nn.py 391.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
26
from ..framework import Variable, OpProtoHolder, _in_imperative_mode
X
Xin Pan 已提交
27
from ..imperative import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
X
Xin Pan 已提交
35
from ..imperative import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
Z
zhoukunsheng 已提交
76 77
    'reduce_all',
    'reduce_any',
X
Xin Pan 已提交
78 79
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
80
    'sequence_slice',
X
Xin Pan 已提交
81 82 83 84 85 86 87 88 89 90 91 92
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
93
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
94 95 96 97 98
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
99
    'group_norm',
D
dengkaipeng 已提交
100
    'spectral_norm',
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
114
    'roi_align',
X
Xin Pan 已提交
115 116 117 118
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
119
    'resize_nearest',
X
Xin Pan 已提交
120 121 122 123 124 125
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
126
    'selu',
X
Xin Pan 已提交
127 128 129
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
130
    'margin_rank_loss',
X
Xin Pan 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
174
    'space_to_depth',
W
whs 已提交
175
    'affine_grid',
S
sneaxiy 已提交
176
    'sequence_reverse',
177
    'affine_channel',
B
barrierye 已提交
178
    'similarity_focus',
M
minqiyang 已提交
179
    'hash',
D
dengkaipeng 已提交
180
    'grid_sampler',
G
gmcather 已提交
181 182
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
183
    'bilinear_tensor_product',
C
chengduo 已提交
184 185
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
186
    'lstm',
S
shippingwang 已提交
187
    'shuffle_channel',
S
sneaxiy 已提交
188
    'py_func',
189
    'psroi_pool',
H
heqiaozhi 已提交
190
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
191
    'huber_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
194
    'fsp_matrix',
Y
Yu Yang 已提交
195 196
]

J
jerrywgz 已提交
197 198
kIgnoreIndex = -100

Y
Yu Yang 已提交
199 200 201 202 203 204 205

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
206
       is_test=False,
207
       name=None):
Y
Yu Yang 已提交
208
    """
209
    **Fully Connected Layer**
Y
Yu Yang 已提交
210

211
    This function creates a fully connected layer in the network. It can take
212
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
213
    Args in detail). It creates a variable called weights for each input tensor,
214 215 216 217
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
218
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
219 220
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
221

222 223 224 225 226 227 228
    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
229 230 231

    .. math::

232
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
233 234 235

    In the above equation:

236 237 238
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
239
    * :math:`b`: The bias parameter created by this layer (if needed).
240
    * :math:`Act`: The activation function.
C
caoying03 已提交
241
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
261
    Args:
R
ranqiu 已提交
262 263 264 265 266 267 268 269 270 271
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
272
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
273 274 275 276
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
277 278
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
279
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
280
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
281
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
282

283
    Returns:
F
fengjiayi 已提交
284
        Variable: The transformation result.
285 286

    Raises:
C
caoying03 已提交
287
        ValueError: If rank of the input tensor is less than 2.
288 289 290 291

    Examples:
        .. code-block:: python

292
          # when input is single tensor
F
fengjiayi 已提交
293
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
294
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
295 296 297 298 299

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
300
    """
C
caoying03 已提交
301

C
caoying03 已提交
302
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
303 304 305 306

    dtype = helper.input_dtype()

    mul_results = []
307 308
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
309 310 311
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
312

Y
Yu Yang 已提交
313
        w = helper.create_parameter(
314
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
315
        tmp = helper.create_variable_for_type_inference(dtype)
316
        helper.append_op(
317 318 319
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
320
            outputs={"Out": tmp},
M
mozga-intel 已提交
321 322
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
323 324 325 326
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
327
    else:
X
Xin Pan 已提交
328
        pre_bias = helper.create_variable_for_type_inference(dtype)
329
        helper.append_op(
330 331 332
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
333
            attrs={"use_mkldnn": False})
334 335 336 337
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
338 339


340 341 342
def embedding(input,
              size,
              is_sparse=False,
343
              is_distributed=False,
344 345 346
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
347
    """
348 349
    **Embedding Layer**

350
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
351 352
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
353 354 355

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
356 357

    Args:
358 359 360 361 362
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
363
        is_distributed(bool): Whether to run lookup table from remote parameter server.
364 365
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
366
            with zeros whenever lookup encounters it in :attr:`input`. If
367
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
368 369
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
370
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
371

372 373 374
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
375

376 377
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
378

C
chengduoZH 已提交
379
          dict_size = len(dataset.ids)
380
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
381
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
382 383 384
    """

    helper = LayerHelper('embedding', **locals())
385
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
386 387
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
388 389
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
390
    tmp = helper.create_variable_for_type_inference(dtype)
391 392
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
393 394 395 396 397
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
398 399 400
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
401
            'remote_prefetch': remote_prefetch,
402 403
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
404 405 406
    return tmp


W
wopeizl 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
423

W
wopeizl 已提交
424 425 426 427 428 429 430 431 432 433 434
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
435

W
wopeizl 已提交
436 437 438 439
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
440

W
wopeizl 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
527 528


P
phlrain 已提交
529 530 531 532 533 534
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
535
         dropout_prob=0.0,
P
phlrain 已提交
536 537 538 539 540
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
541
    """
P
phlrain 已提交
542
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
543 544

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
545
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
546 547
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
548
    .. math::
M
minqiyang 已提交
549 550 551 552 553 554 555

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
556
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
557 558 559 560

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
561 562

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
563 564 565 566 567 568
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
569 570 571
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
572
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
573

M
minqiyang 已提交
574
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
575 576 577 578 579
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
580
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
581 582 583 584 585
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
586
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
587 588
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
589 590
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
591 592 593 594 595 596
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
597
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
598

L
liuhongyu 已提交
599 600

    Returns:
M
minqiyang 已提交
601 602
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
603
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
604

H
haowang101779990 已提交
605 606 607 608
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
609
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
610 611
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
612
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
628
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
629 630 631 632 633 634
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
635 636 637
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
697 698 699 700 701 702 703 704 705 706
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
707
                  proj_activation='tanh',
708
                  dtype='float32',
X
xuezhong 已提交
709 710 711 712 713
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
714 715 716
    """
    **Dynamic LSTMP Layer**

717 718 719 720 721 722
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
723 724 725 726 727

    The formula is as follows:

    .. math::

728
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
729

730
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
731

732
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
733

734
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
735

736
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
737

738
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
739

740
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
741

Y
Yibing Liu 已提交
742 743 744 745 746 747
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
748
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
749
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
750
          bias vector).
Y
Yibing Liu 已提交
751 752 753
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
754
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
755
    * :math:`h`: The hidden state.
756
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
757 758
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
759
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
760
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
761
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
762 763
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
764 765 766 767

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
768

Y
Yibing Liu 已提交
769 770 771 772 773 774 775 776 777 778 779 780
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
781
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
782 783
                               hidden-hidden weight and projection weight.

784 785
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
786 787
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
788 789
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
790
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
791 792 793 794 795

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
796
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
797 798 799 800 801 802
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
803
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
804 805 806
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
807
                                - The shape is (1 x 7D).
C
chengduo 已提交
808 809 810 811 812

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
813 814 815 816 817 818 819 820 821
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
822
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
823 824
                              default "tanh".
        proj_activation(str): The activation for projection output.
825
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
826
                              default "tanh".
Y
Yibing Liu 已提交
827
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
828 829
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
830 831 832 833 834 835 836 837 838 839 840
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
841 842

    Returns:
843 844 845 846
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
847 848

    Examples:
849

Y
Yibing Liu 已提交
850 851
        .. code-block:: python

852 853 854 855
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
856
            hidden_dim, proj_dim = 512, 256
857
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
858
                                     act=None, bias_attr=None)
859 860 861
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
862 863 864 865
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
866
    """
867

C
chengduo 已提交
868
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
869
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
870
    size = size // 4
Y
Yibing Liu 已提交
871 872 873 874 875 876 877 878 879 880
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
881 882 883 884 885 886
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
902

X
xuezhong 已提交
903 904 905 906 907
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
908 909
    helper.append_op(
        type='lstmp',
910
        inputs=inputs,
Y
Yibing Liu 已提交
911 912 913 914 915 916 917 918 919
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
920 921
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
922 923 924 925 926 927 928 929 930
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
931 932 933 934 935 936 937
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
938 939
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
940
    """
941
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
942

943 944 945
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
946

G
guosheng 已提交
947 948 949 950 951 952 953 954 955
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
956

G
guosheng 已提交
957
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
958

Q
Qiao Longfei 已提交
959 960 961

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
962 963 964 965 966 967 968 969 970 971 972 973
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
974
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
975 976
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
977 978 979 980
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
981
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
982 983

    Args:
984 985
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
986
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
987
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
988 989
            is the hidden size.
        size(int): The dimension of the gru cell.
990
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
991 992
            hidden-hidden weight matrix. Note:

993
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
994
              :math:`D` is the hidden size.
995
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
996
              The first part are weights of the update gate and reset gate with
997
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
998
              candidate hidden state with shape :math:`(D \\times D)`.
999 1000 1001 1002 1003

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1004
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1005
            the bias in the update gate, reset gate and candidate calculations.
1006 1007 1008
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1009 1010
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1011
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1012 1013 1014
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1015
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1016
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1017 1018 1019 1020
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1021 1022

    Returns:
G
guosheng 已提交
1023
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1024
            and sequence length is the same with the input.
1025

G
guosheng 已提交
1026
    Examples:
1027

G
guosheng 已提交
1028 1029
        .. code-block:: python

1030 1031 1032 1033
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1034
            hidden_dim = 512
1035
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1036
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1046
    batch_size = input.shape[0]
G
guosheng 已提交
1047
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1048
    if h_0:
G
guosheng 已提交
1049
        assert h_0.shape == (
Y
Yancey 已提交
1050 1051 1052
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1053

X
Xin Pan 已提交
1054 1055 1056 1057
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1071 1072
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1073 1074 1075 1076
        })
    return hidden


Y
Yu Yang 已提交
1077 1078 1079
def gru_unit(input,
             hidden,
             size,
1080 1081
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1082
             activation='tanh',
Q
Qiao Longfei 已提交
1083 1084
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1085
    """
1086 1087 1088
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1089
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1090
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1091

1092 1093
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1094

1095
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1096

1097
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1098

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1114 1115

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1116 1117 1118
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1119 1120
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1121 1122
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1123 1124 1125
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1126 1127 1128

    Args:
        input (Variable): The fc transformed input value of current step.
1129
        hidden (Variable): The hidden value of gru unit from previous step.
1130
        size (integer): The input dimension value.
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1145
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1146
            the bias in the update gate, reset gate and candidate calculations.
1147 1148 1149
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1150 1151
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1152 1153 1154 1155
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1156

1157 1158 1159 1160 1161 1162
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1163

1164
             # assuming we have x_t_data and prev_hidden of size=10
1165
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1166 1167
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1180
    size = size // 3
Y
Yu Yang 已提交
1181 1182

    # create weight
1183 1184
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1185

X
Xin Pan 已提交
1186 1187 1188
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1189
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1190
    # create bias
1191
    if helper.bias_attr:
Y
Yu Yang 已提交
1192 1193 1194
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1195
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1196 1197 1198

    helper.append_op(
        type='gru_unit',
1199
        inputs=inputs,
Y
Yu Yang 已提交
1200 1201 1202 1203 1204 1205
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1206 1207
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1208 1209 1210 1211 1212
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1213
@templatedoc()
1214
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1215 1216 1217 1218 1219 1220 1221
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1222
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1223 1224 1225 1226
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1227 1228 1229
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1230 1231

    """
Y
Yu Yang 已提交
1232 1233 1234 1235 1236 1237
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1238 1239 1240 1241 1242 1243 1244 1245
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1261 1262 1263 1264
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1265

W
wopeizl 已提交
1266 1267
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1268

W
wopeizl 已提交
1269
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1270

W
wopeizl 已提交
1271
        label(${label_type}): ${label_comment}
1272

W
wopeizl 已提交
1273 1274
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1275

W
wopeizl 已提交
1276 1277
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1278

W
wopeizl 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1289
                "Transition": transition,
W
wopeizl 已提交
1290 1291
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1292

W
wopeizl 已提交
1293
    return viterbi_path
Y
Yu Yang 已提交
1294 1295


Y
yi.wu 已提交
1296
@templatedoc()
F
fengjiayi 已提交
1297
def cos_sim(X, Y):
Y
Yu Yang 已提交
1298
    """
Y
yi.wu 已提交
1299 1300 1301
    ${comment}

    Args:
1302 1303
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1304

Y
yi.wu 已提交
1305
    Returns:
1306
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1307
    """
F
fengjiayi 已提交
1308
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1309 1310 1311
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1322 1323 1324 1325 1326
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1327
            dropout_implementation="downgrade_in_infer"):
1328 1329 1330 1331 1332
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1333
    training. The dropout operator randomly sets (according to the given dropout
1334 1335 1336
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1337 1338
    dropout op can be removed from the program to make the program more efficient.

1339
    Args:
1340 1341
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1342 1343 1344 1345 1346 1347 1348
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1349 1350
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1351
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1352 1353

                                           - train: out = input * mask
C
ceci3 已提交
1354
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1355 1356 1357

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1358
                                        2. upscale_in_train, upscale the outcome at training time
1359

H
haowang101779990 已提交
1360 1361
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1362

H
haowang101779990 已提交
1363 1364
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1365

M
minqiyang 已提交
1366

1367
    Returns:
1368
        Variable: A tensor variable is the shape with `x`.
1369 1370

    Examples:
1371

1372 1373
        .. code-block:: python

1374 1375
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1376 1377
    """

F
fengjiayi 已提交
1378
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1379 1380 1381
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1382 1383 1384 1385

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1386 1387 1388 1389 1390
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1391 1392 1393 1394
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1395 1396
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1397
        })
1398 1399 1400
    return out


J
jerrywgz 已提交
1401
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1402
    """
Y
Yibing Liu 已提交
1403 1404
    **Cross Entropy Layer**

1405 1406 1407
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1408 1409

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1410
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1411

Y
Yibing Liu 已提交
1412
        .. math::
Y
yangyaming 已提交
1413

Y
Yibing Liu 已提交
1414 1415 1416
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1417 1418
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1419 1420 1421 1422 1423

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1424
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1425 1426 1427
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1428 1429
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1430
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1431

Y
Yibing Liu 已提交
1432
    Args:
Y
yangyaming 已提交
1433
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1434 1435 1436 1437
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1438
        label (Variable|list): the ground truth which is a 2-D tensor. When
1439 1440 1441 1442
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1443
        soft_label (bool): a flag indicating whether to
1444
                                           interpretate the given labels as soft
1445
                                           labels. Default: `False`.
M
minqiyang 已提交
1446 1447
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1448
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1449 1450 1451 1452 1453

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1454 1455 1456
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1457

H
haowang101779990 已提交
1458 1459
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1460

H
haowang101779990 已提交
1461 1462
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1463 1464 1465 1466 1467 1468

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1469
    """
S
sneaxiy 已提交
1470 1471
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1472
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1473
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1474 1475 1476 1477 1478
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1479 1480
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1481 1482 1483
    return out


S
sneaxiy 已提交
1484 1485 1486 1487
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1488
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1489 1490 1491 1492 1493
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1494
                 'MatchX': [match_x],
S
sneaxiy 已提交
1495 1496 1497 1498 1499
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1500
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1501 1502 1503
    """
    Bayesian Personalized Ranking Loss Operator.

1504
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1505 1506 1507 1508 1509 1510
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1511 1512 1513 1514 1515 1516
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1517 1518
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1519 1520 1521
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1522 1523 1524
    Examples:
        .. code-block:: python

1525
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1526
    """
1527 1528 1529 1530 1531 1532

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1533
                'Label': [label]},
1534 1535 1536 1537
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1538
def square_error_cost(input, label):
Y
Yu Yang 已提交
1539
    """
1540 1541
    **Square error cost layer**

1542 1543
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1544

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1558 1559
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1560 1561

    Returns:
G
guosheng 已提交
1562
        Variable: The tensor variable storing the element-wise squared error \
1563
                  difference of input and label.
1564 1565 1566 1567 1568 1569 1570 1571

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1572
    """
F
fengjiayi 已提交
1573
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1574
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1575 1576 1577 1578 1579 1580
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1581
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1582
    helper.append_op(
F
fengjiayi 已提交
1583 1584
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1585 1586 1587
    return square_out


Y
yi.wu 已提交
1588
@templatedoc()
Y
Yu Yang 已提交
1589 1590 1591 1592
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1593
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1594
    """
Y
yi.wu 已提交
1595
    **Chunk Evaluator**
Y
yi.wu 已提交
1596

Y
yangyaming 已提交
1597
    This function computes and outputs the precision, recall and
1598
    F1-score of chunk detection.
Y
yi.wu 已提交
1599

M
minqiyang 已提交
1600
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1601
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1602 1603 1604 1605 1606 1607

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1608

Y
yi.wu 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1634

Y
yi.wu 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1659
    Args:
1660 1661 1662 1663 1664
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1665

Y
yi.wu 已提交
1666
    Returns:
Y
update  
yi.wu 已提交
1667 1668 1669
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1670

Y
yi.wu 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1683
    """
F
fengjiayi 已提交
1684
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1685 1686

    # prepare output
X
Xin Pan 已提交
1687 1688 1689 1690 1691 1692 1693
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1694 1695 1696 1697 1698 1699 1700 1701

