operator.cc 97.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37
#include "paddle/phi/common/scalar.h"
38
#include "paddle/phi/core/kernel_context.h"
39 40
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
41

42
namespace phi {
43
class DenseTensor;
44
}  // namespace phi
45

46
#ifdef PADDLE_WITH_XPU
47 48
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
49
#endif
Q
Qiao Longfei 已提交
50

51 52 53 54
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
55 56 57 58
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
59
DECLARE_bool(benchmark);
60
DECLARE_bool(check_nan_inf);
61
DECLARE_bool(enable_unused_var_check);
62 63
PADDLE_DEFINE_EXPORTED_int32(inner_op_parallelism, 0,
                             "number of threads for inner op");
F
Feng Xing 已提交
64
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
65
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
66

Q
Qiao Longfei 已提交
67 68 69
namespace paddle {
namespace framework {

70 71 72 73 74 75
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
76

77
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
78
                         bool get_actual_dim = false) {
79
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
80 81
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
82 83
  }

M
minqiyang 已提交
84 85 86
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
87
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
88
    if (get_actual_dim) {
89
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
90
    } else {
91
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
92
    }
S
Steffy-zxf 已提交
93 94
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
95 96 97 98 99
  } else {
    return DDim({-1});
  }
}

100
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
101 102 103 104 105
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

106
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
107 108 109 110
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
111

M
minqiyang 已提交
112 113 114
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
115 116
      return "";
    }
117
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
118 119
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
120 121 122
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
123
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
124
    }
S
Steffy-zxf 已提交
125 126
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
127 128 129 130 131
  } else {
    return "";
  }
}

132
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
149 150
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
151 152 153 154 155 156 157 158 159 160
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

161
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
162 163 164 165 166
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

167 168
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
169 170 171 172 173
  }

  return -1;
}

174
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
175 176 177 178 179 180 181
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
182 183 184
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
185 186 187 188 189
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
190 191 192 193 194
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
195
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
196 197 198 199 200 201
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
202
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
203 204 205 206 207 208
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

209
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
210 211 212
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
213
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
214 215 216 217
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
218
#else
219
      auto dev_id = place.device;
P
peizhilin 已提交
220
      platform::SetDeviceId(dev_id);
221 222 223
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
224 225 226 227
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
228
#else
229
      auto dev_id = place.device;
230
      platform::SetXPUDeviceId(dev_id);
231 232 233 234 235 236 237 238
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
239
      auto dev_id = place.device;
240
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
241 242 243 244 245 246 247 248
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
249
      auto dev_id = place.device;
F
fwenguang 已提交
250
      platform::SetMLUDeviceId(dev_id);
251 252 253 254 255 256 257 258
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
259
      phi::DeviceManager::SetDevice(place);
260
#endif
P
peizhilin 已提交
261
    }
P
peizhilin 已提交
262

263
    {
264 265 266
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
267
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
268
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
269 270
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
271 272
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
273
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
274 275
      RunImpl(scope, place);
    }
276

Z
Zhang Ting 已提交
277
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
278
  } catch (platform::EnforceNotMet& exception) {
279
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
280
    throw std::move(exception);
281 282 283 284 285 286
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
287
  } catch (...) {
288
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
289
    std::rethrow_exception(std::current_exception());
290
  }
291 292
}

293
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
294
  return inputs_.find(name) != inputs_.end();
295 296
}

297
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
298
  auto& ins = Inputs(name);
299 300
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
301
      platform::errors::InvalidArgument(
302 303
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
304
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
305 306
}

Y
Yu Yang 已提交
307 308
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
309
  auto it = inputs_.find(name);
310 311 312 313
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
314
  return it->second;
Y
Yan Chunwei 已提交
315 316
}

317
bool OperatorBase::HasOutputs(const std::string& name) const {
318
  if (outputs_.find(name) != outputs_.end()) {
319 320 321 322 323 324
    return true;
  } else {
    return false;
  }
}

325
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
326
  auto& outs = Outputs(name);
327 328 329 330 331
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
332
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
333 334
}

Y
Yu Yang 已提交
335 336
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
337
  auto it = outputs_.find(name);
338 339 340 341
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
342
  return it->second;
Y
Yan Chunwei 已提交
343 344
}

345
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
346
  std::stringstream ss;
Y
Yu Yang 已提交
347
  ss << "Op(" << type_ << "), inputs:{";
348

349
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
350 351
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
352 353
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
354 355
  }

