distribute_transpiler.py 108.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
1
123malin 已提交
44
from .. import core, framework, unique_name, initializer
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
133
    A configuration class that provide support for transpiler distributed jobs.
134 135 136
    Some important parameters are explained as follows:


H
haowang101779990 已提交
137 138
    .. py:attribute:: slice_var_up (bool)

139
          Whether to do Tensor slice for parameter servers, default is True.
H
haowang101779990 已提交
140 141 142

    .. py:attribute:: split_method (PSDispatcher)

143 144 145 146
          Methods of dispatching parameters for server,
          :ref:`api_fluid_transpiler_RoundRobin` or
          :ref:`api_fluid_transpiler_HashName` can be used and default is RoundRobin.
          Try to choose the best method to balance loads for parameter servers.
H
haowang101779990 已提交
147 148 149

    .. py:attribute:: min_block_size (int)

150
          Minimum number of splitted elements in block, default is 8192.
H
haowang101779990 已提交
151 152

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
153
          We can use bandwidth effiently when data size is larger than 2MB.If you
154 155 156 157
          want to change it, please be sure you have read the slice_variable function. You can find
          the definition of slice_variable in
          https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/fluid/transpiler/distribute_transpiler.py
          .
H
haowang101779990 已提交
158

159 160 161
    Examples:
        .. code-block:: python

162 163 164
            from paddle.fluid.transpiler.ps_dispatcher import RoundRobin
            import paddle.fluid as fluid

165 166
            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
167 168
            config.split_method = RoundRobin
            config.min_block_size = 81920
G
gongweibao 已提交
169 170 171 172 173
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
174
    enable_dc_asgd = False
175
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
176
    mode = "pserver"
177
    print_log = False
W
Wu Yi 已提交
178
    wait_port = True
Q
Qiao Longfei 已提交
179
    # split the send recv var in runtime
180 181
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
182

183 184 185 186
    # Geo-sgd algorithm
    geo_sgd_mode = False
    geo_sgd_need_push_nums = 100

187 188 189 190 191 192 193
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

194
    # if mode is collective
195
    # supported modes: grad_allreduce, local_sgd
196 197
    collective_mode = None

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
229

Y
gen rst  
yi.wu 已提交
230
class DistributeTranspiler(object):
Y
yi.wu 已提交
231 232 233 234
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
235
    Supports two modes: parameter server(pserver) mode and nccl2 mode.
Y
yi.wu 已提交
236

W
Wu Yi 已提交
237 238 239 240 241 242 243 244 245
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
246 247 248 249

    Examples:
        .. code-block:: python

250 251
            x = fluid.data(name='x', shape=[13], dtype='float32')
            y = fluid.data(name='y', shape=[1], dtype='float32')
252 253 254 255 256 257 258 259
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
260 261 262 263 264 265
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
266
            role = "PSERVER"
T
Tink_Y 已提交
267 268 269 270 271 272
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
273
                                                                pserver_program)
T
Tink_Y 已提交
274 275 276 277
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
278 279
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
280 281
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
282
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
283
            t = fluid.DistributeTranspiler(config=config)
284
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
285
            exe = fluid.ParallelExecutor(
286 287 288
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
289 290
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
291
    """
Y
Yancey1989 已提交
292

G
gongweibao 已提交
293 294 295 296 297 298 299 300 301
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

302 303 304
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
305 306
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)
1
123malin 已提交
307
        self.counter_var = None
G
gongweibao 已提交
308

W
Wu Yi 已提交
309 310 311 312
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
313 314
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
315 316 317 318 319 320
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
321 322
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
323 324 325

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
326 327 328 329 330 331 332 333 334

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
335 336 337 338
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
339 340 341 342 343
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
344 345 346 347 348
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
349 350 351 352 353 354 355
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
356 357 358 359 360
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

361 362 363 364 365 366 367 368 369 370 371 372
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
H
hutuxian 已提交
373
        elif collective_mode != "single_process_multi_thread":
374 375
            raise ValueError('invalid trainers config: ' + str(trainers))

H
hutuxian 已提交
376 377
        if len(endpoints
               ) == 1 and collective_mode != "single_process_multi_thread":
378 379 380 381 382 383 384 385 386 387
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
388
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
389
        elif collective_mode == 'local_sgd':
390
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
H
hutuxian 已提交
391 392
        elif collective_mode == "single_process_multi_thread":
            transpiler = collective.SingleProcessMultiThread()
393 394 395 396 397 398 399 400 401 402 403
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
404
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
405
        sparse_update_ops = []
T
tangwei12 已提交
406
        sparse_update_op_types = ["lookup_table", "nce"]
Q
Qiao Longfei 已提交
407 408
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
409
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
410 411 412
                sparse_update_ops.append(op)
        return sparse_update_ops