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1702 1703 1704 1705
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1706 1707 1708
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1709 1710
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1711
        })
1712 1713
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1714 1715


1716
@templatedoc()
Y
Yu Yang 已提交
1717 1718 1719 1720 1721 1722 1723
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1724 1725
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1726 1727 1728 1729
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1730 1731 1732 1733 1734 1735 1736

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1750

1751 1752
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1753 1754 1755 1756 1757 1758 1759
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1760
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1771
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1772 1773 1774 1775 1776 1777
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1778
def sequence_softmax(input, use_cudnn=False, name=None):
1779 1780 1781
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1782
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1799 1800 1801
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1802

1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1814 1815
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1816
    softmax_out = helper.create_variable_for_type_inference(dtype)
1817 1818 1819 1820 1821 1822 1823 1824
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1825
def softmax(input, use_cudnn=False, name=None):
Q
qiaolongfei 已提交
1826
    """
1827
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1828
    has the same shape as the input.
Q
qiaolongfei 已提交
1829

1830 1831 1832 1833 1834 1835
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1836
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1837 1838 1839 1840 1841 1842 1843

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1844
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1845 1846 1847 1848 1849 1850 1851 1852

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1853 1854
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1855 1856
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1869 1870
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1871
    softmax_out = helper.create_variable_for_type_inference(dtype)
1872 1873 1874 1875 1876 1877 1878 1879
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1880 1881 1882
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1883 1884
           stride=1,
           padding=0,
1885
           dilation=1,
Y
Yu Yang 已提交
1886 1887 1888
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1889
           use_cudnn=True,
1890 1891
           act=None,
           name=None):
Y
Yu Yang 已提交
1892
    """
C
chengduoZH 已提交
1893
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1894 1895
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1896
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1897 1898 1899 1900 1901 1902 1903
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1904 1905 1906
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1907

1908
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1909

C
chengduoZH 已提交
1910 1911
    .. math::

C
refine  
chengduoZH 已提交
1912
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1913

T
tensor-tang 已提交
1914
    Where:
C
chengduoZH 已提交
1915

1916 1917 1918 1919 1920
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1921
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1922 1923 1924

    Example:

1925 1926
        - Input:

W
weixing02 已提交
1927
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1928

W
weixing02 已提交
1929
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1930

1931
        - Output:
T
tensor-tang 已提交
1932

W
weixing02 已提交
1933
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1934

C
chengduoZH 已提交
1935
        Where
1936 1937

        .. math::
C
chengduoZH 已提交
1938

W
weixing02 已提交
1939 1940
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1941 1942

    Args:
1943
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1944
        num_filters(int): The number of filter. It is as same as the output
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1962 1963 1964 1965 1966
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1967
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1968 1969 1970 1971 1972
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1973 1974
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1975 1976
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1977
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1978
            will be named automatically. Default: None
C
chengduoZH 已提交
1979 1980

    Returns:
G
guosheng 已提交
1981
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1982 1983
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1984
    Raises:
1985 1986
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1987

C
chengduoZH 已提交
1988 1989 1990
    Examples:
        .. code-block:: python

1991 1992
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1993 1994 1995
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1996
    assert param_attr is not False, "param_attr should not be False here."
1997
    l_type = 'conv2d'
X
xzl 已提交
1998 1999
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2000
        l_type = 'depthwise_conv2d'
2001 2002 2003 2004

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2005 2006 2007 2008 2009
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2010
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2011

C
chengduoZH 已提交
2012 2013 2014
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2015
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2016

C
chengduoZH 已提交
2017 2018
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2019 2020

    input_shape = input.shape
M
minqiyang 已提交
2021
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2022 2023

    def _get_default_param_initializer():
C
chengduo 已提交
2024 2025
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2026 2027 2028 2029 2030 2031 2032 2033
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2034
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2050
    helper.append_op(
2051
        type=l_type,
Y
Yu Yang 已提交
2052 2053 2054 2055 2056
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2057 2058 2059
        attrs={
            'strides': stride,
            'paddings': padding,
2060
            'dilations': dilation,
C
chengduoZH 已提交
2061
            'groups': groups,
2062
            'use_cudnn': use_cudnn,
2063
            'use_mkldnn': False,
2064
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2065
        })
Y
Yu Yang 已提交
2066 2067 2068 2069 2070 2071

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2089 2090 2091 2092 2093 2094
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2104 2105
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2106 2107 2108
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2109
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2135
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2136 2137
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2138
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2139 2140
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2141
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2142 2143
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2144
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2145 2146 2147 2148 2149 2150
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2161 2162
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2163 2164
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2165
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2166
            will be named automatically. Default: None.
C
chengduoZH 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2179 2180
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2181 2182 2183
    """

    l_type = 'conv3d'
C
chengduo 已提交
2184
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2195
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2209 2210 2211
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2212 2213 2214 2215 2216 2217 2218 2219
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2220
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2235
            'use_mkldnn': False
C
chengduoZH 已提交
2236 2237
        })

2238
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2239 2240 2241 2242

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2243
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2244
    """
Y
yangyaming 已提交
2245 2246 2247
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2259
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2260 2261 2262 2263 2264
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2265
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2266 2267 2268 2269 2270 2271 2272

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2273 2274
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2275

L
Luo Tao 已提交
2276 2277
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2278
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2279
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2280
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2281 2282 2283 2284 2285 2286 2287

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2288

Y
yangyaming 已提交
2289
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2290 2291 2292 2293 2294
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2295 2296
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2297
    """
F
fengjiayi 已提交
2298
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2299
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2300 2301
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2302 2303 2304 2305 2306 2307

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2308 2309
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2310

Y
yangyaming 已提交
2311 2312 2313 2314 2315
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2316 2317 2318
    return pool_out


C
add doc  
chengduoZH 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2338
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2339 2340 2341 2342 2343
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2344
def sequence_first_step(input):
L
Luo Tao 已提交
2345
    """
L
Luo Tao 已提交
2346
    This function gets the first step of sequence.
L
Luo Tao 已提交
2347 2348 2349 2350

    .. code-block:: text

       x is a 1-level LoDTensor:
2351
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2352 2353 2354 2355 2356
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2357
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2358
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2359

L
Luo Tao 已提交
2360 2361 2362 2363 2364 2365 2366 2367 2368
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2369

Y
yangyaming 已提交
2370
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2371 2372 2373
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2374 2375 2376
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2377
def sequence_last_step(input):
L
Luo Tao 已提交
2378
    """
L
Luo Tao 已提交
2379
    This function gets the last step of sequence.
L
Luo Tao 已提交
2380 2381 2382 2383

    .. code-block:: text

       x is a 1-level LoDTensor:
2384
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2385 2386 2387 2388 2389
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2390
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2391
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2392

L
Luo Tao 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2402

Y
yangyaming 已提交
2403
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2404 2405 2406
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2407 2408 2409
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2410 2411 2412 2413
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2414
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2415 2416 2417 2418 2419
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2420

H
haowang101779990 已提交
2421
              - Case:
Y
Yibing Liu 已提交
2422

2423
            Given the input Variable **input**:
2424

2425 2426 2427
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2428

2429
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2430

2431
            the output Variable will be
2432

2433 2434 2435
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2436

M
minqiyang 已提交
2437
    Note:
H
haowang101779990 已提交
2438
          The first dimension size of **input**, **offset** and **length**
2439
          should be equal. The **offset** should start from 0.
2440

Y
Yibing Liu 已提交
2441
    Args:
2442
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2443
                         sequences.
Y
Yibing Liu 已提交
2444 2445 2446 2447 2448 2449
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2450
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2461
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2462 2463 2464 2465
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2466
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2481
@templatedoc()
Y
Yu Yang 已提交
2482
def pool2d(input,
C
chengduoZH 已提交
2483 2484
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2485 2486
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2487
           global_pooling=False,
C
chengduoZH 已提交
2488
           use_cudnn=True,
2489
           ceil_mode=False,
2490 2491
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2492
    """
F
fengjiayi 已提交
2493
    ${comment}
2494 2495

    Args:
2496 2497 2498
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2499
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2500
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2501 2502
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2503
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2504 2505 2506 2507 2508 2509
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2510 2511 2512
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2513
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2514
                        layer will be named automatically.
2515
        exclusive (bool): Whether to exclude padding points in average pooling
2516
                          mode, default is true
F
fengjiayi 已提交
2517

2518
    Returns:
F
fengjiayi 已提交
2519
        Variable: The pooling result.
F
fengjiayi 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2532
          pool2d = fluid.layers.pool2d(
2533 2534 2535 2536
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2537
                            global_pooling=False)
Y
Yu Yang 已提交
2538 2539 2540 2541 2542
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2543

