operator.cc 95.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16
#include "paddle/fluid/framework/operator.h"

17
#include <glog/logging.h>
P
peizhilin 已提交
18 19
#include <sstream>
#include <string>
20

21
#include "gflags/gflags.h"
22
#include "paddle/fluid/framework/convert_utils.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/data_transform.h"
24
#include "paddle/fluid/framework/data_type_transform.h"
W
WangXi 已提交
25
#include "paddle/fluid/framework/details/nan_inf_utils.h"
26
#include "paddle/fluid/framework/op_call_stack.h"
27
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/shape_inference.h"
29
#include "paddle/fluid/framework/transfer_scope_cache.h"
30
#include "paddle/fluid/framework/unused_var_check.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/var_type.h"
32
#include "paddle/fluid/platform/device/device_wrapper.h"
L
Leo Chen 已提交
33
#include "paddle/fluid/platform/enforce.h"
34
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
35
#include "paddle/fluid/platform/profiler/event_tracing.h"
36
#include "paddle/phi/common/int_array.h"
37 38 39
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/ops/compat/signatures.h"
40

41
namespace phi {
42
class DenseTensor;
43
}  // namespace phi
44

45
#ifdef PADDLE_WITH_XPU
46 47
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
48
#endif
Q
Qiao Longfei 已提交
49

50 51 52 53
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

F
fwenguang 已提交
54 55 56 57
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

D
dzhwinter 已提交
58
DECLARE_bool(benchmark);
59
DECLARE_bool(check_nan_inf);
60
DECLARE_bool(enable_unused_var_check);
F
Feng Xing 已提交
61
DECLARE_bool(run_kp_kernel);
C
chenjian 已提交
62
DECLARE_bool(enable_host_event_recorder_hook);
D
dzhwinter 已提交
63

Q
Qiao Longfei 已提交
64 65 66
namespace paddle {
namespace framework {

67 68 69 70 71 72
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
73

74
static DDim GetDimsDebug(const ScopeBase& scope, const std::string& name,
75
                         bool get_actual_dim = false) {
76
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
77 78
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
79 80
  }

M
minqiyang 已提交
81 82 83
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.dims();
84
  } else if (var->IsType<phi::SelectedRows>()) {
M
minqiyang 已提交
85
    if (get_actual_dim) {
86
      return var->Get<phi::SelectedRows>().value().dims();
M
minqiyang 已提交
87
    } else {
88
      return var->Get<phi::SelectedRows>().GetCompleteDims();
M
minqiyang 已提交
89
    }
S
Steffy-zxf 已提交
90 91
  } else if (var->IsType<Strings>()) {
    return DDim({static_cast<int64_t>(var->Get<Strings>().size())});
92 93 94 95 96
  } else {
    return DDim({-1});
  }
}

97
static bool VarInited(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
98 99 100 101 102
  Variable* var = scope.FindVar(name);
  if (var == nullptr) return false;
  return var->IsInitialized();
}

103
static std::string GetDtype(const ScopeBase& scope, const std::string& name) {
D
dzhwinter 已提交
104 105 106 107
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
108

M
minqiyang 已提交
109 110 111
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
112 113
      return "";
    }
114
    return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
115 116
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
Q
Qiao Longfei 已提交
117 118 119
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
120
      return DataTypeToString(framework::TransToProtoVarType(tensor.dtype()));
Q
Qiao Longfei 已提交
121
    }
S
Steffy-zxf 已提交
122 123
  } else if (var->IsType<Strings>()) {
    return "strings";
D
dzhwinter 已提交
124 125 126 127 128
  } else {
    return "";
  }
}

129
static std::string GetPlace(const ScopeBase& scope, const std::string& name) {
L
Leo Chen 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
  auto to_string = [](const platform::Place& p) {
    std::stringstream sstream;
    sstream << p;
    return sstream.str();
  };

  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "";
    }
    return to_string(tensor.place());
146 147
  } else if (var->IsType<phi::SelectedRows>()) {
    auto tensor = var->Get<phi::SelectedRows>().value();
L
Leo Chen 已提交
148 149 150 151 152 153 154 155 156 157
    if (UNLIKELY(!tensor.IsInitialized())) {
      return "uninited";
    } else {
      return to_string(tensor.place());
    }
  } else {
    return "";
  }
}

158
static int GetRowSize(const ScopeBase& scope, const std::string& name) {
159 160 161 162 163
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

164 165
  if (var->IsType<phi::SelectedRows>()) {
    return var->Get<phi::SelectedRows>().rows().size();
166 167 168 169 170
  }

  return -1;
}

171
static LoD GetLoDDebug(const ScopeBase& scope, const std::string& name) {
Q
Qiao Longfei 已提交
172 173 174 175 176 177 178
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
179 180 181
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    return tensor.lod();
Q
Qiao Longfei 已提交
182 183 184 185 186
  } else {
    return default_lod;
  }
}

X
Xin Pan 已提交
187 188 189 190 191
RuntimeContext::RuntimeContext(const VariableNameMap& innames,
                               const VariableNameMap& outnames,
                               const Scope& scope) {
  for (auto& var_name_item : innames) {
    std::vector<Variable*>& input_vars = inputs[var_name_item.first];
X
Xin Pan 已提交
192
    input_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
193 194 195 196 197 198
    for (auto& var_name : var_name_item.second) {
      input_vars.push_back(scope.FindVar(var_name));
    }
  }
  for (auto& var_name_item : outnames) {
    std::vector<Variable*>& output_vars = outputs[var_name_item.first];
X
Xin Pan 已提交
199
    output_vars.reserve(var_name_item.second.size());
X
Xin Pan 已提交
200 201 202 203 204 205
    for (auto& var_name : var_name_item.second) {
      output_vars.push_back(scope.FindVar(var_name));
    }
  }
}

206
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
P
peizhilin 已提交
207 208 209
  try {
    VLOG(4) << place << " " << DebugStringEx(&scope);
    if (platform::is_gpu_place(place)) {
210
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
211 212 213 214
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CUDA support.",
          place));
215
#else
216
      auto dev_id = place.device;
P
peizhilin 已提交
217
      platform::SetDeviceId(dev_id);
218 219 220
#endif
    } else if (platform::is_xpu_place(place)) {
#ifndef PADDLE_WITH_XPU
221 222 223 224
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with XPU support.",
          place));
225
#else
226
      auto dev_id = place.device;
227
      platform::SetXPUDeviceId(dev_id);
228 229 230 231 232 233 234 235
#endif
    } else if (platform::is_npu_place(place)) {
#ifndef PADDLE_WITH_ASCEND_CL
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with NPU support.",
          place));
#else
236
      auto dev_id = place.device;
237
      platform::SetNPUDeviceId(dev_id);
F
fwenguang 已提交
238 239 240 241 242 243 244 245
#endif
    } else if (platform::is_mlu_place(place)) {
#ifndef PADDLE_WITH_MLU
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with MLU support.",
          place));
#else
246
      auto dev_id = place.device;
F
fwenguang 已提交
247
      platform::SetMLUDeviceId(dev_id);
248 249 250 251 252 253 254 255
#endif
    } else if (platform::is_custom_place(place)) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
      PADDLE_THROW(platform::errors::Unavailable(
          "Cannot run operator on place %s, please recompile paddle or "
          "reinstall Paddle with CustomDevice support.",
          place));
#else
256
      phi::DeviceManager::SetDevice(place);
257
#endif
P
peizhilin 已提交
258
    }
P
peizhilin 已提交
259

260
    {
261 262 263
      // TODO(wangchaochaohu) : refine code to use only one RecordEvent)
      // in order to record different op type cost time
      // and different op name cost time,we set two event.
C
chenjian 已提交
264
      platform::RecordEvent op_type_record_event(
C
chenjian 已提交
265
          Type(), platform::TracerEventType::Operator, 1);
C
chenjian 已提交
266 267
      auto op_name = platform::OpName(outputs_, Type());
      platform::RecordEvent op_name_record_event(
C
chenjian 已提交
268 269
          op_name, platform::TracerEventType::Operator,
          FLAGS_enable_host_event_recorder_hook ? 20 : 1,
C
chenjian 已提交
270
          platform::EventRole::kUniqueOp);
P
peizhilin 已提交
271 272
      RunImpl(scope, place);
    }
273

Z
Zhang Ting 已提交
274
    VLOG(3) << GetExecutionPlace(place) << " " << DebugStringEx(&scope);
275
  } catch (platform::EnforceNotMet& exception) {
276
    framework::InsertCallStackInfo(Type(), Attrs(), &exception);
277
    throw std::move(exception);
278 279 280 281 282 283
  } catch (platform::EOFException&) {
    std::rethrow_exception(std::current_exception());
  } catch (std::exception& ex) {
    LOG(WARNING) << Type() << " raises an exception "
                 << platform::demangle(typeid(ex).name()) << ", " << ex.what();
    std::rethrow_exception(std::current_exception());
P
peizhilin 已提交
284
  } catch (...) {
285
    LOG(WARNING) << Type() << " raises an unknown exception";
P
peizhilin 已提交
286
    std::rethrow_exception(std::current_exception());
287
  }
288 289
}

290
bool OperatorBase::HasInputs(const std::string& name) const {
M
minqiyang 已提交
291
  return inputs_.find(name) != inputs_.end();
292 293
}

294
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
295
  auto& ins = Inputs(name);
296 297
  PADDLE_ENFORCE_LE(
      ins.size(), 1UL,
298
      platform::errors::InvalidArgument(
299 300
          "Operator %s's input %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
301
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
302 303
}

Y
Yu Yang 已提交
304 305
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
306
  auto it = inputs_.find(name);
307 308 309 310
  PADDLE_ENFORCE_NE(
      it, inputs_.end(),
      platform::errors::NotFound("Operator %s does not have the input %s.",
                                 type_, name));
Y
Yu Yang 已提交
311
  return it->second;
Y
Yan Chunwei 已提交
312 313
}

314
bool OperatorBase::HasOutputs(const std::string& name) const {
315
  if (outputs_.find(name) != outputs_.end()) {
316 317 318 319 320 321
    return true;
  } else {
    return false;
  }
}

322
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
323
  auto& outs = Outputs(name);
324 325 326 327 328
  PADDLE_ENFORCE_LE(
      outs.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.", type_,
          name));
Y
Yu Yang 已提交
329
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
330 331
}

Y
Yu Yang 已提交
332 333
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
334
  auto it = outputs_.find(name);
335 336 337 338
  PADDLE_ENFORCE_NE(
      it, outputs_.end(),
      platform::errors::NotFound(
          "Operator %s does not have an output called %s.", type_, name));
Y
Yu Yang 已提交
339
  return it->second;
Y
Yan Chunwei 已提交
340 341
}

342
std::string OperatorBase::DebugStringEx(const ScopeBase* scope) const {
Q
Qiao Longfei 已提交
343
  std::stringstream ss;
Y
Yu Yang 已提交
344
  ss << "Op(" << type_ << "), inputs:{";
345

346
  const std::unordered_set<std::string>* no_need_buffer_vars = nullptr;
347 348
  if (info_ && info_->NoNeedBufferVarsInferer()) {
    no_need_buffer_vars =
349 350
        &(Info().NoNeedBufferVarsInferer()(Inputs(), Outputs(), Attrs()));
    if (no_need_buffer_vars->empty()) no_need_buffer_vars = nullptr;
351 352
  }