Y
Yu Yang 已提交
356 357
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
358 359
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
360 361
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
362 363
      auto var_name = input.second[i];
      ss << var_name;
364
      if (scope) {
Q
Qiao Longfei 已提交
365 366 367 368 369 370 371
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
372 373 374
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
375
          ss << ":" << dtype;
376 377
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
378
          ss << "(" << GetPlace(*scope, var_name) << ")";
379
        }
380
      }
Y
Yu Yang 已提交
381 382 383
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
384
    }
Y
Yu Yang 已提交
385
    ss << "]";
Y
Yu Yang 已提交
386 387
    ++it;
    if (it != inputs_.end()) {
388 389
      ss << ", ";
    }
Q
Qiao Longfei 已提交
390
  }
Y
Yu Yang 已提交
391
  ss << "}, outputs:{";
Y
Yu Yang 已提交
392 393
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
394 395
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
396 397
      auto var_name = output.second[i];
      ss << var_name;
398
      if (scope) {
Q
Qiao Longfei 已提交
399 400 401 402 403 404 405
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
406 407
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
408 409
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
410
          ss << "(" << GetPlace(*scope, var_name) << ")";
411
        }
412
      }
Y
Yu Yang 已提交
413 414 415
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
416
    }
Y
Yu Yang 已提交
417
    ss << "]";
Y
Yu Yang 已提交
418 419
    ++it;
    if (it != outputs_.end()) {
420 421
      ss << ", ";
    }
Q
Qiao Longfei 已提交
422
  }
Y
Yu Yang 已提交
423
  ss << "}.";
Q
Qiao Longfei 已提交
424 425 426
  return ss.str();
}

Y
Yu Yang 已提交
427
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
428 429
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
430
                           const AttributeMap& attrs)
S
sneaxiy 已提交
431 432 433 434 435 436
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
437 438 439 440 441 442 443 444
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
445
}
446

Q
qijun 已提交
447 448
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
449
  for (auto& o : inputs_) {
Q
qijun 已提交
450 451 452 453 454 455
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
456 457 458 459 460 461 462 463 464 465
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
466
  auto& info = Info();
Y
Yu Yang 已提交
467 468

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
469
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
470 471 472 473 474 475 476 477 478
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
479 480
}

481
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
482
  if (info_ == nullptr || info_->proto_ == nullptr) return;
483

S
sneaxiy 已提交
484
  for (auto& in : info_->Proto().inputs()) {
485
    if (!in.dispensable() && !in.extra()) {
486 487 488 489
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
490
    }
491 492
  }

S
sneaxiy 已提交
493
  for (auto& out : info_->Proto().outputs()) {
494
    if (!out.dispensable() && !out.extra()) {
495 496 497 498
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
499
    }
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
515

C
chengduo 已提交
516
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
517 518
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
519 520
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
521
  } else {
522 523 524
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
525 526 527
  }
}

C
chengduo 已提交
528
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
529
  if (var->IsType<LoDTensor>()) {
530
    return var->GetMutable<LoDTensor>();
531 532
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
533
  } else {
534 535 536
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
537 538 539
  }
}

540
bool ExecutionContext::HasInput(const std::string& name) const {
541
  auto* var = InputVar(name);
542 543 544
  return var != nullptr;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

559
bool ExecutionContext::HasOutput(const std::string& name) const {
560
  auto* var = OutputVar(name);
561 562 563
  return var != nullptr;
}

X
Xin Pan 已提交
564
const Variable* ExecutionContext::InputVar(const std::string& name) const {
565 566
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
567 568 569
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

570 571
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
572
      platform::errors::InvalidArgument(
573 574
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
575 576 577
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
578
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
579 580 581
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

582 583 584 585 586
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
587 588 589
  return it->second.empty() ? nullptr : it->second[0];
}

590
template <>
591
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
592
    const std::string& name) const {
593 594
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
595 596
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
597 598 599 600 601
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
602
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
603
                   if (var == nullptr) return nullptr;
604 605 606 607 608
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
609 610 611 612 613
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

614
template <>
615
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
616
    const std::string& name) const {
H
hong 已提交
617 618 619
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
620 621
    return {};
  }
622
  std::vector<Tensor*> res;
623 624 625 626 627
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
628
                 });
629 630 631
  return res;
}