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    def _update_remote_sparse_update_op(self, program,
                                        need_sparse_update_params):

        for param_varname, attrs in need_sparse_update_params.items():
            height_sections = self.sparse_param_to_height_sections[
                param_varname]
            endpoints = attrs[0]
            table_names = attrs[1]

            ops = []
            op_type = ""
            used_ops = []

            for idx, op in enumerate(self.sparse_update_ops):
                if param_varname in op.input_arg_names and op_type == "":
                    op_type = op.type
                    ops.append(op)
                    used_ops.append(idx)

                elif param_varname in op.input_arg_names and op_type == op.type:
                    ops.append(op)
                    used_ops.append(idx)

            if op_type == "lookup_table":
                all_ops = program.global_block().ops
                op_idxs = [all_ops.index(op) for op in ops]
                inputs = [
                    program.global_block().vars[op.input("Ids")[0]]
                    for op in ops
                ]
                w = program.global_block().vars[ops[0].input("W")[0]]
                padding_idx = ops[0].attr("padding_idx")
                outputs = [
                    program.global_block().vars[op.output("Out")[0]]
                    for op in ops
                ]
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
                for idx in op_idxs[::-1]:
                    program.global_block()._remove_op(idx)

                inputs_idxs = [-1] * len(inputs)
                outputs_idxs = [-1] * len(outputs)

                for idx, op in enumerate(program.global_block().ops):
                    for i in range(0, len(op.output_names)):
                        outs = op.output(op.output_names[i])
                        for in_id, in_var in enumerate(inputs):
                            if in_var.name in outs:
                                inputs_idxs[in_id] = idx
                    for i in range(0, len(op.input_names)):
                        ins = op.input(op.input_names[i])
                        for out_id, out_var in enumerate(outputs):
                            if out_var.name in ins:
                                outputs_idxs[out_id] = idx

                if min(outputs_idxs) - max(inputs_idxs) >= 1:
                    distributed_idx = max(inputs_idxs) + 1

                    program.global_block()._insert_op(
                        index=distributed_idx,
                        type="distributed_lookup_table",
                        inputs={"Ids": inputs,
                                'W': w},
                        outputs={"Outputs": outputs},
                        attrs={
                            "table_names": table_names,
                            "height_sections": height_sections,
                            "endpoints": endpoints,
                            "padding_idx": padding_idx,
                            "trainer_id": self.trainer_id
                        })
                else:
                    raise ValueError(
                        "something wrong with distribute_transpiler, submit a issue is recommended"
                    )
488

489 490
                for idx in used_ops[::-1]:
                    self.sparse_update_ops.pop(idx)
Q
Qiao Longfei 已提交
491 492 493 494 495 496

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
497

498 499 500 501 502
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
503
                  sync_mode=True,
W
Wu Yi 已提交
504 505
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
506
        """
507
        Transpile the input program to distributed programs with config and arguments.
Y
yi.wu 已提交
508 509 510 511 512 513

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
514 515
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
516 517
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
518 519 520
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
521
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
522 523
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
524 525 526
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
527 528 529 530 531 532 533 534 535 536 537

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
538 539 540
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
541 542
        if startup_program is None:
            startup_program = default_startup_program()
543
        self.origin_program = program
W
Wu Yi 已提交
544 545
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
546

W
Wu Yi 已提交
547 548
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
549
            self.origin_program._trainers_endpoints = trainers.split(",")
550 551
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
552 553 554 555 556
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
557
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
558 559 560 561 562 563 564 565 566 567 568
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
569 570 571 572
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
573 574
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
575 576
            return

577 578 579 580 581 582 583 584 585 586 587
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

588
        self.trainer_num = trainers
589
        self.sync_mode = sync_mode
590 591 592
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
593
        self.vars_overview = VarsDistributed()
594 595
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
596
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
597 598
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
599
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
600
        self.grad_name_to_param_name = dict()
601 602
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
603
            self.grad_name_to_param_name[grad_var.name] = param_var.name
604

Q
Qiao Longfei 已提交
605
        # get all sparse update ops
Q
Qiao Longfei 已提交
606
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
607
            self.origin_program)
Q
Qiao Longfei 已提交
608
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
609
        self.sparse_param_to_height_sections = dict()
T
tangwei12 已提交
610
        self.need_delete_optimize_vars = []
Q
Qiao Longfei 已提交
611

T
tangwei12 已提交
612 613 614
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
615
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
616 617 618
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

619
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
620
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
621
        self._init_splited_vars()
622

G
gongweibao 已提交
623
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
624
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
625
        send_vars = []
626 627 628 629 630 631

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
632
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
633

G
gongweibao 已提交
634
        if not self.config.slice_var_up:
635 636
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
637

638
        self.grad_name_to_send_dummy_out = dict()
1
123malin 已提交
639

640
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
641
            eplist = ps_dispatcher.dispatch(splited_vars)
642

G
gongweibao 已提交
643
            if not self.config.slice_var_up:
644 645
                assert (len(splited_vars) == 1)

646
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
647
            if len(splited_vars) == 1:
648
                splited_grad_varname = splited_vars[0].name
649 650
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
651

Y
Yancey1989 已提交
652
            elif len(splited_vars) > 1:
653
                orig_var = program.global_block().vars[splited_grad_varname]
654 655
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
656