Y
Yu Yang 已提交
353 354
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
355 356
    bool is_no_need_buffer_var =
        (no_need_buffer_vars && no_need_buffer_vars->count(input.first) > 0);
Y
Yu Yang 已提交
357 358
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
Q
Qiao Longfei 已提交
359 360
      auto var_name = input.second[i];
      ss << var_name;
361
      if (scope) {
Q
Qiao Longfei 已提交
362 363 364 365 366 367 368
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, var_name);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
369 370 371
          std::string dtype = is_no_need_buffer_var
                                  ? "unknown_dtype"
                                  : GetDtype(*scope, var_name);
Q
Qiao Longfei 已提交
372
          ss << ":" << dtype;
373 374
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
375
          ss << "(" << GetPlace(*scope, var_name) << ")";
376
        }
377
      }
Y
Yu Yang 已提交
378 379 380
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
381
    }
Y
Yu Yang 已提交
382
    ss << "]";
Y
Yu Yang 已提交
383 384
    ++it;
    if (it != inputs_.end()) {
385 386
      ss << ", ";
    }
Q
Qiao Longfei 已提交
387
  }
Y
Yu Yang 已提交
388
  ss << "}, outputs:{";
Y
Yu Yang 已提交
389 390
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
391 392
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
Q
Qiao Longfei 已提交
393 394
      auto var_name = output.second[i];
      ss << var_name;
395
      if (scope) {
Q
Qiao Longfei 已提交
396 397 398 399 400 401 402
        if (!VarInited(*scope, var_name)) {
          ss << "[uninited]";
        } else {
          int row_size = GetRowSize(*scope, output.second[i]);
          if (row_size >= 0) {
            ss << "[row_size=" << row_size << "]";
          }
C
chengduo 已提交
403 404
          std::string dtype = GetDtype(*scope, output.second[i]);
          ss << ":" << dtype;
405 406
          ss << "[" << GetDimsDebug(*scope, var_name, true) << "]";
          ss << "(" << GetLoDDebug(*scope, var_name) << ")";
L
Leo Chen 已提交
407
          ss << "(" << GetPlace(*scope, var_name) << ")";
408
        }
409
      }
Y
Yu Yang 已提交
410 411 412
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
413
    }
Y
Yu Yang 已提交
414
    ss << "]";
Y
Yu Yang 已提交
415 416
    ++it;
    if (it != outputs_.end()) {
417 418
      ss << ", ";
    }
Q
Qiao Longfei 已提交
419
  }
Y
Yu Yang 已提交
420
  ss << "}.";
Q
Qiao Longfei 已提交
421 422 423
  return ss.str();
}

Y
Yu Yang 已提交
424
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
425 426
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
427
                           const AttributeMap& attrs)
S
sneaxiy 已提交
428 429 430 431 432 433
    : type_(type),
      inputs_(inputs),
      outputs_(outputs),
      attrs_(attrs),
      // NOTE(zjl): why op_info may be nullptr?
      info_(OpInfoMap::Instance().GetNullable(type)) {
H
hong 已提交
434 435 436 437 438 439 440 441
  // In dygraph mode, all the OperatorBase will be constructed by function:
  // framework::OpRegistry::CreateOp(type, {}, {}, {}, false).
  // Inputs, outputs and attrs will be set to empty map
  // to improve the execution efficiency of dygraph.
  if (inputs_.size() > 0 || outputs_.size() > 0) {
    GenerateTemporaryNames();
    CheckAllInputOutputSet();
  }
Y
Yu Yang 已提交
442
}
443

Q
qijun 已提交
444 445
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
446
  for (auto& o : inputs_) {
Q
qijun 已提交
447 448 449 450 451 452
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
453 454 455 456 457 458 459 460 461 462
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
S
sneaxiy 已提交
463
  auto& info = Info();
Y
Yu Yang 已提交
464 465

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
466
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
467 468 469 470 471 472 473 474 475
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
476 477
}

478
void OperatorBase::CheckAllInputOutputSet() const {
S
sneaxiy 已提交
479
  if (info_ == nullptr || info_->proto_ == nullptr) return;
480

S
sneaxiy 已提交
481
  for (auto& in : info_->Proto().inputs()) {
482
    if (!in.dispensable() && !in.extra()) {
483 484 485 486
      PADDLE_ENFORCE_NE(
          inputs_.find(in.name()), inputs_.end(),
          platform::errors::NotFound("Operator %s's input (%s) is not set.",
                                     Type(), in.name()));
487
    }
488 489
  }

S
sneaxiy 已提交
490
  for (auto& out : info_->Proto().outputs()) {
491
    if (!out.dispensable() && !out.extra()) {
492 493 494 495
      PADDLE_ENFORCE_NE(
          outputs_.find(out.name()), outputs_.end(),
          platform::errors::NotFound("Operator %s's output (%s) is not set.",
                                     Type(), out.name()));
496
    }
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}
512

C
chengduo 已提交
513
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var) {
C
chengduo 已提交
514 515
  if (var.IsType<LoDTensor>()) {
    return static_cast<const Tensor*>(&(var.Get<LoDTensor>()));
516 517
  } else if (var.IsType<phi::SelectedRows>()) {
    return &(var.Get<phi::SelectedRows>().value());
Q
QI JUN 已提交
518
  } else {
519 520 521
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var.Type())));
Q
QI JUN 已提交
522 523 524
  }
}

C
chengduo 已提交
525
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var) {
Q
QI JUN 已提交
526
  if (var->IsType<LoDTensor>()) {
527
    return var->GetMutable<LoDTensor>();
528 529
  } else if (var->IsType<phi::SelectedRows>()) {
    return var->GetMutable<phi::SelectedRows>()->mutable_value();
Q
QI JUN 已提交
530
  } else {
531 532 533
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Variable type is %s, expect LoDTensor or SelectedRows.",
        ToTypeName(var->Type())));
Q
QI JUN 已提交
534 535 536
  }
}

537
bool ExecutionContext::HasInput(const std::string& name) const {
538
  auto* var = InputVar(name);
539 540 541
  return var != nullptr;
}

542 543 544 545 546 547 548 549 550 551 552 553 554 555
bool ExecutionContext::HasInputs(const std::string& name) const {
  const auto& ins = ctx_.inputs;
  auto it = ins.find(name);
  if (it == ins.end() || it->second.empty()) {
    return false;
  }
  for (const auto* input : it->second) {
    if (input == nullptr) {
      return false;
    }
  }
  return true;
}

556
bool ExecutionContext::HasOutput(const std::string& name) const {
557
  auto* var = OutputVar(name);
558 559 560
  return var != nullptr;
}

X
Xin Pan 已提交
561
const Variable* ExecutionContext::InputVar(const std::string& name) const {
562 563
  LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
564 565 566
  auto it = ctx_.inputs.find(name);
  if (it == ctx_.inputs.end()) return nullptr;

567 568
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
569
      platform::errors::InvalidArgument(
570 571
          "Operator %s's input %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
572 573 574
  return it->second.empty() ? nullptr : it->second[0];
}

X
clean  
Xin Pan 已提交
575
Variable* ExecutionContext::OutputVar(const std::string& name) const {
X
Xin Pan 已提交
576 577 578
  auto it = ctx_.outputs.find(name);
  if (it == ctx_.outputs.end()) return nullptr;

579 580 581 582 583
  PADDLE_ENFORCE_LE(
      it->second.size(), 1UL,
      platform::errors::InvalidArgument(
          "Operator %s's output %s should contain only one variable.",
          op_.Type(), name));
X
Xin Pan 已提交
584 585 586
  return it->second.empty() ? nullptr : it->second[0];
}

587
template <>
588
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
589
    const std::string& name) const {
590 591
  LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
592 593
  auto vars = MultiInputVar(name);
  if (vars.size() == 0) {
X
Xin Pan 已提交
594 595 596 597 598
    return {};
  }
  std::vector<const Tensor*> res;
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
599
                 [&](const Variable* var) -> const Tensor* {
X
Xin Pan 已提交
600
                   if (var == nullptr) return nullptr;
601 602 603 604 605
                   PADDLE_ENFORCE_EQ(var->IsType<LoDTensor>(), true,
                                     platform::errors::InvalidArgument(
                                         "Input variable should be LoDTensor, "
                                         "but the received type is %s.",
                                         ToTypeName(var->Type())));
X
Xin Pan 已提交
606 607 608 609 610
                   return &(var->Get<LoDTensor>());
                 });
  return res;
}

611
template <>
612
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
613
    const std::string& name) const {
H
hong 已提交
614 615 616
  auto vars = MultiOutputVar(name);

  if (vars.size() == 0) {
617 618
    return {};
  }
619
  std::vector<Tensor*> res;
620 621 622 623 624
  res.reserve(vars.size());
  std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                 [&](Variable* var) -> Tensor* {
                   return var == nullptr ? nullptr
                                         : var->GetMutable<LoDTensor>();
625
                 });
626 627 628
  return res;
}

Y
Yu Yang 已提交
629
bool OpSupportGPU(const std::string& op_type) {
H
hong 已提交
630
  // check in new Function kernel first
631
  bool has_phi_kernel = false;
632
  auto& kernel_factory = phi::KernelFactory::Instance();
H
hong 已提交
633
  auto kernel_key_map =
634
      kernel_factory.SelectKernelMap(phi::TransToPhiKernelName(op_type));
H
hong 已提交
635
  for (auto& kernel : kernel_key_map) {
636
    has_phi_kernel = true;
637
    if (platform::is_gpu_place(phi::TransToPhiPlace(kernel.first.backend()))) {
H
hong 已提交
638 639 640 641
      return true;
    }
  }

Y
Yu Yang 已提交
642 643
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
644 645 646 647 648 649 650 651 652 653 654 655 656
  if (it != all_kernels.end()) {
    for (auto& kern_pair : it->second) {
      if (platform::is_gpu_place(kern_pair.first.place_)) {
        return true;
      }
    }
  } else {
    if (has_phi_kernel) {
      // if has phi kernel, but not find phi gpu kernel and fluid gpu kernel,
      // this op doesn't support GPU
      return false;
    } else {
      // All control operator must support GPU
Y
Yu Yang 已提交
657 658 659
      return true;
    }
  }
H
hong 已提交
660

Y
Yu Yang 已提交
661 662 663
  return false;
}

664 665
class RuntimeInferShapeContext : public InferShapeContext {
 public:
666
  RuntimeInferShapeContext(const OperatorBase& op, const RuntimeContext& ctx)
G
Gabor Buella 已提交
667
      : op_(op), ctx_(ctx) {}
668 669

  bool HasInput(const std::string& name) const override {
670
    // has only one input
X
Xin Pan 已提交
671
    const auto& ins = ctx_.inputs;
672 673
    auto it = ins.find(name);
    if (it == ins.end()) {
674 675
      return false;
    }
676
    const auto& in = it->second;
X
Xin Pan 已提交
677
    if (in.size() == 0) return false;
678 679 680 681
    PADDLE_ENFORCE_EQ(
        in.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input %s should not contain more than one inputs.", name));
X
Xin Pan 已提交
682
    return in[0] != nullptr;
683 684 685
  }

  bool HasOutput(const std::string& name) const override {
686
    // has only one output
X
Xin Pan 已提交
687
    const auto& outs = ctx_.outputs;
688 689
    auto it = outs.find(name);
    if (it == outs.end()) {
690 691
      return false;
    }
692
    const auto& out = it->second;
X
Xin Pan 已提交
693
    if (out.size() == 0) {
694 695
      return false;
    }
696 697 698 699
    PADDLE_ENFORCE_EQ(
        out.size(), 1UL,
        platform::errors::InvalidArgument(
            "Output %s should not contain more than one outputs.", name));
X
Xin Pan 已提交
700
    return out[0] != nullptr;
701 702
  }

703 704 705 706
  bool HasAttr(const std::string& name) const override {
    return op_.HasAttr(name);
  }

707
  bool HasInputs(const std::string& name) const override {
X
Xin Pan 已提交
708 709
    const auto& ins = ctx_.inputs;
    auto it = ins.find(name);
X
fix  
Xin Pan 已提交
710
    if (it == ins.end() || it->second.empty()) {
711 712
      return false;
    }
X
Xin Pan 已提交
713 714
    for (auto& input : it->second) {
      if (input == nullptr) {
715 716 717 718 719 720 721
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
X
Xin Pan 已提交
722 723
    const auto& outs = ctx_.outputs;
    auto it = outs.find(name);
X
fix  
Xin Pan 已提交
724
    if (it == outs.end() || it->second.empty()) {
725 726
      return false;
    }
X
Xin Pan 已提交
727 728
    for (auto& output : it->second) {
      if (output == nullptr) {
729 730 731 732 733 734 735 736
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