Y
Yu Yang 已提交
632
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
633
  // check in new Function kernel first
634
  bool has_phi_kernel = false;
635
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
636
  auto kernel_key_map =
637
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
638
  for (auto& kernel : kernel_key_map) {
639
    has_phi_kernel = true;
640
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
641 642 643 644
      return true;
    }
  }

Y
Yu Yang 已提交
645 646
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
647 648 649 650 651 652 653 654 655 656 657 658 659
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
660 661 662
      return true;
    }
  }
H
hong 已提交
663

Y
Yu Yang 已提交
664 665 666
  return false;
}

667 668
class RuntimeInferShapeContext : public InferShapeContext {
 public:
669
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
670
      : op_(op), ctx_(ctx) {}
671 672

  bool HasInput(const std::string& name) const override {
673
    // has only one input
X
Xin Pan 已提交
674
    const auto& ins = ctx_.inputs;
675 676
    auto it = ins.find(name);
    if (it == ins.end()) {
677 678
      return false;
    }
679
    const auto& in = it->second;
X
Xin Pan 已提交
680
    if (in.size() == 0) return false;
681 682 683 684
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
685
    return in[0] != nullptr;
686 687 688
  }

  bool HasOutput(const std::string& name) const override {
689
    // has only one output
X
Xin Pan 已提交
690
    const auto& outs = ctx_.outputs;
691 692
    auto it = outs.find(name);
    if (it == outs.end()) {
693 694
      return false;
    }
695
    const auto& out = it->second;
X
Xin Pan 已提交
696
    if (out.size() == 0) {
697 698
      return false;
    }
699 700 701 702
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
703
    return out[0] != nullptr;
704 705
  }

706 707 708 709
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

710
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
711 712
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
713
    if (it == ins.end() || it->second.empty()) {
714 715
      return false;
    }
X
Xin Pan 已提交
716 717
    for (auto& input : it->second) {
      if (input == nullptr) {
718 719 720 721 722 723
        return false;
      }
    }
    return true;
  }

724 725
  bool HasOutputs(const std::string& name,
                  bool allow_null = false) const override {
X
Xin Pan 已提交
726 727
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
728
    if (it == outs.end() || it->second.empty()) {
729 730
      return false;
    }
731 732 733 734 735 736 737 738
    if (allow_null) {
      for (auto& output : it->second) {
        if (output != nullptr) return true;
      }
      return false;
    } else {
      for (auto& output : it->second) {
        if (output == nullptr) return false;
739
      }
740
      return true;
741 742 743 744 745
    }
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
746
  std::vector<std::string> Inputs(const std::string& name) const override {
747 748 749
    return op_.Inputs(name);
  }

H
hong 已提交
750
  std::vector<std::string> Outputs(const std::string& name) const override {
751 752 753
    return op_.Outputs(name);
  }

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

777 778
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
779 780
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
797 798 799

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
800

801 802 803 804 805
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
806

807 808 809
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
810 811 812 813 814 815 816 817
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
818
      PADDLE_THROW(platform::errors::Unimplemented(
819
          "Currently, the input type of ShareDim only can be LoDTensor "
820
          "or SelectedRows."));
821 822 823
    }
  }

H
hong 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
842
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
869 870
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
871 872
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
889 890

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
891
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
892
    Variable* out_var = out_it->second.at(j);
893 894 895 896
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
897
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
898 899
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
900

M
mozga-intel 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
920 921
  }

922
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
923
    PADDLE_THROW(platform::errors::PreconditionNotMet(
924
        "GetLoDLevel is only used in compile time. The calculation of "
925
        "output's actual lod is different among operators so that should be "
926
        "set in the runtime kernel."));
927 928
  }

929 930
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
931
    PADDLE_THROW(platform::errors::PreconditionNotMet(
932
        "SetLoDLevel is only used in compile time. The calculation of "
933
        "output's actual lod is different among operators so that should be "
934
        "set in the runtime kernel."));
C
chengduo 已提交
935 936
  }

937 938
  bool IsRuntime() const override { return true; }

939 940 941 942 943 944
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
945
    } catch (const std::bad_cast& exp) {
946 947 948 949
      return false;
    }
  }

950
  // TODO(paddle-dev): Can this be template?
951 952
  paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize>
  GetInputVarPtrs(const std::string& name) const override {
953
    const std::vector<Variable*>& vars = InputVars(name);
954
    paddle::SmallVector<InferShapeVarPtr, phi::kInputSmallVectorSize> res;
955 956 957 958 959
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