Q
Qiao Longfei 已提交
657 658 659 660
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
661 662
            else:
                AssertionError("Can not insert the send op by original "
663
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
664

665 666 667 668 669 670 671
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
672 673
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
674
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
675

Q
Qiao Longfei 已提交
676 677 678 679 680 681 682 683 684 685 686
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
687 688 689 690
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
691
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
692
                index=index + 1,
693
                type="send",
Q
Qiao Longfei 已提交
694
                inputs={"X": send_input_vars},
695
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
696 697
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
698 699
                    "sections": sections,
                    "send_varnames": send_varnames,
700
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
701 702 703
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
704
                    ]
Y
Yancey1989 已提交
705
                })
Y
update  
Yancey1989 已提交
706 707
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
708 709

        if self.sync_mode:
710
            fetch_barrier_input = []
W
Wu Yi 已提交
711 712
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
713 714 715 716
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
717
            input_deps = list(self.grad_name_to_send_dummy_out.values())
718

Y
Yancey1989 已提交
719 720
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
721
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
722
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
723 724
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
725
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
726
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
727
                })
728
            fetch_barrier_input.append(send_barrier_out)
1
123malin 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        else:
            lr_ops = self._get_lr_ops()
            if len(lr_ops) > 0 and self.counter_var:
                decay_dummy_output = program.global_block().create_var(
                    name=framework.generate_control_dev_var_name())
                if self.config.runtime_split_send_recv:
                    ## async mode, using communicator to merge and send
                    send_varnames = [self.counter_var.name]
                else:
                    send_varnames = []
                sections = []
                program.global_block().append_op(
                    type="send",
                    inputs={"X": self.counter_var},
                    outputs={"Out": decay_dummy_output},
                    attrs={
                        "epmap": pserver_endpoints,
                        "sections": sections,
                        "send_varnames": send_varnames,
                        "merge_add": True,
                        "use_send_handler": False,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [self.counter_var.name, self.counter_var.name]
                    })
Y
Yancey1989 已提交
754

G
gongweibao 已提交
755
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
756
        recv_vars = []
Y
update  
Yancey1989 已提交
757
        for _, var in enumerate(send_vars):
758
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
759
        ps_dispatcher.reset()
Y
Yancey1989 已提交
760 761
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
762
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
763 764
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
765

766 767 768 769
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

770 771
        need_sparse_update_params = {}

Y
Yancey1989 已提交
772
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
773
        all_recv_outputs = []
774
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
775
            eps = []
Q
Qiao Longfei 已提交
776
            table_names = []
Y
Yancey1989 已提交
777 778 779
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
780
                table_names.append(var.name)
W
Wu Yi 已提交
781 782 783 784
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
785
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
786
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
787

W
Wu Yi 已提交
788 789 790 791 792 793 794 795 796
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
797
            if param_varname in self.sparse_param_to_height_sections:
798 799 800 801 802
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

803
                need_sparse_update_params[param_varname] = (eps, table_names)
Q
Qiao Longfei 已提交
804
            else:
Q
Qiao Longfei 已提交
805 806 807
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
808
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
809
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
810
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
811

Q
Qiao Longfei 已提交
812 813 814 815 816 817
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
818
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
819 820 821
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
822
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
823
                    })
824 825
                if self.sync_mode:
                    fetch_barrier_input.extend(splited_var)
T
typhoonzero 已提交
826

827 828
        self._update_remote_sparse_update_op(program, need_sparse_update_params)

Q
qiaolongfei 已提交
829
        if self.sync_mode:
W
Wu Yi 已提交
830
            # form a WAW dependency
Q
qiaolongfei 已提交
831 832
            program.global_block().append_op(
                type="fetch_barrier",
833
                inputs={"X": fetch_barrier_input},
W
Wu Yi 已提交
834
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
835 836
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
837
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
838 839
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
840

841 842
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
843
            if param_varname not in self.sparse_param_to_height_sections:
844 845
                if len(splited_var
                       ) > 1 and not self.config.runtime_split_send_recv:
Q
Qiao Longfei 已提交
846 847 848 849 850 851 852 853
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
854

G
gongweibao 已提交
855 856
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

857
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
858 859
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
860
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
861

862 863 864
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

T
tangwei12 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
    def _get_sparse_table_names(self):
        sparse_update_op_types = ["lookup_table", "nce"]

        sparse_table_names = []
        for op in self.origin_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
                    'is_sparse') is True:
                sparse_table_names.append(op.input("W")[0])
            if op.type == "distributed_lookup_table":
                sparse_table_names.append(op.input("W")[0])

        if self.has_distributed_lookup_table:
            sparse_table_names.append(self.table_name)

        return list(set(sparse_table_names))

    def _fake_init_sparsetable(self, sparse_table_names):
        # delete table init op
        for table_name in sparse_table_names:
            table_var = self.startup_program.global_block().vars[table_name]
            table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if table_name in op.output_arg_names:
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
            table_init_op = table_param_init_op[0]
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)

    def _delete_trainer_optimizer(self, is_startup):
        optimize_vars = []
        optimize_op_role_vars = []
        optimize_need_delete_vars = []