C
chengduoZH 已提交
2544 2545 2546 2547 2548
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2549 2550 2551 2552
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2553 2554
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2555

C
Add doc  
chengduoZH 已提交
2556
    l_type = 'pool2d'
2557 2558

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2559
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2560
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2561 2562

    helper.append_op(
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2574 2575
            "use_mkldnn": False,
            "exclusive": exclusive,
2576 2577 2578 2579 2580
        })

    return pool_out


D
dengkaipeng 已提交
2581
@templatedoc()
2582 2583 2584 2585 2586 2587 2588 2589
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2590 2591
           name=None,
           exclusive=True):
2592
    """
2593
    ${comment}
2594 2595

    Args:
D
dengkaipeng 已提交
2596 2597 2598 2599 2600
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2601 2602 2603 2604 2605
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2606 2607 2608 2609 2610 2611 2612
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2613
        exclusive (bool): Whether to exclude padding points in average pooling
2614
                          mode, default is true
2615

2616
    Returns:
2617
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2631 2632 2633 2634 2635
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2636

C
chengduoZH 已提交
2637 2638 2639 2640 2641
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2642 2643 2644
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2645

C
chengduoZH 已提交
2646 2647
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2648

2649 2650
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2651
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2652
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2653 2654

    helper.append_op(
2655
        type=l_type,
Y
Yu Yang 已提交
2656 2657 2658 2659 2660 2661 2662
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2663
            "paddings": pool_padding,
2664
            "use_cudnn": use_cudnn,
2665
            "ceil_mode": ceil_mode,
2666 2667
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2668 2669 2670 2671 2672
        })

    return pool_out


2673 2674 2675 2676 2677 2678 2679
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2680 2681 2682 2683 2684 2685 2686
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2687

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2701 2702 2703 2704 2705 2706 2707 2708 2709

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2710 2711
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2726
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2727
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2728
          # of input data into m * n grids averagely and performs poolings in each
2729 2730
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2731
          #
2732 2733 2734 2735 2736 2737 2738 2739
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2740 2741
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2742
          pool_out = fluid.layers.adaptive_pool2d(
2743 2744
                            input=data,
                            pool_size=[3, 3],
2745
                            pool_type='avg')
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2756
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2782
    return (pool_out, mask) if require_index else pool_out
2783 2784 2785 2786 2787 2788 2789 2790 2791


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2792 2793 2794 2795 2796 2797 2798
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2799

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2817 2818 2819

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2820 2821 2822
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2823
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2824
            it must contain three integers, (Depth, Height, Width).
2825
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2826 2827
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2842 2843
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2844
          # of input data into l * m * n grids averagely and performs poolings in each
2845 2846
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2847
          #
2848 2849 2850 2851 2852 2853 2854 2855 2856
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2857
          #                 output[:, :, i, j, k] =
2858 2859
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2860 2861
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2862
          pool_out, mask = fluid.layers.adaptive_pool3d(
2863
                            input=data,
D
dengkaipeng 已提交
2864
                            pool_size=[3, 3, 3],
2865
                            pool_type='avg')
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2876
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2902
    return (pool_out, mask) if require_index else pool_out
2903 2904


Y
Yu Yang 已提交
2905 2906 2907 2908 2909 2910 2911
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2912
               data_layout='NCHW',
Y
Yang Yang 已提交
2913
               in_place=False,
2914 2915
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2916
               moving_variance_name=None,
2917
               do_model_average_for_mean_and_var=False,
2918 2919
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2920
    """
Q
qiaolongfei 已提交
2921 2922 2923 2924
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2925

Q
qiaolongfei 已提交
2926
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2927

Q
qiaolongfei 已提交
2928 2929
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2930 2931 2932
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2959
    Args:
Q
qingqing01 已提交
2960
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2961
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2962 2963 2964 2965 2966 2967 2968 2969 2970
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2971 2972 2973 2974 2975 2976 2977 2978
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2979
        data_layout(string, default NCHW): NCHW|NHWC
2980
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2981 2982 2983 2984
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2985
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2986
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2987 2988 2989 2990 2991
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2992 2993

    Returns:
Q
qiaolongfei 已提交
2994
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2995 2996 2997 2998 2999 3000 3001

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3002
    """
C
chengduo 已提交
3003
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3004 3005 3006
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3007 3008 3009 3010
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3029
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3030

3031 3032
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3033 3034 3035
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3036
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3037
        shape=param_shape,
W
Wu Yi 已提交
3038
        dtype=dtype)
3039 3040 3041 3042 3043 3044
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3045
            trainable=False,
W
wanghaoshuang 已提交
3046
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3047
        shape=param_shape,
W
Wu Yi 已提交
3048
        dtype=dtype)
3049
    variance.stop_gradient = True
Y
Yu Yang 已提交
3050 3051 3052 3053 3054 3055

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3056 3057 3058 3059
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3060

X
Xin Pan 已提交
3061 3062
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3080 3081 3082 3083
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3084
            "data_layout": data_layout,
X
Xin Pan 已提交
3085
            "use_mkldnn": False,
3086 3087
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3088
        })
Y
Yu Yang 已提交
3089 3090 3091 3092

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3212
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3213 3214 3215 3216

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3217
@templatedoc()
G
guosheng 已提交
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3228
    ${comment}
G
guosheng 已提交
3229 3230 3231

    The formula is as follows:

Y
yuyang18 已提交
3232
    ..  math::
G
guosheng 已提交
3233 3234 3235 3236 3237 3238 3239

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3240 3241 3242 3243 3244 3245 3246 3247
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3248

G
guosheng 已提交
3249 3250
    Args:
        input(Variable): The input tensor variable.
3251
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3252
            normalization. Default True.
3253
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3254 3255
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3256
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3257
            Default 1.
3258
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3259
            division by zero. Default 1e-05.
G
guosheng 已提交
3260
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3261 3262
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3263 3264
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3265
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3266 3267
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3268
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3269
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3270
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3271 3272 3273
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3274 3275

    Returns:
Y
yuyang18 已提交
3276
        ${y_comment}
G
guosheng 已提交
3277 3278 3279

    Examples:

Y
yuyang18 已提交
3280 3281 3282
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3298
    if shift:
G
guosheng 已提交
3299 3300 3301 3302 3303 3304
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3305 3306 3307 3308 3309
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3337
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3385 3386
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3404
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3405 3406 3407
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3408
    This layer calculates the spectral normalization value of weight parameters of
3409
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3410
    Parameters. Calculations are showed as follows.
3411

D
dengkaipeng 已提交
3412 3413 3414
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3415
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3428
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3429 3430 3431 3432

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3433

D
dengkaipeng 已提交
3434
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3435 3436
                

D
dengkaipeng 已提交
3437 3438 3439 3440
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3441 3442 3443
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3444 3445 3446
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3447
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3448 3449 3450 3451 3452 3453 3454 3455

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3456
    dtype = weight.dtype
D
dengkaipeng 已提交
3457 3458 3459

    # create intput and parameters
    inputs = {'Weight': weight}
3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3478 3479

    # create output
3480
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3481 3482

    helper.append_op(
3483
        type="spectral_norm",
D
Dun 已提交
3484
        inputs=inputs,
3485 3486 3487 3488 3489 3490
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3491

3492
    return out
D
Dun 已提交
3493 3494


Y
Yu Yang 已提交
3495 3496 3497 3498
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3499 3500 3501
                     padding=0,
                     stride=1,
                     dilation=1,
3502
                     groups=None,
C
caoying03 已提交
3503
                     param_attr=None,
3504
                     bias_attr=None,
C
chengduoZH 已提交
3505
                     use_cudnn=True,
3506
                     act=None,
C
caoying03 已提交
3507
                     name=None):
Y
Yu Yang 已提交
3508
    """
3509 3510 3511 3512 3513 3514 3515 3516
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3517 3518
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3519 3520 3521
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3522 3523 3524 3525 3526

    For each input :math:`X`, the equation is:

    .. math::

3527
        Out = \sigma (W \\ast X + b)
3528

3529
    Where:
3530 3531 3532

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3533 3534 3535 3536
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3537

3538 3539 3540 3541
    Example:

        - Input:

3542
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3543

3544
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3545 3546 3547

        - Output:

3548
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3549 3550

        Where
Y
Yu Yang 已提交
3551

3552 3553
        .. math::

3554 3555
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3556 3557
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3558 3559

    Args:
3560 3561 3562 3563
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3564 3565 3566 3567
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3596
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3597 3598 3599
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3600
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3601
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3602 3603

    Returns:
3604
        Variable: The tensor variable storing the convolution transpose result.
3605 3606

    Raises:
3607 3608
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3609 3610 3611 3612

    Examples:
       .. code-block:: python

3613 3614
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3615
    """
C
chengduo 已提交
3616
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3617 3618 3619 3620 3621 3622 3623 3624
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3625 3626 3627
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3628 3629 3630
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3631

