namespace framework
L
liaogang 已提交
2593
}  // namespace paddle