H
hong 已提交
737
  std::vector<std::string> Inputs(const std::string& name) const override {
738 739 740
    return op_.Inputs(name);
  }

H
hong 已提交
741
  std::vector<std::string> Outputs(const std::string& name) const override {
742 743 744
    return op_.Outputs(name);
  }

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
  std::string GetInputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(idx, op_proto->inputs().size(),
                      platform::errors::OutOfRange(
                          "The index should be less than the size of inputs of "
                          "operator %s, but got index is %d and size is %d",
                          op_.Type(), idx, op_proto->inputs().size()));
    return op_proto->inputs()[idx].name();
  }

  std::string GetOutputNameByIdx(size_t idx) const override {
    auto& op_proto =
        paddle::framework::OpInfoMap::Instance().Get(op_.Type()).proto_;
    PADDLE_ENFORCE_LT(
        idx, op_proto->outputs().size(),
        platform::errors::OutOfRange(
            "The index should be less than the size of outputs of "
            "operator %s, but got index is %d and size is %d",
            op_.Type(), idx, op_proto->outputs().size()));
    return op_proto->outputs()[idx].name();
  }

768 769
  void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) override {
X
Xin Pan 已提交
770 771
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
788 789 790

    Variable* in_var = in_it->second[i];
    Variable* out_var = out_it->second[j];
791

792 793 794 795 796
    PADDLE_ENFORCE_EQ(
        in_var->Type(), out_var->Type(),
        platform::errors::InvalidArgument(
            "The type of input (%s) and output (%s) are inconsistent.", in,
            out));
797

798 799 800
    if (in_var->IsType<phi::SelectedRows>()) {
      auto& in_sele_rows = in_var->Get<phi::SelectedRows>();
      auto out_sele_rows = out_var->GetMutable<phi::SelectedRows>();
801 802 803 804 805 806 807 808
      out_sele_rows->mutable_value()->Resize(in_sele_rows.value().dims());
      out_sele_rows->set_rows(in_sele_rows.rows());
      out_sele_rows->set_height(in_sele_rows.height());
    } else if (in_var->IsType<framework::LoDTensor>()) {
      auto& in_lod_tensor = in_var->Get<framework::LoDTensor>();
      auto* out_lod_tensor = out_var->GetMutable<framework::LoDTensor>();
      out_lod_tensor->Resize(in_lod_tensor.dims());
    } else {
809
      PADDLE_THROW(platform::errors::Unimplemented(
810
          "Currently, the input type of ShareDim only can be LoDTensor "
811
          "or SelectedRows."));
812 813 814
    }
  }

H
hong 已提交
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
  void ShareAllLoD(const std::string& in,
                   const std::string& out) const override {
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
    PADDLE_ENFORCE_NE(in_it, ctx_.inputs.end(),
                      platform::errors::NotFound(
                          "Input [%s] found error in Op [%s]", in, op_.Type()));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output [%s] found error in Op [%s]", out,
                                   op_.Type()));

    auto& in_var_list = in_it->second;
    auto& out_var_list = out_it->second;

    PADDLE_ENFORCE_EQ(
        in_var_list.size(), out_var_list.size(),
        platform::errors::PreconditionNotMet(
T
tianshuo78520a 已提交
833
            "Op [%s]: Input var size should be equal with output var size",
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
            op_.Type()));

    auto& out_var_names = op_.Outputs(out);

    for (size_t i = 0; i < in_var_list.size(); ++i) {
      if (out_var_names[i] == framework::kEmptyVarName) {
        continue;
      }

      Variable* in_var = in_var_list[i];
      if (!in_var->IsType<LoDTensor>()) return;
      Variable* out_var = out_var_list[i];
      PADDLE_ENFORCE_EQ(out_var->IsType<LoDTensor>(), true,
                        platform::errors::PreconditionNotMet(
                            "The %d-th output of Output(%s) must be LoDTensor.",
                            i, out_var_names[i]));
      auto& in_tensor = in_var->Get<LoDTensor>();
      auto* out_tensor = out_var->GetMutable<LoDTensor>();
      out_tensor->set_lod(in_tensor.lod());
#ifdef PADDLE_WITH_MKLDNN
      if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
        out_tensor->set_layout(in_tensor.layout());
    }
  }

Q
Qiao Longfei 已提交
860 861
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
X
Xin Pan 已提交
862 863
    auto in_it = ctx_.inputs.find(in);
    auto out_it = ctx_.outputs.find(out);
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
    PADDLE_ENFORCE_NE(
        in_it, ctx_.inputs.end(),
        platform::errors::NotFound("Input %s does not exist.", in));
    PADDLE_ENFORCE_NE(
        out_it, ctx_.outputs.end(),
        platform::errors::NotFound("Output %s does not exist.", out));
    PADDLE_ENFORCE_LT(i, in_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of input dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          in_it->second.size(), i));
    PADDLE_ENFORCE_LT(j, out_it->second.size(),
                      platform::errors::InvalidArgument(
                          "The index of output dimension is out of range, "
                          "excepted index less than %zu, but received %zu.",
                          out_it->second.size(), j));
X
Xin Pan 已提交
880 881

    Variable* in_var = in_it->second.at(i);
Q
Qiao Longfei 已提交
882
    if (!in_var->IsType<LoDTensor>()) return;
X
Xin Pan 已提交
883
    Variable* out_var = out_it->second.at(j);
884 885 886 887
    PADDLE_ENFORCE_EQ(
        out_var->IsType<LoDTensor>(), true,
        platform::errors::InvalidArgument(
            "The %zu-th output of Output(%s) must be LoDTensor.", j, out));
888
    auto& in_tensor = in_var->Get<LoDTensor>();
Q
Qiao Longfei 已提交
889 890
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
891

M
mozga-intel 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
911 912
  }

913
  int32_t GetLoDLevel(const std::string& in, size_t i = 0) const override {
914
    PADDLE_THROW(platform::errors::PreconditionNotMet(
915
        "GetLoDLevel is only used in compile time. The calculation of "
916
        "output's actual lod is different among operators so that should be "
917
        "set in the runtime kernel."));
918 919
  }

920 921
  void SetLoDLevel(const std::string& out, int32_t lod_level,
                   size_t j = 0) const override {
922
    PADDLE_THROW(platform::errors::PreconditionNotMet(
923
        "SetLoDLevel is only used in compile time. The calculation of "
924
        "output's actual lod is different among operators so that should be "
925
        "set in the runtime kernel."));
C
chengduo 已提交
926 927
  }

928 929
  bool IsRuntime() const override { return true; }

930 931 932 933 934 935 936 937 938 939 940
  bool IsRunMKLDNNKernel() const override {
    try {
      auto& op_with_kernel = dynamic_cast<const OperatorWithKernel&>(op_);
      return ((op_with_kernel.kernel_type()) &&
              (op_with_kernel.kernel_type()->data_layout_ ==
               framework::DataLayout::kMKLDNN));
    } catch (std::bad_cast exp) {
      return false;
    }
  }

941 942
  // TODO(paddle-dev): Can this be template?
  std::vector<InferShapeVarPtr> GetInputVarPtrs(
943
      const std::string& name) const override {
944 945 946 947 948 949 950 951
    const std::vector<Variable*>& vars = InputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

  std::vector<InferShapeVarPtr> GetOutputVarPtrs(
952
      const std::string& name) const override {
953 954 955 956 957 958 959
    const std::vector<Variable*>& vars = OutputVars(name);
    std::vector<InferShapeVarPtr> res;
    res.reserve(vars.size());
    res.insert(res.begin(), vars.begin(), vars.end());
    return res;
  }

X
Xin Pan 已提交
960 961
  DDim GetInputDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
962 963 964 965 966
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument(
            "Input(%s) should hold one element, but now it holds %zu elements.",
            name, vars.size()));
X
Xin Pan 已提交
967 968 969 970 971 972 973 974
    return this->GetDim(vars[0]);
  }

  std::vector<DDim> GetInputsDim(const std::string& name) const override {
    const std::vector<Variable*>& vars = InputVars(name);
    return GetDims(vars);
  }

X
Xin Pan 已提交
975 976 977 978 979 980 981 982 983 984
  std::vector<proto::VarType::Type> GetInputsVarType(
      const std::string& name) const override {
    return GetVarTypes(InputVars(name));
  }

  std::vector<proto::VarType::Type> GetOutputsVarType(
      const std::string& name) const override {
    return GetVarTypes(OutputVars(name));
  }

X
Xin Pan 已提交
985 986
  void SetOutputDim(const std::string& name, const DDim& dim) override {
    auto& vars = OutputVars(name);
987 988 989 990 991
    PADDLE_ENFORCE_EQ(
        vars.size(), 1UL,
        platform::errors::InvalidArgument("Output(%s) should hold one element, "
                                          "but now it holds %zu elements.",
                                          name, vars.size()));
X
Xin Pan 已提交
992 993 994 995 996 997 998 999 1000
    SetDim(vars[0], dim);
  }

  void SetOutputsDim(const std::string& name,
                     const std::vector<DDim>& dims) override {
    auto& vars = OutputVars(name);
    SetDims(vars, dims);
  }

1001
 protected:
X
Xin Pan 已提交
1002
  DDim GetDim(Variable* var) const {
1003 1004
    PADDLE_ENFORCE_NOT_NULL(
        var, platform::errors::InvalidArgument("Input variable is nullptr."));
1005 1006
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
1007 1008
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().GetCompleteDims();
1009
    } else {
1010 1011 1012 1013
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Only LoDTensor or SelectedRows support 'GetDim', but input "
          "Variable's type is %s.",
          ToTypeName(var->Type())));
F
fengjiayi 已提交
1014 1015 1016
    }
  }

X
Xin Pan 已提交
1017 1018 1019 1020 1021 1022 1023 1024
  std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
    std::vector<DDim> ret;
    ret.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
                   [this](Variable* var) { return this->GetDim(var); });
    return ret;
  }

F
fengjiayi 已提交
1025
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
1026 1027
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GetRepeatedDims method only ban be used in compile time."));
1028 1029
  }

X
Xin Pan 已提交
1030
  void SetDim(Variable* var, const DDim& dim) {
1031 1032
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
1033 1034
    } else if (var->IsType<phi::SelectedRows>()) {
      var->GetMutable<phi::SelectedRows>()->set_height(dim[0]);
1035
    } else {
1036 1037 1038 1039
      PADDLE_THROW(platform::errors::Unimplemented(
          "Variable type error, expect LoDTensor or SelectedRows, but received "
          "(%s).",
          ToTypeName(var->Type())));
X
Xin Pan 已提交
1040 1041 1042 1043 1044 1045
    }
  }

  void SetDims(const std::vector<Variable*>& vars,
               const std::vector<DDim>& dims) {
    size_t length = vars.size();
1046 1047 1048 1049 1050 1051
    PADDLE_ENFORCE_EQ(length, dims.size(),
                      platform::errors::InvalidArgument(
                          "The number of input variables do not match the "
                          "number of input dimensions, the number of variables "
                          "is %zu, the number of dimensions is %zu.",
                          length, dims.size()));
X
Xin Pan 已提交
1052 1053 1054 1055 1056
    for (size_t i = 0; i < length; ++i) {
      if (vars[i] == nullptr) {
        continue;
      }
      SetDim(vars[i], dims[i]);
1057 1058 1059
    }
  }

F
fengjiayi 已提交
1060 1061
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
1062 1063
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "SetRepeatedDims method only can be used in compile time."));
F
fengjiayi 已提交
1064 1065
  }