        for op in self.optimize_ops:
            optimize_vars.extend(op.input_arg_names)
            optimize_op_role_vars.extend(op.attr("op_role_var"))

        optimize_vars = list(set(optimize_vars))
        optimize_op_role_vars = list(set(optimize_op_role_vars))

        for var in optimize_vars:
            if var not in optimize_op_role_vars:
                optimize_need_delete_vars.append(var)
        need_delete_optimize_vars = list(set(optimize_need_delete_vars))

        if is_startup:
            init_ops = []
            for var in need_delete_optimize_vars:
                param_init_op = []
                for op in self.startup_program.global_block().ops:
                    if var in op.output_arg_names:
                        param_init_op.append(op)
                init_ops.extend(param_init_op)
            delete_ops(self.startup_program.global_block(), init_ops)

            for var in need_delete_optimize_vars:
                if self.startup_program.global_block().has_var(var):
                    self.startup_program.global_block()._remove_var(var)
        else:
            delete_ops(self.origin_program.global_block(), self.optimize_ops)
            for var in need_delete_optimize_vars:
                if self.origin_program.global_block().has_var(var):
                    self.origin_program.global_block()._remove_var(var)

W
Wu Yi 已提交
937
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
938
        """
C
Chengmo 已提交
939 940 941 942 943 944 945 946 947
        Get transpiled trainer side program. The program on trainer side compared with origin program 
        has following difference:

            - Delete optimizer related op, because parameter updated on Pserver
            - After the op which computed gradient of each parameter, add ``Send_op`` and ``Recv_op`` 
        
        Args:
            wait_port(bool): Whether to wait for the parameter server to be ready before returning to program, 
            default is True
Y
yi.wu 已提交
948 949 950

        Returns:
            Program: trainer side program.
951 952 953 954 955 956 957 958 959 960 961 962

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
963
        """
T
typhoonzero 已提交
964
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
965
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
966

T
tangwei12 已提交
967 968 969 970
        self._delete_trainer_optimizer(is_startup=True)
        sparse_table_names = self._get_sparse_table_names()
        self._fake_init_sparsetable(sparse_table_names)

T
typhoonzero 已提交
971 972
        lr_ops = self._get_lr_ops()
        delete_ops(self.origin_program.global_block(), lr_ops)
T
tangwei12 已提交
973
        self._delete_trainer_optimizer(is_startup=False)
974

975
        self.origin_program.__str__()
T
tangwei12 已提交
976
        self.startup_program.__str__()
G
gongweibao 已提交
977

W
Wu Yi 已提交
978 979 980
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

981
        return self.origin_program
T
typhoonzero 已提交
982

W
Wu Yi 已提交
983
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
984 985 986 987
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
988
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
989
            eplist (list): A list of strings indicating
G
gongweibao 已提交
990 991 992 993

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
994
        startup_program = self.startup_program
G
gongweibao 已提交
995 996 997

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.
T
tangwei12 已提交
998 999 1000 1001
        sparse_table_names = self._get_sparse_table_names()

        # self._fake_init_sparsetable(sparse_table_names)
        #self._delete_trainer_optimizer(is_startup=True)
G
gongweibao 已提交
1002

M
minqiyang 已提交
1003
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1004 1005
            if varname in sparse_table_names:
                continue
G
gongweibao 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
1026
                inputs={"X": []},
G
gongweibao 已提交
1027 1028 1029
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
1030
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
1031 1032 1033
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
1034 1035
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
1036 1037 1038
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
1039
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
1040 1041
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
1042
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
1043 1044 1045
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
1046
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
1047 1048
            if varname in sparse_table_names:
                continue
T
tangwei12 已提交
1049
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
1050 1051
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
1052
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
1053
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
1064 1065 1066 1067 1068 1069 1070 1071
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
1072 1073
    def get_pserver_program(self, endpoint):
        """
C
Chengmo 已提交
1074 1075 1076 1077 1078 1079
        Get parameter server side program.The program on pserver side compared with origin program 
        has following difference:

            - Only the following op is included: optimize-related op and communication-related op 
            - NO.0 block only has variable definitions and ``listen_and_serv_op``
            - Every variable which need to be updated has a unique block
1080

Y
yi.wu 已提交
1081 1082
        Args:
            endpoint (str): current parameter server endpoint.
1083

Y
yi.wu 已提交
1084 1085
        Returns:
            Program: the program for current parameter server to run.
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
1100
        """
Y
yi.wu 已提交
1101 1102 1103 1104
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
1105 1106 1107
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
1108 1109
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
1110
        pserver_program.random_seed = self.origin_program.random_seed
1111 1112
        pserver_program._copy_dist_param_info_from(self.origin_program)

1113
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
1114 1115 1116 1117 1118 1119 1120 1121
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
1122 1123 1124 1125 1126
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
1136
            if self.sync_mode and self.trainer_num > 1:
1137
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
1147