960 961
  paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize>
  GetOutputVarPtrs(const std::string& name) const override {
962
    const std::vector<Variable*>& vars = OutputVars(name);
963
    paddle::SmallVector<InferShapeVarPtr, phi::kOutputSmallVectorSize> res;
964 965 966 967 968
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
969 970
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
971 972 973 974 975
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
976 977 978 979 980 981 982 983
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
984 985 986 987 988 989 990 991 992 993
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
994 995
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
996 997 998 999 1000
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1010 1011 1012 1013 1014 1015 1016 1017
  const phi::ArgumentMappingFn* GetPhiArgumentMappingFn() const override {
    return phi::OpUtilsMap::Instance().GetArgumentMappingFn(op_.Type());
  }

  const phi::KernelSignature* GetPhiDefaultKernelSignature() const override {
    return &phi::DefaultKernelSignatureMap::Instance().Get(op_.Type());
  }

1018
 protected:
X
Xin Pan 已提交
1019
  DDim GetDim(Variable* var) const {
1020 1021
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1022 1023
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1024 1025
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1026
    } else {
1027 1028 1029 1030
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1031 1032 1033
    }
  }

X
Xin Pan 已提交
1034 1035 1036 1037 1038 1039 1040 1041
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1042
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1043 1044
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1045 1046
  }

X
Xin Pan 已提交
1047
  void SetDim(Variable* var, const DDim& dim) {
1048 1049
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1050 1051
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1052
    } else {
1053 1054 1055 1056
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1057 1058 1059 1060 1061 1062
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1063 1064 1065 1066 1067 1068
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1069 1070 1071 1072 1073
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1074 1075 1076
    }
  }

F
fengjiayi 已提交
1077 1078
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1079 1080
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1081 1082
  }

X
Xin Pan 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1094 1095 1096
    return ToVarType(var->Type());
  }

1097 1098 1099
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1100 1101 1102 1103
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1104 1105 1106 1107 1108
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1109 1110 1111 1112
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1113
    return it->second;
F
fengjiayi 已提交
1114 1115
  }

1116
  const OperatorBase& op_;
X
Xin Pan 已提交
1117
  const RuntimeContext& ctx_;
1118 1119
};

1120 1121
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1122 1123 1124 1125
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1126 1127
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1128 1129
    return;
  }
1130 1131 1132 1133 1134 1135 1136 1137
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1138 1139
}

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1190 1191
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1192 1193 1194 1195 1196 1197 1198 1199 1200
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1201
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1202
                     [data_type](OpKernelMap::const_reference kern_pair) {
1203 1204
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1205 1206
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1207 1208 1209
                     });
}

1210 1211
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1212 1213 1214 1215
  const auto& attrs_map = ctx.Attrs();
  auto iter = attrs_map.find("use_mkldnn");
  bool use_mkldnn_ctx = iter != attrs_map.end() &&
                        BOOST_GET_CONST(bool, iter->second) &&
1216
                        platform::is_cpu_place(ctx.GetPlace());
1217
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1218 1219
}

1220 1221 1222 1223 1224 1225 1226
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1227
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1228 1229
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1230
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1231
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1232 1233
}

L
luotao1 已提交
1234 1235
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1236 1237
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1238 1239 1240
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1241
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1242
    all_kernels_must_compute_runtime_shape_ = true;
1243
  const Scope* cur_scope = &scope;
1244
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1245 1246
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1247
    pre_scope_ = cur_scope;
L
luotao1 已提交
1248
  } else {
1249 1250 1251 1252 1253 1254
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1255 1256 1257 1258 1259 1260 1261 1262
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1263
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1264
  auto* dev_ctx = pool.Get(place);
1265

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1276
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1277 1278 1279 1280
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1281 1282 1283 1284 1285 1286

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1287
  phi::KernelKey pt_kernel_key;
1288
  std::string pt_kernel_name;
1289
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1290 1291 1292 1293
    if (kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
      kernel_signature_.reset(new phi::KernelSignature(
          std::move(GetExpectedPhiKernelArgs(exe_ctx))));
      VLOG(6) << *kernel_signature_.get();
1294 1295 1296 1297 1298

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

1299
      pt_kernel_name = kernel_signature_->name;
1300
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1301
      pt_kernel_.reset(
1302
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1303 1304 1305
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1306
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1307 1308 1309
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1310
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1311 1312
                << "` not found.";
      }
1313
    } else {
1314
      pt_kernel_name = kernel_signature_->name;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1340 1341
          if (!phi::KernelFactory::Instance().HasKernel(pt_kernel_name,
                                                        try_pt_kernel_key)) {
1342 1343 1344 1345 1346 1347 1348
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1349
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1350
    }
1351 1352 1353 1354