X
Xin Pan 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
  std::vector<proto::VarType::Type> GetVarTypes(
      const std::vector<Variable*>& vars) const {
    std::vector<proto::VarType::Type> retv;
    retv.resize(vars.size());
    std::transform(vars.begin(), vars.end(), retv.begin(),
                   std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
                             this, std::placeholders::_1));
    return retv;
  }

  proto::VarType::Type GetVarType(Variable* var) const {
1077 1078 1079
    return ToVarType(var->Type());
  }

1080 1081 1082
 private:
  const std::vector<Variable*>& InputVars(const std::string& name) const {
    auto it = ctx_.inputs.find(name);
1083 1084 1085 1086
    PADDLE_ENFORCE_NE(
        it, ctx_.inputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the input (%s).", op_.Type(), name));
1087 1088 1089 1090 1091
    return it->second;
  }

  const std::vector<Variable*>& OutputVars(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
1092 1093 1094 1095
    PADDLE_ENFORCE_NE(
        it, ctx_.outputs.end(),
        platform::errors::NotFound(
            "Operator (%s) does not have the outputs (%s).", op_.Type(), name));
1096
    return it->second;
F
fengjiayi 已提交
1097 1098
  }

1099
  const OperatorBase& op_;
X
Xin Pan 已提交
1100
  const RuntimeContext& ctx_;
1101 1102
};

1103 1104
static void CheckTensorNANOrInf(const std::string& op_type,
                                const std::string& name,
C
chengduoZH 已提交
1105 1106 1107 1108
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
1109 1110
  if (framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP32 &&
      framework::TransToProtoVarType(tensor.dtype()) != proto::VarType::FP64) {
C
chengduoZH 已提交
1111 1112
    return;
  }
1113 1114 1115 1116 1117 1118 1119 1120
  PADDLE_ENFORCE_NE(
      framework::TensorContainsInf(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains Inf.",
                              op_type, name));
  PADDLE_ENFORCE_NE(
      framework::TensorContainsNAN(tensor), true,
      platform::errors::Fatal("Operator %s output Tensor %s contains NAN.",
                              op_type, name));
C
chengduoZH 已提交
1121 1122
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
bool OperatorWithKernel::SupportGPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::GPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_gpu_place(kern_pair.first.place_);
          });
    }
  }
}

bool OperatorWithKernel::SupportNPU() const {
  auto phi_kernels = phi::KernelFactory::Instance().SelectKernelMap(
      phi::TransToPhiKernelName(type_));
  auto has_phi_kernel =
      std::any_of(phi_kernels.begin(), phi_kernels.end(),
                  [](phi::KernelKeyMap::const_reference kern_pair) {
                    return kern_pair.first.backend() == phi::Backend::NPU;
                  });
  if (has_phi_kernel) {
    return true;
  } else {
    auto kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
    if (kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
      return false;
    } else {
      auto& op_kernels = kernel_iter->second;
      return std::any_of(
          op_kernels.begin(), op_kernels.end(),
          [](OpKernelMap::const_reference kern_pair) {
            return platform::is_npu_place(kern_pair.first.place_);
          });
    }
  }
}

1173 1174
bool OperatorWithKernel::SupportsMKLDNN(
    const proto::VarType::Type data_type) const {
1175 1176 1177 1178 1179 1180 1181 1182 1183
  auto op_kernel_iter = OperatorWithKernel::AllOpKernels().find(type_);
  if (op_kernel_iter == OperatorWithKernel::AllOpKernels().end()) {
    VLOG(6) << "Warning: " << type_ << " don't find its MKLDNN Kernel in Fluid "
                                       "Registered Kernels. And We don't "
                                       "search its kernels in phi lib, "
                                       "SupportsMKLDNN() return false.";
    return false;
  }
  auto& op_kernels = op_kernel_iter->second;
1184
  return std::any_of(op_kernels.begin(), op_kernels.end(),
1185
                     [data_type](OpKernelMap::const_reference kern_pair) {
1186 1187
                       return platform::is_cpu_place(kern_pair.first.place_) &&
                              kern_pair.first.library_type_ ==
1188 1189
                                  LibraryType::kMKLDNN &&
                              kern_pair.first.data_type_ == data_type;
1190 1191 1192
                     });
}

1193 1194
bool OperatorWithKernel::CanMKLDNNBeUsed(const framework::ExecutionContext& ctx,
                                         proto::VarType::Type data_type) const {
1195 1196 1197
  bool use_mkldnn_ctx = ctx.HasAttr("use_mkldnn") &&
                        ctx.Attr<bool>("use_mkldnn") &&
                        platform::is_cpu_place(ctx.GetPlace());
1198
  return use_mkldnn_ctx && this->SupportsMKLDNN(data_type);
1199 1200
}

1201 1202 1203 1204 1205 1206 1207
void OperatorWithKernel::InferShape(InferShapeContext* ctx) const {
  PADDLE_THROW(platform::errors::PermissionDenied(
      "The default InferShape function of OperatorWithKernel is not allowed to "
      "be called, please override corresponding InferShape function in the "
      "specific operator."));
}

B
baojun-nervana 已提交
1208
void OperatorWithKernel::RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
1209 1210
                                           const platform::Place& place,
                                           const RuntimeContext& ctx) const {
1211
  RuntimeInferShapeContext infer_shape_ctx(*this, ctx);
1212
  this->Info().infer_shape_(&infer_shape_ctx);
B
baojun-nervana 已提交
1213 1214
}

L
luotao1 已提交
1215 1216
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
L
luotao1 已提交
1217 1218
  // To reduce the elapsed time of HasAttr, we use bool variable to record the
  // result of HasAttr.
1219 1220 1221
  if (!enable_cache_runtime_context_ && HasAttr(kEnableCacheRuntimeContext))
    enable_cache_runtime_context_ = true;
  if (!all_kernels_must_compute_runtime_shape_ &&
L
luotao1 已提交
1222
      HasAttr(kAllKernelsMustComputeRuntimeShape))
1223
    all_kernels_must_compute_runtime_shape_ = true;
1224
  const Scope* cur_scope = &scope;
1225
  if (!enable_cache_runtime_context_) {
L
luotao1 已提交
1226 1227
    RuntimeContext ctx(Inputs(), Outputs(), scope);
    RunImpl(scope, place, &ctx);
1228
    pre_scope_ = cur_scope;
L
luotao1 已提交
1229
  } else {
1230 1231 1232 1233 1234 1235
    if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
      std::lock_guard<std::mutex> lock(cache_update_mutex_);
      if (runtime_ctx_.get() == nullptr || pre_scope_ != cur_scope) {
        runtime_ctx_.reset(new RuntimeContext(Inputs(), Outputs(), scope));
        pre_scope_ = cur_scope;
      }
L
luotao1 已提交
1236 1237 1238 1239 1240 1241 1242 1243
    }
    RunImpl(scope, place, runtime_ctx_.get());
  }
}

void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place,
                                 RuntimeContext* runtime_ctx) const {
Y
Yu Yang 已提交
1244
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
1245
  auto* dev_ctx = pool.Get(place);
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
#ifdef PADDLE_WITH_ASCEND_CL
  // NOTE(wangxi): nan/inf cannot be detected on NPU by checking the variable
  // values, but only through special `float_status` to checks whether
  // the operation is overflow. More about `float_status`, see:
  // https://gitee.com/ascend/modelzoo/issues/I3NF8V?from=project-issue
  if (FLAGS_check_nan_inf) {
    framework::details::NPUAllocAndClearFloatStatus(*this, scope, place);
  }
#endif

1257
  auto exe_ctx = ExecutionContext(*this, scope, *dev_ctx, *runtime_ctx);
1258 1259 1260 1261
  // using cache
  if (kernel_type_.get()) {
    dev_ctx = pool.Get(kernel_type_->place_);
  }
1262 1263 1264 1265 1266 1267

  // TODO(chenweihang): Now we are still reusing a lot of the original fluid
  // implementation, this is a gradual replacement process
  // TODO(chenweihang): in the first phase of project, we only support CPU, CUDA
  // and RCOM backend, the XPU, NPU and MKLDNN will be supported in the second
  // phase
1268
  phi::KernelKey pt_kernel_key;
1269
  std::string pt_kernel_name;
1270
  if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(type_)) {
1271
    if (pt_kernel_signature_ == nullptr || pt_kernel_ == nullptr) {
1272
      pt_kernel_signature_.reset(
1273
          new KernelSignature(std::move(GetExpectedPhiKernelArgs(exe_ctx))));
1274 1275 1276 1277 1278 1279 1280
      VLOG(6) << *pt_kernel_signature_.get();

      kernel_type_.reset(
          new OpKernelType(std::move(InnerGetExpectedKernelType(exe_ctx))));
      dev_ctx = pool.Get(kernel_type_->place_);

      pt_kernel_name = pt_kernel_signature_->name;
1281
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1282
      pt_kernel_.reset(
1283
          new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1284 1285 1286
              pt_kernel_name, pt_kernel_key)));

      if (pt_kernel_->IsValid()) {
1287
        VLOG(6) << "Static mode ChoosePhiKernel - kernel name: "
1288 1289 1290
                << pt_kernel_name << " | kernel key: " << pt_kernel_key
                << " | kernel: " << *pt_kernel_;
      } else {
1291
        VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1292 1293
                << "` not found.";
      }
1294 1295
    } else {
      pt_kernel_name = pt_kernel_signature_->name;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
// NOTE(Liu-xiandong): The register kernel used KP have library_type[KP],
// But the default library_type is Plain, so we need to modify the
// library_type here, otherwise it can't work.
#ifdef PADDLE_WITH_XPU_KP
      if (paddle::platform::is_xpu_place(kernel_type_->place_)) {
        bool use_xpu_kp_kernel_rt =
            FLAGS_run_kp_kernel &&
            paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
        bool use_xpu_kp_kernel_debug =
            paddle::platform::is_in_xpu_kpwhite_list(type_);
        if (use_xpu_kp_kernel_rt) {
          VLOG(3) << "phi xpu_kp using rt mode in static graph";
        }
        if (use_xpu_kp_kernel_debug) {
          VLOG(3) << "phi xpu_kp using debug mode in static graph";
        }
        bool is_xpu_kp_support =
            (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
        if (is_xpu_kp_support) {
          auto expected_kernel_key_library_type = kernel_type_->library_type_;
          kernel_type_->library_type_ = LibraryType::kKP;
          VLOG(3) << "modifing XPU KP kernel in static graph: " << type_
                  << ", using_kernel_key:" << *kernel_type_.get();
          auto try_pt_kernel_key =
              TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
          if (!phi::KernelFactory::Instance().IsSelectKernelValid(
                  pt_kernel_name, try_pt_kernel_key)) {
            kernel_type_->library_type_ = expected_kernel_key_library_type;
            VLOG(3) << "modify XPU KP kernel in static graph: " << type_
                    << " is failed " << *kernel_type_.get();
          }
        }
      }
#endif
1330
      pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1331
    }
1332 1333 1334 1335 1336

// NOTE(Liu-xiandong): Determine whether the selected kernel is valid
// If not, use the kernel registered in fluid. And if the fluid do not
// contains the related heterogeneous kernel, use phi CPU kernel.
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1337 1338 1339 1340 1341 1342
    bool is_xpu_unsupport =
        paddle::platform::is_xpu_place(kernel_type_->place_) &&
            !paddle::platform::is_xpu_support_op(type_, *kernel_type_.get()) ||
        paddle::platform::is_in_xpu_black_list(type_);
#endif
    if (pt_kernel_->IsValid()
1343
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1344 1345 1346
        && !is_xpu_unsupport
#endif
        ) {
1347
      run_phi_kernel_ = true;
1348 1349 1350
    } else {
      auto& all_op_kernels = AllOpKernels();
      auto kernels_iter = all_op_kernels.find(type_);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369

// NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi,
// we need to select the heterogeneous kernel in fluid, but the kernel
// registered in KP use library_type[KP], we need to modify it.
#ifdef PADDLE_WITH_XPU_KP
      bool use_xpu_kp_kernel_rt =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          FLAGS_run_kp_kernel &&
          paddle::platform::is_xpu_kp_support_op(type_, *kernel_type_);
      bool use_xpu_kp_kernel_debug =
          paddle::platform::is_xpu_place(kernel_type_->place_) &&
          paddle::platform::is_in_xpu_kpwhite_list(type_);
      bool is_xpu_kp_support =
          (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
      if (is_xpu_kp_support) {
        kernel_type_->library_type_ = LibraryType::kKP;
      }
#endif

1370 1371 1372
      if (kernels_iter == all_op_kernels.end() ||
          kernels_iter->second.find(*kernel_type_.get()) ==
              kernels_iter->second.end()
1373
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1374
          || is_xpu_unsupport
1375
#endif
1376
          ) {
1377 1378 1379
        auto pt_cpu_kernel_key =
            FallBackToCpu(*kernel_type_.get(), pt_kernel_key, *this);
        pt_kernel_.reset(
1380
            new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
1381 1382 1383 1384 1385 1386 1387
                pt_kernel_name, pt_cpu_kernel_key)));

        dev_ctx = pool.Get(platform::CPUPlace());
        if (pt_kernel_->IsValid()) {
          VLOG(6) << "Static mode PrepareImpl - kernel name: " << pt_kernel_name
                  << " | kernel key: " << pt_cpu_kernel_key
                  << " | kernel: " << *pt_kernel_;
1388
          run_phi_kernel_ = true;
1389 1390
        }
      }
1391 1392
    }
  }
1393
  if (!run_phi_kernel_) {
1394 1395
    if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
      ChooseKernel(exe_ctx);
1396
      dev_ctx = pool.Get(kernel_type_->place_);
1397
    }
1398 1399
  }

Y
yuyang18 已提交
1400 1401
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
1402 1403
  Scope* transfer_scope = nullptr;
  {
1404
    platform::RecordEvent record_event("prepare_data",
C
chenjian 已提交
1405 1406
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1407 1408 1409 1410
    if (need_prepare_data_) {
      transfer_scope = PrepareData(scope, *kernel_type_,
                                   &transfered_inplace_vars, runtime_ctx);
    }
1411
  }
Y
yuyang18 已提交
1412 1413 1414 1415
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

1416
  if (!all_kernels_must_compute_runtime_shape_) {
1417
    platform::RecordEvent record_event("infer_shape",
C
chenjian 已提交
1418 1419
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1420
    RuntimeInferShapeContext infer_shape_ctx(*this, *runtime_ctx);
1421
    this->Info().infer_shape_(&infer_shape_ctx);
1422
  }
1423 1424 1425 1426 1427

  if (FLAGS_enable_unused_var_check) {
    GetThreadLocalUsedVarNameSet()->clear();
  }

X
clean  
Xin Pan 已提交
1428 1429
  // TODO(panyx0718): ExecutionContext should only depend on RuntimeContext
  // not Scope. Imperative mode only pass inputs and get outputs.
1430
  {
1431
    platform::RecordEvent record_event("compute",
C
chenjian 已提交
1432 1433
                                       platform::TracerEventType::OperatorInner,
                                       1, platform::EventRole::kInnerOp);
1434
    if (run_phi_kernel_) {
1435
      phi::KernelContext pt_kernel_context;
1436
      // Do data transform before building KernelContext
1437
      // TODO(zhiqiu): support TransferInplaceVarsBack
1438 1439 1440
      PreparePhiData(exec_scope, *pt_kernel_, *pt_kernel_signature_,
                     runtime_ctx);
      BuildPhiKernelContext(*runtime_ctx, dev_ctx, &pt_kernel_context);
1441
      (*pt_kernel_)(&pt_kernel_context);
1442 1443 1444 1445
    } else {
      (*kernel_func_)(
          ExecutionContext(*this, exec_scope, *dev_ctx, *runtime_ctx));
    }
1446
  }
D
dzhwinter 已提交
1447

Y
yuyang18 已提交
1448
  if (!transfered_inplace_vars.empty()) {
T
tianshuo78520a 已提交
1449
    // there is inplace variable has been transferred.
Y
yuyang18 已提交
1450
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
1451
  }
1452 1453 1454 1455 1456 1457 1458

  // See [ Why need handle complex gradient to real gradient? ]
  // Only handle the case where the current kernel data type is complex
  if (framework::IsComplexType(kernel_type_->data_type_)) {
    HandleComplexGradToRealGrad(scope, runtime_ctx);
  }

1459 1460 1461 1462 1463 1464 1465 1466
  if (FLAGS_enable_unused_var_check) {
    // skip op that uses mkldnn because it has different memory reuse strategy.
    // use attr here because some GradMakers (like ActivationGradOpMaker) add
    // input when use_mkldnn=true;
    if (!(HasAttr("use_mkldnn") && Attr<bool>("use_mkldnn"))) {
      CheckUnusedVar(*this, scope);
    }
  }
1467

D
dzhwinter 已提交
1468
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
1469
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
1470
    dev_ctx->Wait();
1471 1472
#if defined(PADDLE_WITH_CUDA) || defined(PADLDE_WITH_ROCM)
    PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError());
1473 1474
#endif
    VLOG(4) << "Operator(" << Type() << "): context wait and get last error";
D
dzhwinter 已提交
1475
  }
C
chengduoZH 已提交
1476 1477

  if (FLAGS_check_nan_inf) {
W
WangXi 已提交
1478
    framework::details::CheckOpHasNanOrInf(*this, exec_scope, place);
C
chengduoZH 已提交
1479
  }
1480 1481 1482 1483 1484 1485 1486

  // To solve issue #15032, have a discussion with @Luotao for cpu inference,
  // do not cache transfer scope, hence in this case delete transfer scope
  // after run to avoid memory leak
  if (transfer_scope && !run_by_executor_ && !enable_cache_transfer_scope_) {
    scope.DeleteScope(transfer_scope);
  }
Q
Qiao Longfei 已提交
1487
}
X
Xin Pan 已提交
1488

1489 1490 1491
OpKernelType OperatorWithKernel::InnerGetExpectedKernelType(
    const ExecutionContext& ctx) const {
  auto expected_kernel_key = this->GetExpectedKernelType(ctx);
1492 1493 1494
  if (HasAttr("op_device")) {
    if (Attr<std::string>("op_device") == "cpu") {
      expected_kernel_key.place_ = platform::CPUPlace();
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    } else if (Attr<std::string>("op_device").find("gpu") !=
               std::string::npos) {
      auto device = Attr<std::string>("op_device");
      size_t pos = device.find(':');
      if (pos != std::string::npos) {
        device = device.substr(0, pos);
        LOG_FIRST_N(WARNING, 1)
            << "Device index is only supported under pipeline parallelism, "
            << "so it will be ignored.";
      }
1505 1506
      // when the Op that only has CPUKernel is assigned to GPU, the CPUKernel
      // will be executed and a warning will be given at the same time.
1507 1508
      expected_kernel_key.place_ = platform::CPUPlace();
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1509
      if (SupportGPU()) {
1510
        auto& dev_ctx = ctx.device_context();
1511
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1512 1513 1514 1515 1516
      }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
      if (SupportNPU()) {
        auto& dev_ctx = ctx.device_context();
1517
        expected_kernel_key.place_ = dev_ctx.GetPlace();
1518 1519 1520
      }
#endif
      if (platform::is_cpu_place(expected_kernel_key.place_)) {
1521 1522 1523 1524 1525 1526
        LOG_FIRST_N(WARNING, 1)
            << "Op(" << type_
            << ") has no CUDA implementation. It will be assigned to CPUPlace.";
      }
    }
  }
C
cc 已提交
1527 1528
  VLOG(3) << "op type:" << type_
          << ", expected_kernel_key:" << expected_kernel_key;
1529 1530 1531
  return expected_kernel_key;
}

1532
phi::KernelKey OperatorWithKernel::ChoosePhiKernel(
1533
    const ExecutionContext& ctx) const {
1534
  pt_kernel_signature_.reset(
1535
      new KernelSignature(std::move(GetExpectedPhiKernelArgs(ctx))));
1536
  VLOG(6) << *pt_kernel_signature_.get();
1537 1538 1539 1540

  kernel_type_.reset(
      new OpKernelType(std::move(InnerGetExpectedKernelType(ctx))));

Y
YuanRisheng 已提交
1541
  auto pt_kernel_name = pt_kernel_signature_->name;
1542
  auto pt_kernel_key = TransOpKernelTypeToPhiKernelKey(*kernel_type_.get());
1543 1544
  pt_kernel_.reset(new phi::Kernel(phi::KernelFactory::Instance().SelectKernel(
      pt_kernel_name, pt_kernel_key)));
1545 1546

  if (pt_kernel_->IsValid()) {
1547
    VLOG(6) << "Static mode ChoosePhiKernel - kernel name: " << pt_kernel_name
1548 1549 1550
            << " | kernel key: " << pt_kernel_key
            << " | kernel: " << *pt_kernel_;
  } else {
1551
    VLOG(6) << "Static mode ChoosePhiKernel - kernel `" << pt_kernel_name
1552 1553
            << "` not found.";
  }
1554
  return pt_kernel_key;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
}

void OperatorWithKernel::ChooseKernel(const ExecutionContext& ctx) const {
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  PADDLE_ENFORCE_NE(
      kernels_iter, all_op_kernels.end(),
      platform::errors::Unavailable(
          "There are no kernels which are registered in the %s operator.",
          type_));

  OpKernelMap& kernels = kernels_iter->second;

  auto expected_kernel_key = InnerGetExpectedKernelType(ctx);
L
Liu Yiqun 已提交
1570 1571

  auto kernel_iter = kernels.find(expected_kernel_key);
L
Liu-xiandong 已提交
1572

L
Liu Yiqun 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581
#ifdef PADDLE_WITH_MKLDNN
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
1582
#endif
1583 1584

#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
1585
  if (platform::is_xpu_place(expected_kernel_key.place_) &&
Q
QingshuChen 已提交
1586 1587 1588
      (kernel_iter == kernels.end() ||
       !paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
       paddle::platform::is_in_xpu_black_list(type_))) {
1589 1590 1591 1592 1593 1594
    VLOG(3) << "missing XPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
1595
#endif
L
Liu-xiandong 已提交
1596 1597

#ifdef PADDLE_WITH_XPU_KP
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
  if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) {
    bool use_xpu_kp_kernel_rt =
        FLAGS_run_kp_kernel &&
        paddle::platform::is_xpu_kp_support_op(type_, expected_kernel_key);
    bool use_xpu_kp_kernel_debug =
        paddle::platform::is_in_xpu_kpwhite_list(type_);
    if (use_xpu_kp_kernel_rt) {
      VLOG(3) << "xpu_kp using rt mode ";
    }
    if (use_xpu_kp_kernel_debug) {
      VLOG(3) << "xpu_kp using debug mode ";
    }
    bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug);
    if (is_xpu_kp_support) {
1612 1613
      auto cache_expected_kernel_key_library_type =
          expected_kernel_key.library_type_;
1614 1615
      expected_kernel_key.library_type_ = LibraryType::kKP;
      kernel_iter = kernels.find(expected_kernel_key);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
      // if can't find corresponding kernel when is_xpu_kp_support is on
      // if the fluid do not register related kernel, it can't work and hava
      // error as before
      if (kernel_iter == kernels.end()) {
        expected_kernel_key.library_type_ =
            cache_expected_kernel_key_library_type;
        expected_kernel_key.place_ = platform::CPUPlace();
        kernel_iter = kernels.find(expected_kernel_key);
      } else {
        VLOG(3) << "using XPU KP kernel: " << type_
                << ", using_kernel_key:" << expected_kernel_key;
      }
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    }
    bool is_xpu_unsupport =
        (!paddle::platform::is_xpu_support_op(type_, expected_kernel_key) ||
         paddle::platform::is_in_xpu_black_list(type_));
    if (!is_xpu_kp_support &&
        (kernel_iter == kernels.end() || is_xpu_unsupport)) {
      VLOG(3) << "missing XPU kernel: " << type_
              << ", expected_kernel_key:" << expected_kernel_key
              << ", fallbacking to CPU one!";
      expected_kernel_key.place_ = platform::CPUPlace();
      kernel_iter = kernels.find(expected_kernel_key);
    }
L
Liu-xiandong 已提交
1640 1641 1642
  }
#endif