Q
qiaolongfei 已提交
1148
        # step 3
1149
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
1150 1151 1152
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
1153
        # step 3.2
T
typhoonzero 已提交
1154 1155 1156 1157
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
1158 1159
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
1160
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
1161
        # step 3.3
W
Wu Yi 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1180
        # Iterate through the ops, and if an op and the optimize ops
1181
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1182
        # append it into the sub program.
T
typhoonzero 已提交
1183 1184 1185

        global_ops = []

1186 1187 1188
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1189 1190
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1191
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1192
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1193 1194
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1195
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1196
                self._append_pserver_non_opt_ops(block, op)
1197

Y
Yancey1989 已提交
1198
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1199 1200 1201 1202 1203 1204 1205 1206
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1207
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1208 1209 1210

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1211
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1212 1213

            # clone ops
Y
Yancey1989 已提交
1214 1215
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1216
                # clone sub_block of op
Y
Yancey1989 已提交
1217
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1218 1219

            # reset the block of op
W
Wu Yi 已提交
1220
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1221

1222
        # append lr decay ops to the child block if exists
1223
        lr_ops = self._get_lr_ops()
1224 1225
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1226 1227

        lr_decay_block_id = -1
1228
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1229
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1230
                pserver_program.num_blocks - 1)
1231
            optimize_blocks.append(lr_decay_block)
1232
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1233
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1234
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1235 1236
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1237
            lr_decay_block_id = lr_decay_block.idx
1238

T
typhoonzero 已提交
1239
        # append op to the current block
Q
qiaolongfei 已提交
1240
        grad_to_block_id = []
Q
qiaolongfei 已提交
1241
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1242
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1243
            per_opt_block = pserver_program._create_block(pre_block_idx)
1244
            optimize_blocks.append(per_opt_block)
1245
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1246
            # append grad merging ops before clip and weight decay
1247 1248
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1249
            for _, op in enumerate(self.optimize_ops):
1250
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1251
                # merged_var should be the input var name of L2Decay
1252 1253 1254
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1255 1256 1257
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1258 1259 1260 1261 1262 1263
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1264
                            op not in global_ops:
1265 1266 1267 1268 1269
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1270

1271
        # dedup grad to ids list
W
Wu Yi 已提交
1272
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1273
        # append global ops
1274
        if global_ops:
W
Wu Yi 已提交
1275
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1276
                pserver_program.num_blocks - 1)
1277
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1278
            for glb_op in global_ops:
X
Xi Chen 已提交
1279
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1280
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1281

1282
        # process distributed lookup_table
Q
qiaolongfei 已提交
1283
        prefetch_var_name_to_block_id = []
1284 1285
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1286
            table_opt_block = self._create_table_optimize_block(
1287
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1288
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1289
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1290
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1291 1292
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1293

T
tangwei12 已提交
1294
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1295 1296
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1297

1298
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1299 1300
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1301 1302 1303 1304 1305 1306
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1307
        attrs = {
1308
            "optimize_blocks": optimize_blocks,
1309
            "endpoint": endpoint,
1310
            "pserver_id": self.pserver_endpoints.index(endpoint),
1311 1312
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1313
            "grad_to_block_id": grad_to_block_id,
1314
            "sparse_grad_to_param": sparse_grad_to_param,
1315
            "lr_decay_block_id": lr_decay_block_id,
1316
        }
T
tangwei12 已提交
1317 1318

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1319
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1320 1321
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1322

T
tangwei12 已提交
1323 1324 1325 1326
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1327 1328 1329 1330 1331
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1332
            attrs=attrs)
1333

W
Wu Yi 已提交
1334
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1335 1336
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1337 1338
        return pserver_program

W
Wu Yi 已提交
1339 1340 1341
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.
C
Chengmo 已提交
1342 1343
        The ``main_program`` returned by this function is consistent with the 
        return value of the function ``get_pserver_program`` .
W
Wu Yi 已提交
1344 1345 1346

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1347

W
Wu Yi 已提交
1348 1349
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1364 1365
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1366 1367
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1368 1369
        return pserver_prog, pserver_startup

1370 1371
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1372
                            pserver_program=None,
1373
                            startup_program=None):
T
typhoonzero 已提交
1374
        """
W
Wu Yi 已提交
1375 1376
        **Deprecated**

T
typhoonzero 已提交
1377 1378 1379
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1380 1381 1382

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1383 1384
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1385
                when initalizing
1386

Y
yi.wu 已提交
1387 1388
        Returns:
            Program: parameter server side startup program.
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1404 1405
        """
        s_prog = Program()
W
Wu Yi 已提交
1406
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1407
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1419
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1420
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1421
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1422 1423 1424 1425
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1426
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1427 1428
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1439 1440

            if op_on_pserver:
1441 1442 1443
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1444
                if op.type in [
1445 1446
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1447
                ]:
W
Wu Yi 已提交
1448
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1449 1450 1451 1452
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1453
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1463

T
typhoonzero 已提交
1464 1465
        return s_prog

1466 1467
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1468
        block_suffix = "block"
1469 1470 1471
        block_idx = 0
        offset = 0
        is_slice = False
1472

1473
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1474

1475 1476
        if not block_name:
            return is_slice, block_idx, offset
1477