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
1355
#if defined(PADDLE_WITH_XPU)
1356 1357 1358 1359 1360 1361
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1362
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1363 1364 1365
        && !is_xpu_unsupport
#endif
        ) {
1366
      run_phi_kernel_ = true;
1367 1368 1369
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1389 1390 1391
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1392
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1393
          || is_xpu_unsupport
1394
#endif
1395 1396 1397 1398
#if defined(PADDLE_WITH_XPU_KP)
          || (is_xpu_unsupport && !is_xpu_kp_support)
#endif
              ) {
1399 1400 1401
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1402
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1403 1404 1405 1406 1407 1408 1409
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1410
          run_phi_kernel_ = true;
1411 1412
        }
      }
1413 1414
    }
  }
1415
  if (!run_phi_kernel_) {
1416 1417
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1418
      dev_ctx = pool.Get(kernel_type_->place_);
1419
    }
1420 1421
  }

Y
yuyang18 已提交
1422 1423
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1424 1425
  Scope* transfer_scope = nullptr;
  {
1426
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1427 1428
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1429 1430 1431 1432
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1433
  }
Y
yuyang18 已提交
1434 1435 1436 1437
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1438
  if (!all_kernels_must_compute_runtime_shape_) {
1439
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1440 1441
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1442
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1443
    this->Info().infer_shape_(&infer_shape_ctx);
1444
  }
1445 1446 1447 1448 1449

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1450 1451
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1452
  {
1453
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1454 1455
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1456
    if (run_phi_kernel_) {
1457
      phi::KernelContext pt_kernel_context;
1458
      // Do data transform before building KernelContext
1459
      // TODO(zhiqiu): support TransferInplaceVarsBack
1460
      PreparePhiData(exec_scope, *pt_kernel_, *kernel_signature_, runtime_ctx);
1461
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1462
      (*pt_kernel_)(&pt_kernel_context);
1463 1464 1465 1466
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1467
  }
D
dzhwinter 已提交
1468

Y
yuyang18 已提交
1469
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1470
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1471
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1472
  }
1473 1474 1475 1476 1477 1478 1479

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1480 1481 1482 1483 1484 1485 1486 1487
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1488

D
dzhwinter 已提交
1489
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1490
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1491
    dev_ctx->Wait();
1492 1493
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1494 1495
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1496
  }
C
chengduoZH 已提交
1497 1498

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1499
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1500
  }
1501 1502 1503 1504 1505 1506 1507

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1508
}
X
Xin Pan 已提交
1509

1510 1511 1512
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1513 1514 1515
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1526 1527
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1528 1529
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1530
      if (SupportGPU()) {
1531
        auto& dev_ctx = ctx.device_context();
1532
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1533 1534 1535 1536 1537
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1538
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1539 1540 1541
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1542 1543 1544 1545 1546 1547
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1548 1549
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1550 1551 1552
  return expected_kernel_key;
}

1553
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1554
    const ExecutionContext& ctx) const {
1555 1556 1557
  kernel_signature_.reset(
      new phi::KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
  VLOG(6) << *kernel_signature_.get();
1558 1559 1560 1561

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

1562
  auto pt_kernel_name = kernel_signature_->name;
1563
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1564 1565
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1566 1567

  if (pt_kernel_->IsValid()) {
1568
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1569 1570 1571
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1572
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1573 1574
            << "` not found.";
  }
1575
  return pt_kernel_key;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1591 1592

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1593

L
Liu Yiqun 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1603
#endif
1604 1605

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1606
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1607 1608 1609
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1610 1611 1612 1613 1614 1615
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1616
#endif
L
Liu-xiandong 已提交
1617 1618

#ifdef PADDLE_WITH_XPU_KP
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1633 1634
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1635 1636
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1661 1662 1663
  }
#endif

A
Allen Guo 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1674 1675
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1676
      platform::is_npu_place(expected_kernel_key.place_)) {
1677 1678 1679 1680 1681 1682
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1683 1684 1685
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1686
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1687 1688 1689
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1701 1702 1703
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1704
#endif
1705 1706 1707 1708
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1709

1710 1711 1712 1713 1714
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1715 1716
}