C
chengduoZH 已提交
3632 3633
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3634

Y
Yu Yang 已提交
3635 3636 3637 3638 3639
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3640

Y
Yu Yang 已提交
3641 3642
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3643

C
chengduoZH 已提交
3644
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3645
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3646
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3647
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3648
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3649 3650 3651
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3652

3653 3654 3655 3656 3657 3658 3659
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3660
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3661
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3662

Y
Yu Yang 已提交
3663 3664 3665
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3666
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3667
    helper.append_op(
3668
        type=op_type,
Y
Yu Yang 已提交
3669 3670
        inputs={'Input': [input],
                'Filter': [img_filter]},
3671
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3672
        attrs={
3673
            'output_size': output_size,
3674 3675 3676 3677 3678
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3679 3680
        })

3681 3682 3683
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3684 3685


3686
def conv3d_transpose(input,
Y
Yu Yang 已提交
3687 3688 3689
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3690 3691 3692
                     padding=0,
                     stride=1,
                     dilation=1,
3693
                     groups=None,
C
caoying03 已提交
3694
                     param_attr=None,
3695
                     bias_attr=None,
C
chengduoZH 已提交
3696
                     use_cudnn=True,
3697
                     act=None,
C
caoying03 已提交
3698
                     name=None):
Y
Yu Yang 已提交
3699
    """
3700
    **Convlution3D transpose layer**
3701

3702
    The convolution3D transpose layer calculates the output based on the input,
3703
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3704 3705 3706 3707 3708 3709
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3710 3711 3712
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3713 3714 3715 3716 3717

    For each input :math:`X`, the equation is:

    .. math::

3718
        Out = \sigma (W \\ast X + b)
3719 3720 3721

    In the above equation:

3722 3723
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3724 3725 3726 3727
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3728

3729 3730 3731 3732
    Example:

        - Input:

3733
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3734

3735
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3736 3737 3738

        - Output:

3739
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3740 3741

        Where
Y
Yu Yang 已提交
3742

3743 3744
        .. math::

3745 3746 3747
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3748 3749

    Args:
3750
        input(Variable): The input image with [N, C, D, H, W] format.
3751 3752 3753
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3754
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3755 3756
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3757
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3758 3759 3760
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3761 3762
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3763
        stride(int|tuple): The stride size. If stride is a tuple, it must
3764 3765
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3766
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3767 3768 3769
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3770 3771 3772 3773 3774
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3784 3785
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3786 3787
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3788 3789
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3790 3791

    Returns:
3792
        Variable: The tensor variable storing the convolution transpose result.
3793 3794

    Raises:
3795 3796
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3797 3798 3799 3800

    Examples:
       .. code-block:: python

3801 3802
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3803
    """
C
chengduo 已提交
3804
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3805 3806
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3807
    if not isinstance(input, Variable):
3808
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3809 3810
    input_channel = input.shape[1]

3811 3812 3813
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3814

C
chengduoZH 已提交
3815 3816 3817
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3818 3819 3820 3821 3822 3823
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3824 3825 3826
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3827

3828
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3829
                         padding[0] - 1) // dilation[0] + 1
3830
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3831
                         padding[1] - 1) // dilation[1] + 1
3832
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3833
                         padding[2] - 1) // dilation[2] + 1
3834
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3835
    else:
3836 3837
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3838

3839
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3840
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3841 3842 3843
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3844
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3845
    helper.append_op(
3846
        type=l_type,
Y
Yu Yang 已提交
3847 3848
        inputs={'Input': [input],
                'Filter': [img_filter]},
3849
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3850 3851 3852 3853
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3854
            'groups': groups,
C
chengduoZH 已提交
3855 3856
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3857

3858 3859
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3860
    return out
Y
yangyaming 已提交
3861 3862


Y
yangyaming 已提交
3863
def sequence_expand(x, y, ref_level=-1, name=None):
3864
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3865 3866 3867 3868
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3869 3870 3871 3872 3873

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3874
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3875
                x.data = [[a], [b], [c], [d]]
3876 3877 3878
                x.dims = [4, 1]

            y is a LoDTensor:
3879 3880
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3881

Y
yangyaming 已提交
3882
            ref_level: 0
3883

Y
yangyaming 已提交
3884
            then output is a 1-level LoDTensor:
3885
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3886
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3887 3888 3889 3890
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3891
                x.data = [[a], [b], [c]]
3892 3893 3894
                x.dims = [3, 1]

            y is a LoDTensor:
3895
                y.lod = [[2, 0, 3]]
3896

Y
yangyaming 已提交
3897
            ref_level: -1
3898

Y
yangyaming 已提交
3899 3900 3901
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3902 3903 3904
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3905 3906
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3907
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3908
                        will be named automatically.
3909 3910 3911 3912 3913 3914 3915 3916 3917 3918

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3919
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3920
    """
Y
yangyaming 已提交
3921
    helper = LayerHelper('sequence_expand', input=x, **locals())
3922
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3923
    tmp = helper.create_variable_for_type_inference(dtype)
3924
    helper.append_op(
Y
yangyaming 已提交
3925 3926 3927 3928 3929
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3930
    return tmp
3931 3932


C
chengduo 已提交
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3989
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3990 3991 3992 3993 3994 3995 3996 3997
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3998
@templatedoc()
3999
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4000 4001 4002 4003 4004
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4005 4006 4007
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4008
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4009 4010 4011 4012
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4013 4014 4015
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4016

F
fengjiayi 已提交
4017
    Returns:
M
minqiyang 已提交
4018
        Variable: The padded sequence batch and the original lengths before
4019
                  padding. All sequences has the same length.
M
minqiyang 已提交
4020

F
fengjiayi 已提交
4021 4022 4023 4024 4025 4026 4027
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4028
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4029
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4030 4031 4032 4033 4034
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4035 4036
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4037 4038 4039 4040

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4041 4042 4043 4044 4045 4046
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4047 4048
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4049
        attrs={'padded_length': maxlen})
4050
    return out, length
F
fengjiayi 已提交
4051 4052


4053
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4054
    """
4055
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4056

4057 4058
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4059 4060 4061 4062 4063 4064 4065 4066 4067
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4068 4069 4070
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4071
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4072 4073 4074 4075 4076 4077

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4078
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4079 4080 4081 4082 4083 4084

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4085 4086
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4101
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4113 4114 4115 4116 4117 4118 4119
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4120
                is_accumulated=True,
4121 4122
                name=None,
                return_parent_idx=False):
4123
    """
4124 4125
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4126 4127 4128

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4129 4130

    This layer does the search in beams for one time step. Specifically, it
4131 4132 4133
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4145 4146 4147 4148

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4149

4150
    Args:
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4174 4175
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4176 4177
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4178 4179 4180 4181
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4182

4183
    Returns:
4184 4185 4186 4187
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4188 4189 4190 4191

    Examples:
        .. code-block:: python

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4209
    helper = LayerHelper('beam_search', **locals())
4210 4211 4212 4213 4214 4215
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4216

X
Xin Pan 已提交
4217 4218 4219
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4220 4221 4222 4223 4224
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4225 4226 4227

    helper.append_op(
        type='beam_search',
4228
        inputs=inputs,
Q
Qiao Longfei 已提交
4229 4230 4231
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4232
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4233 4234 4235 4236 4237 4238
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4239
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4240
        })
4241 4242 4243 4244
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4245 4246


4247 4248 4249 4250 4251 4252 4253
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4254

4255 4256 4257 4258 4259 4260 4261 4262 4263
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4264

4265 4266 4267 4268 4269 4270
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4271

4272 4273
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4274

4275 4276 4277 4278 4279 4280
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4281 4282
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4298 4299 4300 4301
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4302
              param_attr=None,
C
caoying03 已提交
4303 4304
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4305 4306 4307 4308
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4309
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4310

4311
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4312

4313
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4314

4315
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4316 4317 4318

            h_t & = o_t tanh(c_t)

4319 4320 4321 4322 4323 4324
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4325 4326 4327

        .. math::

4328
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4329 4330 4331 4332 4333 4334 4335 4336

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4337
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4338 4339

    Args:
Y
yangyaming 已提交
4340 4341 4342 4343 4344 4345
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4346
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4359 4360
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4361 4362

    Returns:
Y
yangyaming 已提交
4363
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4364 4365

    Raises:
4366 4367 4368 4369
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4370 4371 4372 4373 4374 4375

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4376
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4377
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4378
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4395
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4396 4397 4398 4399
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4400 4401
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4402 4403 4404
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4405
    size = cell_t_prev.shape[1]
4406
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4407 4408
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4409
                param_attr=param_attr,
4410
                bias_attr=bias_attr)
Y
yangyaming 已提交
4411
    dtype = x_t.dtype
X
Xin Pan 已提交
4412 4413
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4423
    return h, c
G
guosheng 已提交
4424 4425