1478 1479 1480 1481
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1482 1483 1484 1485 1486
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
1512 1513 1514 1515
                    if key in [
                            "Param", "Grad", "LearningRate", "Beta1Tensor",
                            "Beta2Tensor"
                    ]:
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1553

Y
yi.wu 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1593
    def _init_splited_vars(self):
Y
yi.wu 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1617
        if self.config.slice_var_up:
Y
yi.wu 已提交
1618 1619
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1620 1621 1622
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1623
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1624 1625
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1626 1627 1628
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1629 1630 1631 1632
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1633 1634
        assert (len(grad_blocks) == len(param_blocks))

1635
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1636 1637
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1654
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1655 1656 1657 1658
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1659
        # dict(grad_splited_var -> param_splited_var)
1660
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1661 1662 1663
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1664
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1665
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1666 1667

        # create mapping of endpoint -> split var to create pserver side program
1668
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1678
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1679 1680
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1681
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1682
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1683 1684
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1685 1686
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1687 1688 1689 1690 1691 1692

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1693 1694
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1695
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1696 1697 1698
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1699 1700
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1701 1702
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1703 1704 1705
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1706
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1707
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1708 1709

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1710
                    self.all_out_emb_vars.append(out_var)
1711 1712

                    # delete lookup_table_op
1713
                    delete_ops(program.global_block(), [op])
1714 1715 1716
                    # break for loop
                    break

S
seiriosPlus 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1763
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1764
        # 2. add split_ids_op and send_op to send gradient to pservers
1765

1766 1767
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1768
        table_grad_name = grad_var_name(self.table_name)
1769 1770 1771 1772
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1773
                program.global_block()._insert_op(
1774 1775 1776 1777 1778
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1779 1780
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1781
                program.global_block()._insert_op(
1782
                    index=op_index + 2,
1783
                    type="send",
1784
                    inputs={'X': self.trainer_side_table_grad_list},
1785 1786 1787 1788 1789
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1790 1791
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1792
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1793 1794 1795 1796 1797
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1798
                    })
1799 1800 1801 1802 1803 1804
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1805
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1831
        return prefetch_var_name_to_block_id
1832 1833

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1834
                                     pre_block_idx, grad_to_block_id):
1835
        # STEP: create table optimize block
1836
        table_opt_block = pserver_program._create_block(pre_block_idx)
1837
        # create table param and grad var in pserver program
1838 1839
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1840 1841 1842
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1843 1844
        ][0]

Y
Yancey1989 已提交
1845 1846
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1847

T
tangwei12 已提交
1848
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1849 1850
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1851 1852 1853
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1854 1855
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1856
            shape=table_shape,
Y
Yancey1989 已提交
1857 1858 1859
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1860

1861 1862
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1863
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1864
            self.origin_program.global_block().vars[grad_var_name(
1865
                self.table_name)])
1866

1867 1868 1869
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1870

1871 1872 1873
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1874
            pserver_side_table_grad_list = [
1875 1876 1877 1878 1879 1880 1881 1882 1883
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1884
            # append sum op for pserver_side_table_grad_list
1885 1886
            table_opt_block.append_op(
                type="sum",
1887
                inputs={"X": pserver_side_table_grad_list},
1888 1889
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1890 1891
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1892
            origin_grad_name = grad_var.name
1893 1894
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1895 1896
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1897
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1898
            grad_var = pserver_program.global_block()._rename_var(
1899
                origin_grad_name, splited_grad_name)
1900 1901 1902 1903 1904 1905 1906

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1907
        # only support sgd now
1908 1909 1910
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1911
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1912

1913 1914 1915
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1916 1917
        return table_opt_block

T
tangwei12 已提交
1918 1919 1920 1921 1922
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1923
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1924
            name="kLookupTablePath",
T
tangwei12 已提交
1925 1926
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1927

W
Wu Yi 已提交
1928
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1929
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1930 1931 1932 1933
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1934
            attrs={'file_path': "none"})
T
tangwei12 已提交
1935 1936 1937

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1938 1939 1940 1941 1942
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1943
        Create vars for each split.
T
typhoonzero 已提交
1944 1945
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1946 1947 1948 1949
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1950
        Returns:
1951
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1952
                from original var name to each var split.
T
typhoonzero 已提交
1953
        """
1954 1955

        # varname->[(block_id, current_block_size)]
1956
        block_map = collections.OrderedDict()
1957

1958
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1959 1960
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1961
            if varname not in block_map:
T
typhoonzero 已提交
1962
                block_map[varname] = []
1963
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1964

M
minqiyang 已提交
1965
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1966
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1967
            if len(splited) == 1:
1968
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1969
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1970
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1971
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1972 1973 1974 1975 1976
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1977
                continue
T
typhoonzero 已提交
1978
            var_mapping[varname] = []
T
typhoonzero 已提交
1979 1980 1981 1982
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1983