Y
yuyang18 已提交
1717 1718 1719 1720
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1721
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1722
    auto* origin_var = scope.FindVar(var_name);
1723 1724 1725
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1726
    auto* original_tensor =
C
chengduo 已提交
1727
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1728
    auto* var = transfer_scope.FindVar(var_name);
1729 1730
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1731
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1732
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1733
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1734 1735 1736 1737 1738
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1739 1740 1741
  }
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1771
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1791
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1809
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1810
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1811 1812
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1813
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1814

1815
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1816 1817 1818 1819
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1820 1821
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1822 1823 1824
    }
  }

Y
yuyang18 已提交
1825
  for (auto& var_name_item : Inputs()) {
1826 1827
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1828

X
Xin Pan 已提交
1829 1830 1831 1832
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1833
      auto* var = input_vars[i];
X
Xin Pan 已提交
1834

Y
yuyang18 已提交
1835
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1836
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1837 1838 1839
        continue;
      }

C
chengduo 已提交
1840
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1856 1857
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1890 1891
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1892

1893 1894 1895
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1896
      // We use a thread_local cache to fix that issue, the key in the cache is
1897 1898 1899 1900 1901
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1902 1903
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1904
      // variables, that behavior a lot different.
1905 1906 1907 1908 1909 1910 1911 1912 1913
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1914 1915
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1916
        enable_cache_transfer_scope_ = true;
1917
      }
1918
      if (!new_scope) {
Y
yuyang18 已提交
1919 1920
        new_scope = &scope.NewScope();
      }
1921 1922 1923 1924
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1925
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1926 1927
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1928
      if (enable_cache_runtime_context_) {
1929 1930
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1931 1932

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1933
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1934
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1952
      Tensor out;
Y
yuyang18 已提交
1953
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1954 1955 1956
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1957

1958 1959 1960 1961 1962 1963
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1964 1965 1966 1967 1968 1969

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1970 1971
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1972 1973 1974

  return new_scope;
}
Q
Qiao Longfei 已提交
1975

1976
void OperatorWithKernel::ParseInputDataType(
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    const Variable* var, const std::string& name,
    proto::VarType::Type* data_type) const {
  if (var != nullptr) {
    const Tensor* t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    } else if (var->IsType<phi::SelectedRows>()) {
      t = &(var->Get<phi::SelectedRows>().value());
    } else if (var->IsType<LoDTensorArray>()) {
      auto t_arr = &var->Get<LoDTensorArray>();
      for (size_t j = 0; j < t_arr->size(); j++) {
        if (t_arr->at(j).IsInitialized()) {
          t = &(t_arr->at(j));
        }
      }
    }
    if (t != nullptr) {
      PADDLE_ENFORCE_EQ(
          t->IsInitialized(), true,
          platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                            "contains uninitialized Tensor.",
                                            Type(), name));
      *data_type = paddle::framework::TransToProtoVarType(t->dtype());
    }
  }
}

void OperatorWithKernel::ParseMultiInputDataType(
2007
    const std::vector<Variable*>& vars, const std::string& name,
2008
    proto::VarType::Type* data_type) const {
2009
  proto::VarType::Type default_data_type =
2010 2011 2012 2013 2014 2015 2016 2017 2018
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
2019 2020
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
2021
      } else if (var->IsType<LoDTensorArray>()) {
2022 2023 2024 2025
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
2026 2027
          }
        }
2028 2029
      }
      if (t != nullptr) {
2030 2031
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
2032 2033 2034
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
2035 2036
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
2037 2038 2039 2040 2041 2042 2043 2044 2045
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
2046 2047 2048 2049 2050 2051
        *data_type = tmp;
      }
    }
  }
}

2052
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2053
    const ExecutionContext& ctx) const {
2054 2055 2056
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2057 2058 2059 2060 2061 2062
  for (auto* name : ctx.InNameList()) {
    if (ctx.InputSize(*name) == 1UL) {
      ParseInputDataType(ctx.InputVar(*name), *name, &data_type);
    } else {
      ParseMultiInputDataType(ctx.MultiInputVar(*name), *name, &data_type);
    }
Y
Yu Yang 已提交
2063
  }
2064 2065 2066 2067
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2068 2069 2070 2071 2072 2073 2074 2075
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2076 2077 2078 2079 2080
  if (ctx.InputSize(name) == 1UL) {
    ParseInputDataType(ctx.InputVar(name), name, &data_type);
  } else {
    ParseMultiInputDataType(ctx.MultiInputVar(name), name, &data_type);
  }
2081 2082
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2083 2084 2085 2086 2087
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2088
  return data_type;
Y
Yu Yang 已提交
2089
}
2090