C
caoying03 已提交
4426
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4427
    """
Y
yangyaming 已提交
4428
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4429 4430 4431

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4432
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4433 4434
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4435 4436
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4437
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4438
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4439
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4440 4441
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4442 4443 4444

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4445

G
guosheng 已提交
4446 4447 4448 4449 4450 4451
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4452
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4453 4454 4455 4456
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4457 4458 4459 4460

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4461
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4462 4463 4464
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4465 4466
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4467
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4468 4469
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4470 4471 4472 4473 4474
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4475
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4476 4477 4478 4479
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4480 4481


C
caoying03 已提交
4482
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4483
    """
Y
Yibing Liu 已提交
4484
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4485 4486 4487

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4488 4489 4490
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4491
            must be in the range :math:`[-rank(input), rank(input))`. If
4492
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4493
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4494 4495
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4496
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4497
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4498
                       will be named automatically.
G
guosheng 已提交
4499 4500

    Returns:
Y
Yibing Liu 已提交
4501
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4502

G
guosheng 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4513 4514
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4515 4516 4517 4518 4519 4520 4521

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4522 4523
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4524
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4525 4526
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4527 4528 4529 4530 4531
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4532
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4533 4534 4535 4536
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4537 4538


C
caoying03 已提交
4539
def reduce_max(input, dim=None, keep_dim=False, name=None):
4540
    """
Y
yangyaming 已提交
4541
    Computes the maximum of tensor elements over the given dimension.
4542 4543 4544

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4545
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4546 4547 4548
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4549
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4550 4551
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4552
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4553 4554
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4555 4556 4557

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4558

4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4570 4571 4572 4573 4574 4575 4576

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4577 4578
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4579
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4580 4581
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4582 4583 4584 4585 4586
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4587
            'dim': dim if dim != None else [0],
4588 4589 4590 4591 4592 4593
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4594
def reduce_min(input, dim=None, keep_dim=False, name=None):
4595
    """
Y
yangyaming 已提交
4596
    Computes the minimum of tensor elements over the given dimension.
4597 4598 4599

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4600
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4601 4602 4603
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4604
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4605 4606
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4607
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4608 4609
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4610 4611 4612

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4625 4626 4627 4628 4629 4630 4631

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4632 4633
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4634
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4635 4636
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4637 4638 4639 4640 4641
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4642
            'dim': dim if dim != None else [0],
4643 4644 4645 4646
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4647 4648


4649 4650 4651 4652 4653 4654
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4655
        dim (list|int|None): The dimensions along which the product is performed. If
4656 4657
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4658 4659
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4660 4661 4662
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4663
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4664
            layer will be named automatically.
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4679
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4680
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4681 4682 4683 4684 4685 4686 4687

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4688 4689
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4690
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4691 4692
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4693 4694 4695 4696 4697
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4698
            'dim': dim if dim != None else [0],
4699 4700 4701 4702 4703 4704
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


Z
zhoukunsheng 已提交
4705 4706
def reduce_all(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4707
    Computes the ``logical and`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical and is computed.
            If :attr:`None`, compute the logical and over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4727
        
Z
zhoukunsheng 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [True, True]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_all(x)  # False 
            fluid.layers.reduce_all(x, dim=0)  # [True, False]
            fluid.layers.reduce_all(x, dim=-1)  # [False, True]
            fluid.layers.reduce_all(x, dim=1,
                                     keep_dim=True)  # [[False], [True]]

    """
    helper = LayerHelper('reduce_all', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_all',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


def reduce_any(input, dim=None, keep_dim=False, name=None):
    """
Z
zhoukunsheng 已提交
4757
    Computes the ``logical or`` of tensor elements over the given dimension.
Z
zhoukunsheng 已提交
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (list|int|None): The dimension along which the logical or is computed.
            If :attr:`None`, compute the logical or over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python
Z
zhoukunsheng 已提交
4777

Z
zhoukunsheng 已提交
4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
            # x is a bool Tensor variable with following elements:
            #    [[True, False]
            #     [False, False]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_any(x)  # True
            fluid.layers.reduce_any(x, dim=0)  # [True, False]
            fluid.layers.reduce_any(x, dim=-1)  # [True, False]
            fluid.layers.reduce_any(x, dim=1,
                                     keep_dim=True)  # [[True], [False]]

    """
    helper = LayerHelper('reduce_any', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
    helper.append_op(
        type='reduce_any',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
            'dim': dim if dim != None else [0],
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4805
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4806
    """
C
caoying03 已提交
4807
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4808 4809 4810

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4811 4812 4813 4814 4815
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4816
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4817
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4818
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4819 4820
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4821 4822

    Returns:
D
dzhwinter 已提交
4823
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4833 4834
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4850
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4864 4865 4866 4867 4868 4869 4870 4871 4872


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4873
    .. math::
4874 4875

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4876 4877 4878 4879 4880

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4881
        x(Variable|list): The input tensor to l2_normalize layer.
4882
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4883 4884
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4885
        epsilon(float): The epsilon value is used to avoid division by zero, \
4886
            the defalut value is 1e-10.
4887
        name(str|None): A name for this layer(optional). If set None, the layer \
4888
            will be named automatically.
C
caoying03 已提交
4889 4890

    Returns:
4891
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4892 4893

    Examples:
4894

C
caoying03 已提交
4895 4896
        .. code-block:: python

4897 4898 4899 4900
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4901 4902
    """

F
fengjiayi 已提交
4903 4904
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4905 4906
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4907 4908
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4909
    helper.append_op(
4910 4911 4912 4913
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4914
        attrs={
4915 4916
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4917 4918
        })
    return out
4919 4920


S
sneaxiy 已提交
4921
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4922
    """
Y
ying 已提交
4923 4924 4925 4926
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4927

C
chengduoZH 已提交
4928
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4929
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4930

4931 4932 4933 4934 4935
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4936
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4937

C
chengduoZH 已提交
4938
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4939
      performs in the following way.
G
guosheng 已提交
4940

4941
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4942
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4943
        last two dimensions and a batched matrix multiply supporting broadcast
4944
        applies on the two tensors.
G
guosheng 已提交
4945

Y
ying 已提交
4946 4947
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4948
    removed after matrix multiplication.
G
guosheng 已提交
4949 4950 4951

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4952 4953 4954
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4955
        alpha (float): The scale of output. Default 1.0.
4956
        name(str|None): A name for this layer(optional). If set None, the layer
4957
            will be named automatically.
G
guosheng 已提交
4958 4959

    Returns:
4960
        Variable: The product Tensor variable.
G
guosheng 已提交
4961

G
guosheng 已提交
4962 4963 4964
    Examples:
        .. code-block:: python

4965
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4966 4967
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4968

4969 4970
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4971

4972 4973
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4974

4975 4976
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4977 4978 4979 4980

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4981 4982
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4983

Y
ying 已提交
4984
            # x: [M], y: [N]
4985
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4986
    """
Y
ying 已提交
4987 4988 4989 4990 4991 4992 4993

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4994
            y_shape = y_shape + [1]
Y
ying 已提交
4995 4996 4997 4998 4999 5000 5001

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
5002 5003
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
5004

C
chengduo 已提交
5005
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
5006
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
5007 5008 5009
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
5010
                if dim_x != y_shape[i]:
C
chengduo 已提交
5011 5012
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
5013 5014 5015

    __check_input(x, y)

5016
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
5017
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
5018
    helper.append_op(
5019 5020 5021 5022
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
5023 5024 5025
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
5026
            'alpha': float(alpha),
S
sneaxiy 已提交
5027
        })
5028
    return out
5029 5030


5031
def topk(input, k, name=None):
Q
qingqing01 已提交
5032 5033 5034 5035
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
5036
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
5037 5038 5039 5040 5041 5042
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
5064 5065 5066
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
5067
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
5068
                 of input.
5069
        name(str|None): A name for this layer(optional). If set None, the layer
5070
                       will be named automatically.
F
fengjiayi 已提交
5071
                       Default: None
Q
qingqing01 已提交
5072 5073

    Returns:
5074 5075 5076
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
5077
        within the last dimension of input.
Q
qingqing01 已提交
5078

F
fengjiayi 已提交
5079 5080
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
5081 5082 5083 5084 5085 5086 5087

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
5088 5089
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5090 5091 5092 5093 5094 5095
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5096 5097
    helper.append_op(
        type="top_k",
W
whs 已提交
5098
        inputs=inputs,
Q
qingqing01 已提交
5099 5100
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5101
        attrs=attrs)
Q
qingqing01 已提交
5102 5103 5104 5105 5106
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5107
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5108
    """
Y
ying 已提交
5109 5110 5111 5112 5113 5114 5115 5116 5117
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5118