T
typhoonzero 已提交
1984
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1985
                size = block[1]
M
minqiyang 已提交
1986
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1987 1988 1989
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1990
                new_var_name = ""
1991
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1992
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1993
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1994 1995
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1996
                                   (varname, i)
T
typhoonzero 已提交
1997
                var = program.global_block().create_var(
T
typhoonzero 已提交
1998 1999
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
2000
                    dtype=orig_var.dtype,
2001
                    type=orig_var.type,
T
typhoonzero 已提交
2002
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
2003
                var_mapping[varname].append(var)
W
Wu Yi 已提交
2004
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
2005
        return var_mapping
T
done  
typhoonzero 已提交
2006

2007
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
2008 2009 2010 2011 2012 2013
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
2014
            persistable=persistable)
T
done  
typhoonzero 已提交
2015

Q
Qiao Longfei 已提交
2016 2017 2018 2019 2020 2021 2022
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
2023
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
2024 2025
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
2026
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
2027
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
2028
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
2029 2030
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
2031
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2032 2033 2034 2035
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2036 2037 2038 2039
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2040
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
2041
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
2042 2043 2044 2045
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
2046
                attrs={
Q
Qiao Longfei 已提交
2047
                    "sections": height_sections,
2048 2049
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
2050 2051 2052
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
2053

T
typhoonzero 已提交
2054 2055 2056 2057
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
2058
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
2071
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
2072 2073
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
2074 2075
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
2076
                return param_shape
2077 2078 2079
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
2080 2081 2082
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
2083 2084
        elif op_type == "sgd":
            pass
2085 2086 2087 2088
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
2089 2090
        return orig_shape

2091 2092
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
2093
        orig_var_name = ""
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
2104
        else:
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
2127
            return None
2128 2129 2130 2131
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
2132
        else:
2133
            merged_var_name = orig_varname
2134 2135

        merged_var = pserver_block.vars[merged_var_name]
2136 2137 2138
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
2139
            for i in range(self.trainer_num):
2140
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
2141
                                   (merged_var_name, i)
2142 2143 2144 2145
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
2146 2147
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
2148 2149 2150 2151 2152
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
2153
        return merged_var
T
typhoonzero 已提交
2154

W
Wu Yi 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2217
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2218 2219
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2220
        program = optimize_block.program
T
typhoonzero 已提交
2221
        pserver_block = program.global_block()
2222
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2233 2234 2235 2236
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2237
        for key in opt_op.input_names:
T
typhoonzero 已提交
2238
            if key == "Grad":
W
Wu Yi 已提交
2239 2240 2241
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2252
            elif key == "Param":
W
Wu Yi 已提交
2253
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2254 2255
                if not param_block:
                    return
T
typhoonzero 已提交
2256
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2257
                    name=param_block.name,
T
typhoonzero 已提交
2258
                    persistable=True,
T
typhoonzero 已提交
2259 2260 2261
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2262
            elif key == "LearningRate":
2263
                # learning rate variable has already be created by non-optimize op,
2264
                # don't create it once again.
2265
                lr_varname = opt_op.input(key)[0]
2266
                if lr_varname in pserver_block.vars:
2267 2268 2269 2270 2271 2272 2273 2274 2275
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2276

T
typhoonzero 已提交
2277
        for key in opt_op.input_names:
2278
            new_shape = None
2279 2280 2281 2282
            if key in [
                    "Param", "Grad", "LearningRate", "Beta1Tensor",
                    "Beta2Tensor"
            ]:
T
typhoonzero 已提交
2283
                continue
2284
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2285
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2286
            # update accumulator variable shape
2287 2288
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2289
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2290 2291 2292 2293 2294
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2295

2296
        # change output's ParamOut variable
2297 2298
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2299
        outputs["ParamOut"] = new_inputs["Param"]
2300
        optimize_block.append_op(
T
typhoonzero 已提交
2301 2302
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2303
            outputs=outputs,
G
gongweibao 已提交
2304
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2305

2306 2307 2308 2309 2310 2311
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2323
        grad_block = None
M
minqiyang 已提交
2324
        for _, g in six.iteritems(var_dict):
2325
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2326
                # skip per trainer vars
2327
                if g.name.find(".trainer_") == -1:
2328
                    # only param or grads have splited blocks
2329 2330
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2331 2332
                        grad_block = g
                        break
2333 2334
        return grad_block

Q
Qiyang Min 已提交
2335 2336 2337
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2338
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2339 2340 2341 2342
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2343
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2344 2345 2346

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2347
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2348 2349 2350 2351
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2352
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2353

Y
Yancey1989 已提交
2354
        return block.append_op(
G
gongweibao 已提交
2355
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2356 2357

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2358
        program = optimize_block.program
2359
        # Append the ops for parameters that do not need to be optimized/updated
2360 2361
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2362
        for key, varlist in six.iteritems(inputs):
2363 2364
            if not isinstance(varlist, list):
                varlist = [varlist]
2365 2366 2367
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2368
                # for inputs/outputs
2369
                grad_block = self._get_pserver_grad_param_var(
2370 2371
                    var, program.global_block().vars)
                if grad_block:
2372
                    varlist[i] = grad_block
2373
                elif var.name not in program.global_block().vars:
2374 2375 2376 2377 2378
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2379