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2109 2110
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2142 2143
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2144 2145 2146 2147 2148 2149 2150

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2151 2152 2153 2154 2155 2156 2157 2158
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2159 2160
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2161 2162
}

2163
phi::KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2164
    const ExecutionContext& ctx) const {
2165
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2166
  if (arg_map_fn_ == nullptr) {
2167 2168 2169 2170
    auto* arg_map_fn = phi::OpUtilsMap::Instance().GetArgumentMappingFn(type_);
    if (arg_map_fn) {
      arg_map_fn_.reset(new phi::ArgumentMappingFn(*arg_map_fn));
    } else {
2171 2172
      auto func = [this](
          const phi::ArgumentMappingContext& ctx) -> phi::KernelSignature {
2173 2174 2175 2176
        return phi::DefaultKernelSignatureMap::Instance().Get(type_);
      };
      arg_map_fn_.reset(new phi::ArgumentMappingFn(func));
    }
2177 2178
  }
  return (*arg_map_fn_)(arg_mapping_ctx);
2179 2180
}

2181
Scope* OperatorWithKernel::PreparePhiData(
2182
    const Scope& scope, const phi::Kernel& pt_kernel,
2183 2184
    const phi::KernelSignature& pt_kernel_signature,
    RuntimeContext* ctx) const {
2185
  const auto& input_names = pt_kernel_signature.input_names;
2186 2187 2188 2189 2190 2191 2192
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2193
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2204 2205
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2206
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2207 2208
      continue;
    }
2209
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2210
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2211 2212 2213
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2214 2215 2216 2217 2218 2219 2220
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2230 2231 2232 2233
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2234 2235 2236
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2237 2238 2239 2240 2241

      auto tensor_backend = phi::TransToPhiBackend(tensor_in->place());
      if (in_def.backend == tensor_backend ||
          (in_def.backend == phi::Backend::GPUDNN &&
           tensor_backend == phi::Backend::GPU)) {
2242 2243 2244
        continue;
      }

2245
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2246
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2247
              << tensor_in->place() << " to " << expected_place;
2248

2249 2250 2251
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2262

2263
      // Create new var with the same name in transfer scopes
2264
      auto* trans_var = new_scope->Var(name_vec[offset]);
2265
      ins_vector[offset] = trans_var;
2266

2267 2268 2269 2270
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2271 2272 2273 2274 2275 2276
    }
  }

  return new_scope;
}

2277
void OperatorWithKernel::BuildPhiKernelContext(
2278
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2279
    phi::KernelContext* pt_kernel_context) const {
2280
  pt_kernel_context->SetDeviceContext(dev_ctx);
2281

2282 2283 2284
  auto& input_names = kernel_signature_->input_names;
  auto& attr_names = kernel_signature_->attr_names;
  auto& output_names = kernel_signature_->output_names;
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2309
    auto it = ctx.inputs.find(input_names[i]);
2310 2311 2312

    // calcute the start and end index of the input tensors
    size_t start_idx =
2313
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2314

H
hong 已提交
2315
    // deal with optional here
2316
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2317
        (input_defs[i].type_index ==
H
hong 已提交
2318 2319 2320 2321
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2322 2323 2324 2325 2326
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2327 2328 2329 2330 2331 2332 2333 2334
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2335
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2336
      const phi::TensorBase* tensor_in = nullptr;
2337
      auto* var = ins_vector[offset];
H
hong 已提交
2338 2339
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2340
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2341 2342
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2343 2344 2345 2346 2347 2348 2349 2350 2351
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2352 2353 2354 2355
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2356
      }
2357
    }
2358
    // Note: here cannot deal with vector<LoDTensorArray> input
2359
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2360
  }
2361
  VLOG(4) << "Done inputs";
2362 2363

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2364
    auto it = ctx.outputs.find(output_names[i]);
2365
    size_t start_idx =
2366
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2381
    size_t end_idx = start_idx + outs_vector.size();
2382 2383