Y
ying 已提交
5119
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5120

5121
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5122 5123
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5124
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5125

5126
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5127 5128
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5129

5130 5131 5132
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5133
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5134
                          the length of reference string.
5135
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5136
                                     calculating edit distance.
5137
        name (str): The name of this layer. It is optional.
5138

W
wanghaoshuang 已提交
5139
    Returns:
W
wanghaoshuang 已提交
5140
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5141 5142 5143 5144

    Examples:
        .. code-block:: python

T
tink2123 已提交
5145 5146
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5147
            cost = fluid.layers.edit_distance(input=x,label=y)
5148
    """
5149
    helper = LayerHelper("edit_distance", **locals())
5150

5151
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5152
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5153 5154
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5155 5156 5157 5158 5159

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5160
            attrs={"tokens": ignored_tokens})
5161 5162 5163 5164 5165
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5166
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5167
            attrs={"tokens": ignored_tokens})
5168 5169
        label = erased_label

5170
    # edit distance op
X
Xin Pan 已提交
5171 5172
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5173 5174 5175 5176
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5177 5178
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5179 5180
        attrs={"normalized": normalized})

5181
    return edit_distance_out, sequence_num
5182 5183 5184 5185 5186


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5187

Y
ying 已提交
5188 5189 5190 5191
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5209
        input.lod = [[4, 4]]
M
minqiyang 已提交
5210

W
whs 已提交
5211
        Computation:
5212

W
whs 已提交
5213 5214 5215 5216 5217 5218
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5219 5220 5221 5222 5223

        output.data = [[2],
                       [1],
                       [3]]

5224
        output.lod = [[2, 1]]
5225

W
whs 已提交
5226

5227 5228
    Args:

Y
ying 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5238
        name (str): The name of this layer. It is optional.
5239 5240

    Returns:
H
haowang101779990 已提交
5241 5242 5243
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5244
                  LoD [[]] and dims [1, 1].
5245 5246 5247 5248 5249

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5250

5251
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5252
    """
5253
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5254
    _, topk_indices = topk(input, k=1)
5255 5256

    # ctc align op
X
Xin Pan 已提交
5257
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5258 5259 5260
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5261
        outputs={"Output": [ctc_out]},
5262 5263
        attrs={"merge_repeated": True,
               "blank": blank})
5264
    return ctc_out
5265 5266


W
Wu Yi 已提交
5267
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5268
    """
5269 5270
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5271
    to compute Connectionist Temporal Classification (CTC) loss.
5272 5273
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5274 5275 5276
    input tensor.

    Args:
5277
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5278 5279 5280 5281
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5282
       label (Variable): The ground truth of variable-length sequence,
5283 5284 5285
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5286 5287
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5288 5289 5290
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5291
         follewed by a mean_op.
W
Wu Yi 已提交
5292
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5293 5294

    Returns:
5295 5296
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5297 5298

    Examples:
5299

W
wanghaoshuang 已提交
5300
        .. code-block:: python
5301

5302 5303 5304
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5305 5306

    """
F
fengjiayi 已提交
5307
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5308 5309
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5310 5311 5312 5313 5314 5315
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5316 5317 5318 5319 5320
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5321
    return loss_out
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5337 5338 5339
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5340 5341 5342 5343 5344
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5345

5346
            out.lod  = [[0, 1, 3]]
5347 5348 5349 5350

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5351 5352 5353 5354 5355 5356 5357
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5358 5359 5360

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5361 5362

    Returns:
5363

5364 5365 5366 5367 5368
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5369
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5370
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5371 5372
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5373
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5374 5375 5376 5377 5378 5379
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5380 5381


5382 5383 5384 5385
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5386 5387 5388 5389 5390 5391
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5392
        num_neg_samples=None,
5393 5394 5395
        name=None,
        sampler="uniform",
        custom_dist=None,
5396 5397
        seed=0,
        is_sparse=False):
5398 5399 5400 5401 5402 5403 5404
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5405 5406
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5407
            sample is 1.0.
C
chengduo 已提交
5408 5409 5410 5411 5412 5413 5414 5415 5416
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5417
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5418 5419
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5420 5421 5422
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5423
        custom_dist (float[]): A float[] with size=num_total_classes.
5424 5425 5426 5427
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5428
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5429

5430
    Returns:
Y
Yibing Liu 已提交
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5458 5459 5460 5461 5462 5463 5464 5465 5466

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5467

5468
    """
Y
Yang Yu 已提交
5469 5470 5471
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5472 5473

    dim = input.shape[1]
Y
Yang Yu 已提交
5474 5475 5476 5477 5478 5479
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5480
    inputs = {}
C
chengduo 已提交
5481 5482 5483 5484 5485 5486 5487
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5488 5489 5490
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5491

5492 5493 5494 5495
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5496 5497 5498 5499 5500 5501 5502

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5503 5504 5505 5506 5507 5508 5509 5510 5511
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5512
            if normal_prob - 1.0 > 0:
5513
                bigs.append((i, normal_prob))
5514
            elif 1.0 - normal_prob > 0:
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5530
            if big_left - 1.0 > 0:
5531
                bigs.append((big_idx, big_left))
5532
            elif 1.0 - big_left > 0:
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5562 5563 5564 5565
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5566 5567 5568 5569 5570
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5571 5572 5573 5574
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5575

Y
Yang Yu 已提交
5576 5577
    attrs = {
        'num_total_classes': int(num_total_classes),
5578 5579
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5580
        'sampler': sampler,
5581 5582
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5583
    }
Y
Yang Yu 已提交
5584 5585 5586

    helper.append_op(
        type='nce',
C
chengduo 已提交
5587
        inputs=inputs,
Y
Yang Yu 已提交
5588 5589 5590 5591 5592 5593
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5594
    return cost / (num_neg_samples + 1)
5595 5596


C
chengduo 已提交
5597 5598
def hsigmoid(input,
             label,
5599
             num_classes,
C
chengduo 已提交
5600 5601
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5602
             name=None,
5603 5604 5605
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5606
             is_sparse=False):
W
weixing02 已提交
5607 5608
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5609
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5610
    complete binary tree, or you can use is_custom to pass your own tree to
5611
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5612 5613 5614 5615 5616 5617
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5618
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5619
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5620

5621 5622
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5623 5624 5625 5626
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5627
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5628
       related to the same batch of inputs.
5629

W
weixing02 已提交
5630
    Args:
M
minqiyang 已提交
5631
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5632 5633 5634 5635
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5636 5637
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5638
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5650
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5651
            it should be in leaf -> root order
M
minqiyang 已提交
5652 5653 5654
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5655
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5656
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5657
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5658
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5659
             of W and input will be sparse.
W
weixing02 已提交
5660 5661

    Returns:
J
JiabinYang 已提交
5662
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5663 5664 5665 5666 5667

    Examples:

        .. code-block:: python

G
guosheng 已提交
5668 5669 5670
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5671 5672 5673 5674
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5675 5676
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5677
    dim = input.shape[1]
5678
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5679 5680 5681
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5682 5683 5684 5685
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5686 5687
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5688 5689 5690
    else:
        pass

J
JiabinYang 已提交
5691
    weights = None
5692 5693 5694 5695
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5696
    if not is_custom:
J
JiabinYang 已提交
5697 5698 5699 5700 5701 5702 5703 5704
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5705
            shape=[num_classes, dim],
J
JiabinYang 已提交
5706 5707
            is_bias=False,
            dtype=input.dtype)
5708 5709 5710
    inputs = {
        "X": input,
        "W": weights,
5711
        "PathTable": path_table,
5712
        "PathCode": path_code,
5713 5714
        "Label": label
    }
W
weixing02 已提交
5715
    if helper.bias_attr:
5716
        if not is_custom:
J
JiabinYang 已提交
5717 5718
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5719
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5720 5721 5722 5723 5724 5725
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5726
                shape=[num_classes, 1],
J
JiabinYang 已提交
5727 5728 5729
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5730 5731
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5732
        inputs=inputs,
W
weixing02 已提交
5733
        outputs={"Out": out,
5734 5735 5736 5737 5738 5739 5740
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5741 5742 5743
    return out


Y
fix ci.  
ying 已提交
5744
def transpose(x, perm, name=None):
Y
ying 已提交
5745 5746 5747 5748 5749 5750 5751
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5752 5753 5754
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5755 5756 5757 5758 5759 5760 5761

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5762
            # use append_batch_size=False to avoid prepending extra
5763
            # batch size in shape
5764
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5765
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5766
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5767 5768
    """

Y
fix ci.  
ying 已提交
5769
    if len(perm) != len(x.shape):
Y
ying 已提交
5770 5771 5772
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5773 5774 5775 5776 5777 5778
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5779 5780