A
Allen Guo 已提交
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
#ifdef PADDLE_WITH_IPU
  if (kernel_iter == kernels.end() &&
      platform::is_ipu_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing IPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
1653 1654
#ifdef PADDLE_WITH_ASCEND_CL
  if (kernel_iter == kernels.end() &&
1655
      platform::is_npu_place(expected_kernel_key.place_)) {
1656 1657 1658 1659 1660 1661
    VLOG(3) << "missing NPU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
F
fwenguang 已提交
1662 1663 1664
#endif
#ifdef PADDLE_WITH_MLU
  if (kernel_iter == kernels.end() &&
1665
      platform::is_mlu_place(expected_kernel_key.place_)) {
F
fwenguang 已提交
1666 1667 1668
    VLOG(3) << "missing MLU kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  if (kernel_iter == kernels.end() &&
      platform::is_custom_place(expected_kernel_key.place_)) {
    VLOG(3) << "missing " << expected_kernel_key.place_.GetDeviceType()
            << " kernel: " << type_
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
F
fwenguang 已提交
1680 1681 1682
    expected_kernel_key.place_ = platform::CPUPlace();
    kernel_iter = kernels.find(expected_kernel_key);
  }
L
Liu Yiqun 已提交
1683
#endif
1684 1685 1686 1687
  PADDLE_ENFORCE_NE(kernel_iter, kernels.end(),
                    platform::errors::NotFound(
                        "Operator (%s) does not have kernel for %s.", type_,
                        KernelTypeToString(expected_kernel_key)));
L
Liu Yiqun 已提交
1688

1689 1690 1691 1692 1693
  std::lock_guard<std::mutex> lock(cache_update_mutex_);
  if (kernel_type_.get() == nullptr || kernel_func_.get() == nullptr) {
    kernel_type_.reset(new OpKernelType(expected_kernel_key));
    kernel_func_.reset(new OpKernelFunc(kernel_iter->second));
  }
L
Liu Yiqun 已提交
1694 1695
}

Y
yuyang18 已提交
1696 1697 1698 1699
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
M
minqiyang 已提交
1700
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
C
chengduo 已提交
1701
    auto* origin_var = scope.FindVar(var_name);
1702 1703 1704
    PADDLE_ENFORCE_NOT_NULL(origin_var,
                            platform::errors::InvalidArgument(
                                "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1705
    auto* original_tensor =
C
chengduo 已提交
1706
        GetMutableLoDTensorOrSelectedRowsValueFromVar(origin_var);
C
chengduo 已提交
1707
    auto* var = transfer_scope.FindVar(var_name);
1708 1709
    PADDLE_ENFORCE_NOT_NULL(var, platform::errors::InvalidArgument(
                                     "The variable[%s] is nullptr.", var_name));
C
chengduo 已提交
1710
    auto* transformed_tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1711
    auto original_dims = original_tensor->dims();
Y
yuyang18 已提交
1712
    original_tensor->ShareDataWith(*transformed_tensor);
B
Baibaifan 已提交
1713 1714 1715 1716 1717
    // In order to solve the problem that the output latitude of NPU reshape
    // operator is not changed when inplace.
    if (type_ != "reshape2" && type_ != "reshape2_grad") {
      original_tensor->Resize(original_dims);
    }
Y
yuyang18 已提交
1718 1719 1720
  }
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
void OperatorWithKernel::HandleComplexGradToRealGrad(
    const Scope& scope, RuntimeContext* ctx) const {
  for (auto& var_name_item : Outputs()) {
    std::vector<Variable*>& output_vars = ctx->outputs[var_name_item.first];
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        continue;
      }
      auto* grad_var = output_vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!VarIsTensor(*grad_var)) {
        continue;
      }
      auto* grad_tensor =
          GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        continue;
      }
      // only focus on complex dtype now
1750
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
      if (!IsComplexType(src_type)) {
        continue;
      }

      // 2. find forward var & check whether need to cast
      auto* var = scope.FindVar(orig_var_name);
      // if forward var not exists, do nothing
      if (var == nullptr) {
        continue;
      }
      if (!VarIsTensor(*var)) {
        continue;
      }
      const auto* tensor = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
1770
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
      // only focus on real dtype and need casting
      if (IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad
      VLOG(6) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";
      Tensor out;
      TransComplexToReal(dst_type, src_type, *grad_tensor, &out);
      SetTensorToVariable(*grad_var, out, grad_var);
    }
  }
}

X
Xin Pan 已提交
1788
Scope* OperatorWithKernel::PrepareData(
Y
yuyang18 已提交
1789
    const Scope& scope, const OpKernelType& expected_kernel_key,
X
Xin Pan 已提交
1790 1791
    std::vector<std::string>* transfered_inplace_vars,
    RuntimeContext* ctx) const {
Y
yuyang18 已提交
1792
  Scope* new_scope = nullptr;
S
sneaxiy 已提交
1793

1794
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
S
sneaxiy 已提交
1795 1796 1797 1798
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
1799 1800
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
S
sneaxiy 已提交
1801 1802 1803
    }
  }

Y
yuyang18 已提交
1804
  for (auto& var_name_item : Inputs()) {
1805 1806
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;
S
sneaxiy 已提交
1807

X
Xin Pan 已提交
1808 1809 1810 1811
    std::vector<Variable*>& input_vars = ctx->inputs[var_name_item.first];

    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto& var_name = var_name_item.second[i];
X
Xin Pan 已提交
1812
      auto* var = input_vars[i];
X
Xin Pan 已提交
1813

Y
yuyang18 已提交
1814
      // Only tensor can be tranfer to another device.
C
chengduo 已提交
1815
      if (var == nullptr || !VarIsTensor(*var)) {
Y
yuyang18 已提交
1816 1817 1818
        continue;
      }

C
chengduo 已提交
1819
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
        // Var without buffer may be needed
        // for some situation like InferShape().
        // In this situation We cannot skip Var analysis, as
        // MKL-DNN shape of Var may differ from kNHWC Var
        // In such situation corressponding resized Var
        // has to be created and registered
        if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
            (var->IsType<LoDTensor>() == true) &&
            (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
1835 1836
            (paddle::platform::MKLDNNDeviceContext::tls()
                 .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
          // Mixed execution : MKL-DNN and GPU is not supported!
          if (!new_scope) {
            new_scope = &scope.NewScope();
          }
          auto* trans_var = new_scope->Var(var_name);
          input_vars[i] = trans_var;
          auto out = trans_var->GetMutable<LoDTensor>();
          out->Resize(tensor_in->dims());
          platform::MatchShapeToLayout(out, tensor_in->layout(),
                                       DataLayout::kNHWC);
          VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                     "but kNHWC layout"
                  << var_name_item.first << " in Operator " << type_;
        } else {
          VLOG(7) << "Skip scanning input " << var_name_item.first
                  << " in Operator " << type_;
        }
#endif
        continue;
      }

Y
yuyang18 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

M
minqiyang 已提交
1869 1870
      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;
Y
yuyang18 已提交
1871

1872 1873 1874
      // In the inference scenerio, the scopes will be reused across the
      // batches, so the `new_scope` here will result in GPU memroy explosion
      // over the  running of operators.
1875
      // We use a thread_local cache to fix that issue, the key in the cache is
1876 1877 1878 1879 1880
      // the combination of the `scope` argument, from_kernel_type,
      // target_kernel_type.
      // Have a discussion with @Superjomn or the inference developers if some
      // changes on this logic for this macro might not tested on the other
      // scenerios.
1881 1882
      // If this op is not called by an Executor or ParallelExecutor, it should
      // called by a NaiveExecutor, the NaiveExecutor will cache the scopes and
1883
      // variables, that behavior a lot different.
1884 1885 1886 1887 1888 1889 1890 1891 1892
      //
      // To solve issue #15032, have a discussion with @Luotao for cpu
      // inference, for all cpu kernels cases without GPU participation, here
      // not do transfer scope caching, and cpu inference performance is not
      // impacted by test.
      enable_cache_transfer_scope_ = false;
      if (!run_by_executor_ &&
          (platform::is_gpu_place(kernel_type_for_var.place_) ||
           platform::is_gpu_place(expected_kernel_key.place_))) {
1893 1894
        new_scope = TryCreateTransferScope(kernel_type_for_var,
                                           expected_kernel_key, &scope);
1895
        enable_cache_transfer_scope_ = true;
1896
      }
1897
      if (!new_scope) {
Y
yuyang18 已提交
1898 1899
        new_scope = &scope.NewScope();
      }
1900 1901 1902 1903
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
1904
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
1905 1906
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
1907
      if (enable_cache_runtime_context_) {
1908 1909
        pre_scope_ = nullptr;
      }
L
Leo Chen 已提交
1910 1911

      // Create new var with the same name in transfer scopes
Y
yuyang18 已提交
1912
      auto* trans_var = new_scope->Var(var_name);
X
fix  
Xin Pan 已提交
1913
      input_vars[i] = trans_var;
L
Leo Chen 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930

      // Find if inplace exists between input and output
      // If inplace exists, set the new created var to inplaced output, and
      // record its name in transfered_inplace_vars.
      for (auto& pair : Outputs()) {
        for (size_t j = 0; j < pair.second.size(); ++j) {
          if (pair.second[j] == var_name) {
            VLOG(4) << "Found inplace between input(" << var_name_item.first
                    << ") and output(" << pair.first
                    << "), the variable name is " << var_name;
            ctx->outputs[pair.first][j] = trans_var;
            transfered_inplace_vars->emplace_back(var_name);
          }
        }
      }

      // Do transfer
Y
yuyang18 已提交
1931
      Tensor out;
Y
yuyang18 已提交
1932
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
1933 1934 1935
      SetTensorToVariable(*var, out, trans_var);
    }
  }
L
Leo Chen 已提交
1936

1937 1938 1939 1940 1941 1942
  // If pre_scope = &scope, it means that scope is cached and the op is not in
  // while block. If new_scope = nullptr, it means that for each input of this
  // Op, there is no need to do PrepareData. So PrepareData could be skipped at
  // the rest iterations to save the elapsed time.
  // We do not support skipping PrepareData in while block, because the Op's
  // input may be changed by subsequent Ops, which may cause an error.
W
wenbin 已提交
1943 1944 1945 1946 1947 1948