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2384
      phi::TensorBase* tensor_out = nullptr;
2385
      auto* var = outs_vector[offset];
2386 2387 2388
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2389
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2390 2391
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2404 2405 2406 2407 2408
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2409 2410
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2411
      }
2412
    }
2413
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2414
  }
2415
  VLOG(4) << "Done outputs";
2416 2417

  for (size_t i = 0; i < attr_names.size(); ++i) {
2418
    if (attr_defs[i].type_index == phi::AttributeType::INT_ARRAY) {
2419 2420
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
2421 2422
        auto& attr = attr_iter->second;
        if (AttrTypeID(attr) == proto::AttrType::LONGS) {
2423
          pt_kernel_context->EmplaceBackAttr(std::move(
2424 2425 2426 2427 2428 2429 2430
              phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
        } else if (AttrTypeID(attr) == proto::AttrType::INTS) {
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
          pt_kernel_context->EmplaceBackAttr(
              std::move(phi::IntArray(&BOOST_GET_CONST(int32_t, attr), 1)));
2431 2432
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2433
              "Unsupported cast op attribute `%s` to IntArray when "
2434 2435 2436 2437 2438 2439
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2440
          pt_kernel_context->EmplaceBackAttr(std::move(
2441
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2442
        } else {  // ShapeTensorList
2443 2444
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2445 2446
        }
      }
2447
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALAR) {
2448 2449
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
2450 2451
        auto& attr = attr_iter->second;
        if (AttrTypeID(attr) == proto::AttrType::FLOAT) {
2452
          pt_kernel_context->EmplaceBackAttr(
2453
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2454
        } else if (AttrTypeID(attr) == proto::AttrType::STRING) {
2455
          pt_kernel_context->EmplaceBackAttr(
2456
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2457
        } else if (AttrTypeID(attr) == proto::AttrType::INT) {
2458
          pt_kernel_context->EmplaceBackAttr(
2459
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2460 2461 2462 2463 2464 2465
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2466
      } else {
2467
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2468 2469
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2470
      }
2471

2472
    } else if (attr_defs[i].type_index == phi::AttributeType::SCALARS) {
2473
      auto& attr = Attrs().at(attr_names[i]);
2474
      if (AttrTypeID(attr) == proto::AttrType::INTS) {
2475 2476 2477 2478 2479 2480 2481
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2482
      } else if (AttrTypeID(attr) == proto::AttrType::LONGS) {
2483 2484 2485 2486 2487 2488 2489
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2490
      } else if (AttrTypeID(attr) == proto::AttrType::FLOATS) {
2491 2492 2493 2494 2495 2496 2497
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
2498
      } else if (AttrTypeID(attr) == proto::AttrType::FLOAT64S) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2512
    } else {
H
hong 已提交
2513
      auto attr_it = attrs_.find(attr_names[i]);
2514
      if (attr_defs[i].type_index == phi::AttributeType::INT32) {
H
hong 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2531
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32) {
H
hong 已提交
2532 2533
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2534
      } else if (attr_defs[i].type_index == phi::AttributeType::BOOL) {
H
hong 已提交
2535 2536
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
2537
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64) {
H
hong 已提交
2538 2539
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
2540
      } else if (attr_defs[i].type_index == phi::AttributeType::STRING) {
H
hong 已提交
2541 2542
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2543
      } else if (attr_defs[i].type_index == phi::AttributeType::DATA_TYPE) {
2544
        auto data_type = paddle::framework::TransToPhiDataType(
2545
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2546
                BOOST_GET_CONST(int, attr_it->second)));
2547
        pt_kernel_context->EmplaceBackAttr(data_type);
2548 2549
      } else if (attr_defs[i].type_index == phi::AttributeType::INT64S) {
        if (AttrTypeID(attr_it->second) == proto::AttrType::LONGS) {
2550
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2551
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
2552
        } else if (AttrTypeID(attr_it->second) == proto::AttrType::INTS) {
2553
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2554 2555
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2556 2557
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2558
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2559
        }
2560
      } else if (attr_defs[i].type_index == phi::AttributeType::INT32S) {
H
hong 已提交
2561 2562
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2563
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2564
      } else if (attr_defs[i].type_index == phi::AttributeType::STRINGS) {
2565 2566
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2567
      } else if (attr_defs[i].type_index == phi::AttributeType::FLOAT32S) {
2568 2569
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2570 2571
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2572
            "Unsupported cast op attribute `%s` when construct "
2573 2574 2575 2576 2577
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2578
  VLOG(4) << "Done attributes";
2579 2580
}

Q
Qiao Longfei 已提交
2581
}  // namespace framework
L
liaogang 已提交
2582
}  // namespace paddle