2380 2381
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2382
        for key, varlist in six.iteritems(outputs):
2383 2384
            if not isinstance(varlist, list):
                varlist = [varlist]
2385 2386 2387
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2388 2389
                    var, program.global_block().vars)
                if grad_block:
2390
                    varlist[i] = grad_block
2391
                elif var.name not in program.global_block().vars:
2392 2393 2394 2395 2396
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2397

Y
Yancey1989 已提交
2398
        return optimize_block.append_op(
T
typhoonzero 已提交
2399
            type=opt_op.type,
T
typhoonzero 已提交
2400 2401
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2402
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2403

2404 2405 2406 2407
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2408
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2409
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2410 2411 2412 2413 2414 2415
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2416 2417
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2418 2419 2420 2421 2422 2423
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2424
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2425
        if "Param" in op.input_names and \
T
tangwei12 已提交
2426
                "LearningRate" in op.input_names:
2427 2428 2429 2430 2431 2432 2433
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2434
        if op.input("Param")[0] in param_names:
2435 2436 2437
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2438
                param = op.input("Param")[0]
T
typhoonzero 已提交
2439
                if same_or_split_var(n, param) and n != param:
2440 2441 2442
                    return True
            return False

T
typhoonzero 已提交
2443
    def _get_input_map_from_op(self, varmap, op):
2444
        """Returns a dict from op input name to the vars in varmap."""
2445
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2457
        """Returns a dict from op output name to the vars in varmap."""
2458
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2459 2460 2461 2462 2463 2464 2465 2466 2467
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2468 2469

    def _get_lr_ops(self):
2470 2471
        lr_ops = []
        block = self.origin_program.global_block()
1
123malin 已提交
2472
        for index, op in enumerate(block.ops):
X
fix  
Xin Pan 已提交
2473 2474 2475 2476
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1
123malin 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
                if self.sync_mode == False and op.type == 'increment':
                    inputs = self._get_input_map_from_op(
                        self.origin_program.global_block().vars, op)
                    outputs = self._get_output_map_from_op(
                        self.origin_program.global_block().vars, op)
                    for key in outputs:
                        counter_var = outputs[key]
                    all_trainer_counter_inputs = [
                        self.origin_program.global_block().create_var(
                            name="%s.trainer_%d" % (counter_var.name, id_),
                            type=counter_var.type,
                            shape=counter_var.shape,
                            dtype=counter_var.dtype,
                            persistable=counter_var.persistable)
                        for id_ in range(self.trainer_num)
                    ]
                    for i, op in enumerate(self.startup_program.global_block()
                                           .ops):
                        if op.type == 'fill_constant':
                            for key in op.output_names:
                                if len(op.output(key)) == 1 and op.output(key)[
                                        0] == counter_var.name:
                                    self.startup_program.global_block().ops[
                                        i]._set_attr(
                                            'value',
                                            float(0.0 - self.trainer_num))
                    for var in all_trainer_counter_inputs:
                        if var.name == "%s.trainer_%d" % (counter_var.name,
                                                          self.trainer_id):
                            self.counter_var = var
                        self.startup_program.global_block().create_var(
                            name=var.name,
                            type=var.type,
                            dtype=var.dtype,
                            shape=var.shape,
                            persistable=var.persistable,
                            initializer=initializer.Constant(1))
                    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
                    )
                    block._remove_op(index)
                    op = block._insert_op(
                        index,
                        type='sum',
                        inputs={'X': all_trainer_counter_inputs},
                        outputs=outputs,
                        attrs={op_role_attr_name: LR_SCHED_OP_ROLE_ATTR_VALUE})
2523 2524 2525 2526 2527
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2528 2529 2530 2531
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2532
            if self._is_optimizer_op(op):
2533 2534 2535 2536
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2537
        block = self.origin_program.global_block()
2538 2539 2540 2541 2542
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2543

2544 2545 2546 2547 2548
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2549
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2550 2551 2552 2553 2554 2555
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2556 2557
                    # we only need to append op for once
                    break
2558
        return lr_ops
Y
Yancey1989 已提交
2559

W
Wu Yi 已提交
2560 2561 2562 2563 2564
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2565 2566
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2567 2568 2569
            return True
        return False

Y
Yancey1989 已提交
2570
    def _get_optimize_pass(self):
2571
        """
2572
        Get optimizer operators, parameters and gradients from origin_program
2573 2574
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2575
            params_grads (dict): parameter->gradient.
2576
        """
Y
Yancey1989 已提交
2577 2578 2579
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2580 2581
        # tmp set to dedup
        optimize_params = set()
2582
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2583
        for op in block.ops:
W
Wu Yi 已提交
2584
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2585
                opt_ops.append(op)
2586 2587 2588 2589 2590 2591
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2592 2593
                        params_grads.append([
                            origin_var_dict[param_name],
2594
                            origin_var_dict[grad_name]
2595
                        ])
Y
Yancey1989 已提交
2596 2597 2598
            else:
                pass
        return opt_ops, params_grads