  // For inference, ops that behind conditional branch aren't supported well,
  // so disable prepare optimization conservatively.
  bool force_prepare_data = HasAttr("inference_force_prepare_data") &&
                            Attr<bool>("inference_force_prepare_data");
  if (pre_scope_ == &scope && new_scope == nullptr && !force_prepare_data) {
1949 1950
    need_prepare_data_ = false;
  }
Y
yuyang18 已提交
1951 1952 1953

  return new_scope;
}
Q
Qiao Longfei 已提交
1954

1955
void OperatorWithKernel::ParseInputDataType(
1956
    const std::vector<Variable*>& vars, const std::string& name,
1957
    proto::VarType::Type* data_type) const {
1958
  proto::VarType::Type default_data_type =
1959 1960 1961 1962 1963 1964 1965 1966 1967
      static_cast<proto::VarType::Type>(-1);
  for (size_t i = 0; i < vars.size(); ++i) {
    const Variable* var = vars[i];
    if (var != nullptr) {
      const Tensor* t = nullptr;
      if (var->IsType<Tensor>()) {
        t = &var->Get<Tensor>();
      } else if (var->IsType<LoDTensor>()) {
        t = &var->Get<LoDTensor>();
1968 1969
      } else if (var->IsType<phi::SelectedRows>()) {
        t = &(var->Get<phi::SelectedRows>().value());
1970
      } else if (var->IsType<LoDTensorArray>()) {
1971 1972 1973 1974
        auto t_arr = &var->Get<LoDTensorArray>();
        for (size_t j = 0; j < t_arr->size(); j++) {
          if (t_arr->at(j).IsInitialized()) {
            t = &(t_arr->at(j));
1975 1976
          }
        }
1977 1978
      }
      if (t != nullptr) {
1979 1980
        PADDLE_ENFORCE_EQ(
            t->IsInitialized(), true,
1981 1982 1983
            platform::errors::InvalidArgument("The %s Op's Input Variable `%s` "
                                              "contains uninitialized Tensor.",
                                              Type(), name));
1984 1985
        proto::VarType::Type tmp =
            paddle::framework::TransToProtoVarType(t->dtype());
1986 1987 1988 1989 1990 1991 1992 1993 1994
        PADDLE_ENFORCE(tmp == *data_type || *data_type == default_data_type,
                       platform::errors::InvalidArgument(
                           "The DataType of %s Op's duplicable or different "
                           "slot Variable %s must be "
                           "consistent or reigster GetExpectedKernelType. The "
                           "current variable type is (%s), but the "
                           "previous variable type is (%s).",
                           Type(), name, DataTypeToString(tmp),
                           DataTypeToString(*data_type)));
1995 1996 1997 1998 1999 2000
        *data_type = tmp;
      }
    }
  }
}

2001
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
2002
    const ExecutionContext& ctx) const {
2003 2004 2005
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
H
hong 已提交
2006
  for (auto& input : ctx.InNameList()) {
2007 2008
    const std::vector<Variable*> vars = ctx.MultiInputVar(input);
    ParseInputDataType(vars, input, &data_type);
Y
Yu Yang 已提交
2009
  }
2010 2011 2012 2013
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
      platform::errors::NotFound(
          "DataType should be indicated by input Variable at %s.", Type()));
2014 2015 2016 2017 2018 2019 2020 2021
  return data_type;
}

proto::VarType::Type OperatorWithKernel::IndicateVarDataType(
    const ExecutionContext& ctx, const std::string& name) const {
  proto::VarType::Type dafault_data_type =
      static_cast<proto::VarType::Type>(-1);
  proto::VarType::Type data_type = dafault_data_type;
2022
  ParseInputDataType(ctx.MultiInputVar(name), name, &data_type);
2023 2024
  PADDLE_ENFORCE_NE(
      data_type, dafault_data_type,
2025 2026 2027 2028 2029
      platform::errors::InvalidArgument(
          "The Input Variable(%s) of (%s) Operator used to determine kernel "
          "data type is empty or not LoDTensor or SelectedRows or "
          "LoDTensorArray.",
          name, Type()));
2030
  return data_type;
Y
Yu Yang 已提交
2031
}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
Tensor* OperatorWithKernel::GetTensorFormInputSafely(
    const ExecutionContext& ctx, const std::string& name) const {
  // 1. get variable and check
  // NOTE: only supports signal input var now
  // NOTE: using const_cast is because we don't have method
  // can get single mutable var, and here will not change
  // the var's data, only use some attribute
  Variable* var = const_cast<Variable*>(ctx.InputVar(name));
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound(
          "The variable %s is not found when promote complex types.", name));
  // 2. get tensor and check
  Tensor* t = nullptr;
  if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
  } else if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
2051 2052
  } else if (var->IsType<phi::SelectedRows>()) {
    t = var->GetMutable<phi::SelectedRows>()->mutable_value();
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported input variable type in complex type promotion."));
  }
  PADDLE_ENFORCE_NOT_NULL(
      t,
      platform::errors::InvalidArgument(
          "The Tensor of variable %s is nullptr when promote complex types."));
  PADDLE_ENFORCE_EQ(t->IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "The Tensor in the %s Op's Input Variable %s(%s) is "
                        "not initialized.",
                        Type(), name, ctx.InputName(name)));
  return t;
}

/** NOTE(chenweihang): For safety reasons, we now only
 * perform type promotes for binary operations with
 * complex type inputs, which is used to support the
 * paddle quantum function.
 * In other cases, the first input data type is used as
 * the kernel data type.
 */
proto::VarType::Type OperatorWithKernel::IndicateOrPromoteVarDataTypes(
    const ExecutionContext& ctx, const std::string& name1,
    const std::string& name2) const {
  // 1. Get tensor
  auto* tensor_a = GetTensorFormInputSafely(ctx, name1);
  auto* tensor_b = GetTensorFormInputSafely(ctx, name2);

  // 2. Get two input types
2084 2085
  auto type_a = framework::TransToProtoVarType(tensor_a->dtype());
  auto type_b = framework::TransToProtoVarType(tensor_b->dtype());
2086 2087 2088 2089 2090 2091 2092

  // 3. Get first input type or promote complex types
  auto target_type = PromoteTypesIfComplexExists(type_a, type_b);

  return target_type;
}

2093 2094 2095 2096 2097 2098 2099 2100
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
2101 2102
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
2103 2104
}

2105
KernelSignature OperatorWithKernel::GetExpectedPhiKernelArgs(
2106
    const ExecutionContext& ctx) const {
2107 2108
  InitDefaultKernelSignatureMap();
  ExecutionArgumentMappingContext arg_mapping_ctx(ctx);
2109
  return phi::OpUtilsMap::Instance().GetArgumentMappingFn(Type())(
2110
      arg_mapping_ctx);
2111 2112
}

2113
Scope* OperatorWithKernel::PreparePhiData(
2114
    const Scope& scope, const phi::Kernel& pt_kernel,
2115 2116 2117 2118 2119 2120 2121 2122 2123
    const KernelSignature& pt_kernel_signature, RuntimeContext* ctx) const {
  auto& input_names = std::get<0>(pt_kernel_signature.args);
  auto input_defs = pt_kernel.args_def().input_defs();
  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));
  Scope* new_scope = nullptr;
2124
  auto& name_map = Inputs();
Y
YuanRisheng 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  if (info_) {
    auto& no_buffer_inferer = info_->NoNeedBufferVarsInferer();
    // Some op may not register NoNeedBufferVarsInferer
    if (no_buffer_inferer) {
      no_buffer_ins = &(no_buffer_inferer(Inputs(), Outputs(), Attrs()));
      if (no_buffer_ins->empty()) no_buffer_ins = nullptr;
    }
  }

2135 2136
  for (size_t i = 0; i < input_defs.size(); ++i) {
    auto& in_def = input_defs.at(i);
2137
    if (ctx->inputs.find(input_names[i]) == ctx->inputs.end()) {
H
hong 已提交
2138 2139
      continue;
    }
2140
    auto& ins_vector = ctx->inputs.at(input_names[i]);
2141
    auto& name_vec = name_map.at(input_names[i]);
Y
YuanRisheng 已提交
2142 2143 2144
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(input_names[i]) > 0;

2145 2146 2147 2148 2149 2150 2151
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
      // Only tensor can be tranfer to another device.
      auto* var = ins_vector[offset];
      if (var == nullptr || !VarIsTensor(*var)) {
        continue;
      }
      auto* tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
Y
YuanRisheng 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160

      // When no_buffer_ins then checking of Tensor::holder_ is
      // not a thread safe. And for infershape scenario checks
      // to be omitted are not really needed
      if (should_skip_input == true) {
        // TODO(YuanRisheng) : There need to supplement MKLDNN code later
        continue;
      }

2161 2162 2163 2164
      if (!tensor_in->IsInitialized()) {
        continue;
      }

2165 2166 2167
      if (in_def.backend == phi::Backend::ALL_BACKEND) {
        continue;
      }
2168
      auto expected_place = phi::TransToPhiPlace(in_def.backend);
2169 2170 2171 2172
      if (platform::is_same_place(tensor_in->place(), expected_place)) {
        continue;
      }

2173
      VLOG(3) << "phi Transform Variable " << input_names[i] << " from "
2174
              << tensor_in->place() << " to " << expected_place;
2175

2176 2177 2178
      if (!new_scope) {
        new_scope = &scope.NewScope();
      }
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
      // For inference, if a gpu model has an op which could only run on CPU,
      // each result of different input will be the same with the first one.
      // The reason is that if a gpu tensor is the input of a cpu kernel,
      // we will create a new cpu tensor in new scope.
      // However, if enable_cache_runtime_context_, we get the cpu tensor each
      // time, not the gpu tensor. Thus, we set pre_scope_ = nullptr
      // to trigger `new RuntimeContext()` in RunImpl().
      if (enable_cache_runtime_context_) {
        pre_scope_ = nullptr;
      }
2189

2190
      // Create new var with the same name in transfer scopes
2191
      auto* trans_var = new_scope->Var(name_vec[offset]);
2192
      ins_vector[offset] = trans_var;
2193

2194 2195 2196 2197
      // Do transfer
      Tensor out;
      framework::TensorCopySync(*tensor_in, expected_place, &out);
      SetTensorToVariable(*var, out, trans_var);
2198 2199 2200 2201 2202 2203
    }
  }

  return new_scope;
}

2204
void OperatorWithKernel::BuildPhiKernelContext(
2205
    const RuntimeContext& ctx, platform::DeviceContext* dev_ctx,
2206
    phi::KernelContext* pt_kernel_context) const {
2207
  pt_kernel_context->SetDeviceContext(dev_ctx);
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

  auto& input_names = std::get<0>(pt_kernel_signature_->args);
  auto& attr_names = std::get<1>(pt_kernel_signature_->args);
  auto& output_names = std::get<2>(pt_kernel_signature_->args);

  auto input_defs = pt_kernel_->args_def().input_defs();
  auto attr_defs = pt_kernel_->args_def().attribute_defs();
  auto output_defs = pt_kernel_->args_def().output_defs();

  PADDLE_ENFORCE_EQ(input_names.size(), input_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of inputs_args names (%d) must be equal to "
                        "the size of kernel input_defs (%d).",
                        input_names.size(), input_defs.size()));

  PADDLE_ENFORCE_EQ(output_names.size(), output_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of outputs_args names (%d) must be equal to "
                        "the size of kernel output_defs (%d).",
                        output_names.size(), output_defs.size()));

  PADDLE_ENFORCE_EQ(attr_names.size(), attr_defs.size(),
                    platform::errors::InvalidArgument(
                        "The size of attribute_args names (%d) must be equal "
                        "to the size of kernel attribute_defs (%d).",
                        attr_names.size(), attr_defs.size()));

  for (size_t i = 0; i < input_names.size(); ++i) {
H
hong 已提交
2236
    auto it = ctx.inputs.find(input_names[i]);
2237 2238 2239

    // calcute the start and end index of the input tensors
    size_t start_idx =
2240
        (i == 0 ? 0 : pt_kernel_context->InputRangeAt(i - 1).second);
2241

H
hong 已提交
2242
    // deal with optional here
2243
    if ((it == ctx.inputs.end() || it->second.size() == 0) &&
H
hong 已提交
2244
        (input_defs[i].type_index ==
H
hong 已提交
2245 2246 2247 2248
             std::type_index(
                 typeid(paddle::optional<const phi::DenseTensor&>)) ||
         input_defs[i].type_index ==
             std::type_index(
2249 2250 2251 2252 2253
                 typeid(paddle::optional<const phi::SelectedRows&>)) ||
         input_defs[i].type_index ==
             std::type_index(
                 typeid(paddle::optional<
                        const std::vector<const phi::DenseTensor*>>)))) {
H
hong 已提交
2254 2255 2256 2257 2258 2259 2260 2261
      pt_kernel_context->EmplaceBackInputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx),
                                          i);
      continue;
    }
    auto ins_vector = it->second;
    size_t end_idx = start_idx + ins_vector.size();
2262
    for (size_t offset = 0; offset < ins_vector.size(); ++offset) {
2263
      const phi::TensorBase* tensor_in = nullptr;
2264
      auto* var = ins_vector[offset];
H
hong 已提交
2265 2266
      if (var->IsType<framework::LoDTensor>()) {
        tensor_in = &(var->Get<framework::LoDTensor>());
2267
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
2268 2269
      } else if (var->IsType<phi::SelectedRows>()) {
        tensor_in = &(var->Get<phi::SelectedRows>());
2270 2271 2272 2273 2274 2275 2276 2277 2278
        pt_kernel_context->EmplaceBackInputWithoutSetRange(tensor_in);
      } else if (var->IsType<framework::LoDTensorArray>()) {
        paddle::SmallVector<const phi::TensorBase*> tensor_vector;
        auto& tensor_array = var->Get<framework::LoDTensorArray>();
        for (auto& t : tensor_array) {
          tensor_vector.emplace_back(&t);
        }
        pt_kernel_context->EmplaceBackInputsWithoutSetRange(tensor_vector);
        end_idx += tensor_array.size() - 1;
2279 2280 2281 2282
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported input `%s` type when call pt kernel.",
            framework::ToTypeName(var->Type())));
2283
      }
2284
    }
2285
    // Note: here cannot deal with vector<LoDTensorArray> input
2286
    pt_kernel_context->AssignInputRange(std::make_pair(start_idx, end_idx), i);
2287
  }
2288
  VLOG(4) << "Done inputs";
2289 2290

  for (size_t i = 0; i < output_names.size(); ++i) {
H
hong 已提交
2291
    auto it = ctx.outputs.find(output_names[i]);
2292
    size_t start_idx =
2293
        (i == 0 ? 0 : pt_kernel_context->OutputRangeAt(i - 1).second);
H
hong 已提交
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

    if (it == ctx.outputs.end() || it->second.empty()) {
      // Deal with the case that some outputs are not found or be NULL when run
      // the kernel.
      // For example : the outputs of matmul_grad are dx and dy,
      // sometimes dx or dy may be NULL.
      pt_kernel_context->EmplaceBackOutputWithoutSetRange(nullptr);
      auto end_idx = start_idx + 1;
      pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx),
                                           i);
      continue;
    }
    auto& outs_vector = it->second;

2308
    size_t end_idx = start_idx + outs_vector.size();
2309 2310

    for (size_t offset = 0; offset < outs_vector.size(); ++offset) {
2311
      phi::TensorBase* tensor_out = nullptr;
2312
      auto* var = outs_vector[offset];
2313 2314 2315
      if (var) {
        if (var->template IsType<framework::LoDTensor>()) {
          tensor_out = var->template GetMutable<framework::LoDTensor>();
2316
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2317 2318
        } else if (var->template IsType<phi::SelectedRows>()) {
          tensor_out = var->template GetMutable<phi::SelectedRows>();
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
          pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
        } else if (var->template IsType<framework::LoDTensorArray>()) {
          paddle::SmallVector<phi::TensorBase*> tensor_vector;
          auto* tensor_array =
              var->template GetMutable<framework::LoDTensorArray>();
          // Note: If the input LoDTensorArray size is 0, the output
          // LoDTensorArray is also 0
          for (auto& t : *tensor_array) {
            tensor_vector.emplace_back(&t);
          }
          pt_kernel_context->EmplaceBackOutputsWithoutSetRange(tensor_vector);
          end_idx += tensor_array->size() - 1;
2331 2332 2333 2334 2335
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported output `%s` type when call pt kernel.",
              framework::ToTypeName(var->Type())));
        }
2336 2337
      } else {
        pt_kernel_context->EmplaceBackOutputWithoutSetRange(tensor_out);
2338
      }
2339
    }
2340
    pt_kernel_context->AssignOutputRange(std::make_pair(start_idx, end_idx), i);
2341
  }
2342
  VLOG(4) << "Done outputs";
2343 2344

  for (size_t i = 0; i < attr_names.size(); ++i) {
2345
    if (attr_defs[i].type_index == std::type_index(typeid(phi::IntArray))) {
2346 2347 2348 2349
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // shape is in the attribute
        if (std::type_index(attr_iter->second.type()) ==
            std::type_index(typeid(std::vector<int64_t>))) {
2350
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2351
              BOOST_GET_CONST(std::vector<int64_t>, attr_iter->second))));
2352 2353
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(std::vector<int32_t>))) {
2354
          pt_kernel_context->EmplaceBackAttr(std::move(phi::IntArray(
2355
              BOOST_GET_CONST(std::vector<int32_t>, attr_iter->second))));
C
chentianyu03 已提交
2356 2357
        } else if (std::type_index(attr_iter->second.type()) ==
                   std::type_index(typeid(int32_t))) {
2358 2359
          pt_kernel_context->EmplaceBackAttr(std::move(
              phi::IntArray(&BOOST_GET_CONST(int32_t, attr_iter->second), 1)));
2360 2361
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
2362
              "Unsupported cast op attribute `%s` to IntArray when "
2363 2364 2365 2366 2367 2368
              "construct KernelContext.",
              attr_names[i]));
        }
      } else {  // shape is in the input
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
        if (ins_vector.size() == 1) {  // ShapeTensor
2369
          pt_kernel_context->EmplaceBackAttr(std::move(
2370
              experimental::MakePhiIntArrayFromVar(*ins_vector.front())));
2371
        } else {  // ShapeTensorList
2372 2373
          pt_kernel_context->EmplaceBackAttr(
              std::move(experimental::MakePhiIntArrayFromVarList(ins_vector)));
2374 2375 2376
        }
      }
    } else if (attr_defs[i].type_index ==
2377
               std::type_index(typeid(phi::Scalar))) {
2378 2379 2380
      // TODO(chenweihang): support other attrs later
      // TODO(zhangyunfei): Scalar should hold scaler type, and we should check
      // attribtue type by attr_defs
2381 2382 2383 2384
      auto attr_iter = Attrs().find(attr_names[i]);
      if (attr_iter != Attrs().end()) {  // scalar is in the attribute
        auto& attr = Attrs().at(attr_names[i]);
        if (std::type_index(attr.type()) == std::type_index(typeid(float))) {
2385
          pt_kernel_context->EmplaceBackAttr(
2386
              std::move(phi::Scalar(BOOST_GET_CONST(float, attr))));
2387 2388
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(std::string))) {
2389
          pt_kernel_context->EmplaceBackAttr(
2390
              std::move(phi::Scalar(BOOST_GET_CONST(std::string, attr))));
2391 2392 2393
        } else if (std::type_index(attr.type()) ==
                   std::type_index(typeid(int))) {
          pt_kernel_context->EmplaceBackAttr(
2394
              std::move(phi::Scalar(BOOST_GET_CONST(int, attr))));
2395 2396 2397 2398 2399 2400
        } else {
          PADDLE_THROW(platform::errors::Unimplemented(
              "Unsupported cast op attribute `%s` to Scalar when construct "
              "KernelContext.",
              attr_names[i]));
        }
2401
      } else {
2402
        auto& ins_vector = ctx.inputs.at(attr_names[i]);
2403 2404
        pt_kernel_context->EmplaceBackAttr(
            std::move(experimental::MakePhiScalarFromVar(*ins_vector.front())));
2405
      }
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
    } else if (attr_defs[i].type_index ==
               std::type_index(typeid(std::vector<phi::Scalar>))) {
      auto& attr = Attrs().at(attr_names[i]);
      if (std::type_index(attr.type()) ==
          std::type_index(typeid(std::vector<int32_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<int64_t>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<float>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else if (std::type_index(attr.type()) ==
                 std::type_index(typeid(std::vector<double>))) {
        const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
        std::vector<phi::Scalar> scalar_list;
        scalar_list.reserve(vec.size());
        for (const auto& val : vec) {
          scalar_list.emplace_back(val);
        }
        pt_kernel_context->EmplaceBackAttr(std::move(scalar_list));
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupported cast op attribute `%s` to vector<Scalar> when "
            "construct KernelContext.",
            attr_names[i]));
      }
2452 2453
    } else {
      // TODO(chenweihang): support other attrs later
H
hong 已提交
2454
      auto attr_it = attrs_.find(attr_names[i]);
2455
      if (attr_defs[i].type_index == std::type_index(typeid(int))) {
H
hong 已提交
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
        if (attr_it == attrs_.end()) {
          auto in_it = ctx.inputs.find(attr_names[i]);
          if (in_it != ctx.inputs.end()) {
            // get data from input
            auto val = experimental::MakePhiScalarFromVar(*(in_it->second[0]));
            int32_t val_int = val.template to<int32_t>();
            pt_kernel_context->EmplaceBackAttr(val_int);
          } else {
            PADDLE_THROW(platform::errors::NotFound(
                "can not find attribute `%s` both in attribute and input ",
                attr_names[i]));
          }
        } else {
          pt_kernel_context->EmplaceBackAttr(
              BOOST_GET_CONST(int, attr_it->second));
        }
2472
      } else if (attr_defs[i].type_index == std::type_index(typeid(float))) {
H
hong 已提交
2473 2474
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(float, attr_it->second));
2475
      } else if (attr_defs[i].type_index == std::type_index(typeid(bool))) {
H
hong 已提交
2476 2477
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(bool, attr_it->second));
H
hong 已提交
2478
      } else if (attr_defs[i].type_index == std::type_index(typeid(int64_t))) {
H
hong 已提交
2479 2480
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(int64_t, attr_it->second));
H
hong 已提交
2481 2482
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::string))) {
H
hong 已提交
2483 2484
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::string, attr_it->second));
2485
      } else if (attr_defs[i].type_index ==
2486
                 std::type_index(typeid(phi::DataType))) {
2487
        auto data_type = paddle::framework::TransToPhiDataType(
2488
            static_cast<framework::proto::VarType::Type>(
H
hong 已提交
2489
                BOOST_GET_CONST(int, attr_it->second)));
2490
        pt_kernel_context->EmplaceBackAttr(data_type);
2491 2492
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int64_t>))) {
H
hong 已提交
2493
        if (std::type_index(attr_it->second.type()) ==
2494 2495
            std::type_index(typeid(std::vector<int64_t>))) {
          pt_kernel_context->EmplaceBackAttr(
H
hong 已提交
2496 2497
              BOOST_GET_CONST(std::vector<int64_t>, attr_it->second));
        } else if (std::type_index(attr_it->second.type()) ==
2498
                   std::type_index(typeid(std::vector<int>))) {
2499
          // Emplace Back Attr according to the type of Phi_Kernel args.
H
hong 已提交
2500 2501
          const auto& vector_int_attr =
              BOOST_GET_CONST(std::vector<int>, attr_it->second);
2502 2503
          const std::vector<int64_t> vector_int64_attr(vector_int_attr.begin(),
                                                       vector_int_attr.end());
2504
          pt_kernel_context->EmplaceBackAttr(vector_int64_attr);
2505
        }
H
hong 已提交
2506 2507
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<int32_t>))) {
H
hong 已提交
2508 2509
        const auto& vector_int_attr =
            BOOST_GET_CONST(std::vector<int>, attr_it->second);
H
hong 已提交
2510
        pt_kernel_context->EmplaceBackAttr(vector_int_attr);
2511 2512 2513 2514
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<std::string>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<std::string>, attr_it->second));
2515 2516 2517 2518
      } else if (attr_defs[i].type_index ==
                 std::type_index(typeid(std::vector<float>))) {
        pt_kernel_context->EmplaceBackAttr(
            BOOST_GET_CONST(std::vector<float>, attr_it->second));
2519 2520
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
2521
            "Unsupported cast op attribute `%s` when construct "
2522 2523 2524 2525 2526
            "KernelContext.",
            attr_names[i]));
      }
    }
  }
2527
  VLOG(4) << "Done attributes";
2528 2529
}

Q
Qiao Longfei 已提交
2530
}  // namespace framework
L
liaogang 已提交
2531
}  // namespace paddle