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5781 5782
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5783
    helper.append_op(
5784
        type='transpose2',
Y
fix ci.  
ying 已提交
5785
        inputs={'X': [x]},
5786 5787
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5788 5789
        attrs={'axis': perm})
    return out
5790 5791


5792 5793 5794 5795 5796 5797 5798
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5799
    """
5800 5801 5802 5803 5804 5805 5806
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5835 5836 5837 5838 5839 5840 5841 5842 5843
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5844 5845 5846
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5847 5848 5849 5850 5851
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5879 5880 5881
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5894
            output.dims = {8, 8}
5895

5896
            output.lod = [[4, 4]]
5897

T
Tink_Y 已提交
5898
    Examples:
5899 5900 5901

        .. code-block:: python

5902 5903
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5904 5905

    """
W
wanghaoshuang 已提交
5906 5907 5908 5909 5910 5911 5912 5913 5914 5915

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5916 5917 5918 5919 5920 5921 5922
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5923
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5924
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5925
    helper.append_op(
5926
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5927
    return out
5928 5929


Y
yuyang18 已提交
5930
@templatedoc()
5931
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5932 5933
    """
    ${comment}
5934 5935

    Args:
Y
yuyang18 已提交
5936
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5937 5938
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5939 5940 5941 5942 5943
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5944
        ${out_comment}.
5945 5946

    Examples:
Y
yuyang18 已提交
5947 5948 5949 5950
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5951 5952 5953 5954 5955 5956
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5957
    out = helper.create_variable_for_type_inference(dtype)
5958 5959 5960 5961 5962
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5963
    return helper.append_activation(out)
5964 5965


Y
yuyang18 已提交
5966
@templatedoc()
5967 5968
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5969 5970 5971 5972 5973 5974 5975
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5976 5977

    Args:
Y
yuyang18 已提交
5978 5979
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5980 5981

    Returns:
Y
yuyang18 已提交
5982
        ${out_comment}.
5983 5984
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5985 5986 5987 5988 5989

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5990
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5991 5992 5993 5994 5995 5996
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5997 5998


5999 6000 6001
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
6002
                               ignore_index=kIgnoreIndex,
6003
                               numeric_stable_mode=True,
6004
                               return_softmax=False):
6005 6006
    """
    **Softmax With Cross Entropy Operator.**
6007

6008 6009 6010 6011
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
6012

6013 6014 6015
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
6016

6017 6018 6019
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
6020

6021
    The equation is as follows:
6022

6023
    1) Hard label (one-hot label, so every sample has exactly one class)
6024

6025 6026 6027 6028
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
6029

6030 6031 6032
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
6033

6034 6035 6036 6037
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
6038 6039 6040
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
6041

H
haowang101779990 已提交
6042
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6043

H
haowang101779990 已提交
6044
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6045

H
haowang101779990 已提交
6046
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6047 6048 6049

    and then cross entropy loss is calculated by softmax and label.

6050 6051 6052 6053 6054 6055 6056 6057
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6058 6059
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6060
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6061 6062 6063
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6064 6065 6066
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6067
                                    stable algorithm. Default: True
6068
        return_softmax (bool): A flag indicating whether to return the softmax
6069
                               along with the cross entropy loss. Default: False
6070

6071
    Returns:
H
haowang101779990 已提交
6072 6073 6074 6075 6076
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6077 6078 6079 6080 6081 6082 6083

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6084 6085
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6086 6087
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6088 6089
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6090 6091 6092 6093 6094 6095
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6096 6097 6098 6099 6100
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6101 6102 6103 6104

    if return_softmax:
        return loss, softmax

6105 6106 6107
    return loss


6108 6109 6110
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6111
                                       num_true=1,
6112
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6113 6114 6115
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6116
                                       seed=0):
X
xuezhong 已提交
6117 6118 6119 6120 6121
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6122
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6123 6124 6125 6126 6127 6128 6129 6130
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6131
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6132 6133 6134 6135 6136 6137 6138 6139
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6140
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6152
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6153 6154 6155 6156 6157
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6158
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6159
            logits.
X
xuezhong 已提交
6160 6161 6162 6163 6164
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6165 6166 6167
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6188 6189
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
X
xuezhong 已提交
6190 6191 6192 6193 6194

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6195
            'Labels': label,
X
xuezhong 已提交
6196 6197
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6198 6199 6200 6201
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6202
            'SampledLabels': sampled_label,
X
xuezhong 已提交
6203 6204 6205
            'SampledLogits': sampled_logits
        },
        attrs={
X
xuezhong 已提交
6206
            'use_customized_samples': use_customized_samples,
6207
            'uniq': True,
X
xuezhong 已提交
6208 6209 6210 6211
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6212 6213
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6214 6215 6216 6217 6218 6219
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6220 6221
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6222
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6223
                'Label': sampled_softlabel},
X
xuezhong 已提交
6224 6225 6226
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6227
            'soft_label': True,
X
xuezhong 已提交
6228 6229 6230
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6231
    return loss / num_true
X
xuezhong 已提交
6232 6233


6234 6235
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6236 6237
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6238
    For each instance, it computes the smooth L1 loss element by element first
6239
    and then sums all the losses. So the shape of ouput Variable is
6240
    [batch_size, 1].
6241

6242 6243
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6244
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6245
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6246
            L1 loss op with same shape as :attr:`x`.
6247
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6248 6249
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6250
            by this tensor element by element.
6251
        outside_weight (Variable|None): A tensor with rank at least 2. This
6252 6253
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6254
            element by element.
6255
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6256 6257
           scalar with default value 1.0.

6258
    Returns:
6259
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6260 6261 6262 6263 6264

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6265 6266
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6267
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6268
            out = fluid.layers.smooth_l1(x=fc, y=label)
6269
    """
6270

6271
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6272 6273
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6286 6287 6288 6289


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6290
    This layer creates the one-hot representations for input indices.
6291 6292

    Args:
Y
Yibing Liu 已提交
6293 6294
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6295 6296

    Returns:
Y
Yibing Liu 已提交
6297
        Variable: The one-hot representations of input.
6298 6299

    Examples:
C
caoying03 已提交
6300
        .. code-block:: python
6301

Y
Yibing Liu 已提交
6302 6303
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
6304 6305
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6306
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6307 6308 6309 6310
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6311 6312
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6313
    return one_hot_out
Y
Yu Yang 已提交
6314 6315


Y
Yu Yang 已提交
6316
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6317
    """
Y
yi.wu 已提交
6318 6319 6320
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6321 6322 6323 6324 6325 6326

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6327 6328
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6329 6330 6331 6332 6333 6334

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6335 6336
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6337 6338
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6339 6340 6341 6342 6343
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6344
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6345
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6346 6347
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6348
            outputs={'Out': [counter]},
M
minqiyang 已提交
6349 6350
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6351 6352 6353
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6354 6355


6356
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6357
    """
C
caoying03 已提交
6358 6359
    Gives a new shape to the input Tensor without changing its data.

6360 6361 6362 6363 6364
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6365

6366
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6367

6368 6369 6370 6371
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6372
    2. 0 means the actual dimension value is going to be copied from the
6373 6374 6375 6376
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6377 6378

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6379
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6380
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6381

6382
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6383 6384
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6385 6386
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6387
    dimensions.
C
caoying03 已提交
6388

6389
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6390 6391 6392 6393
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6394 6395

    Args:
6396
        x(variable): The input tensor.
C
caoying03 已提交
6397 6398
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6399 6400 6401 6402 6403
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6404 6405
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6406 6407 6408
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6409
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6410
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6411

6412
    Returns:
G
guosheng 已提交
6413 6414 6415 6416
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6417

X
Xin Pan 已提交
6418 6419 6420
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6421 6422
    Examples:
        .. code-block:: python
G
guosheng 已提交
6423

6424
            data = fluid.layers.data(
6425
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6426
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6427
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6428 6429 6430
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6431
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6432 6433 6434 6435 6436
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6437

6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6453
    helper = LayerHelper("reshape2", **locals())
6454 6455
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6456
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6457
    helper.append_op(
6458
        type="reshape2",
X
Xin Pan 已提交
6459
        inputs=inputs,
D
dzhwinter 已提交
6460
        attrs={"shape": shape},
6461 6462
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6463

D
dzhwinter 已提交
6464
    return helper.append_activation(out)
6465

6466

6467
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6468
    """
M
minqiyang 已提交
6469 6470 6471
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6472
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6473

H
haowang101779990 已提交
6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6495

Y
Yibing Liu 已提交
6496
    Args:
6497
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6498
        axes (list): List of integers, indicating the dimensions to be squeezed.
6499
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6500 6501 6502 6503 6504 6505 6506 6507

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6508
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6509
    """
6510 6511
    assert not _in_imperative_mode(), (
        "squeeze layer is not supported in imperative mode yet.")
Y
Yibing Liu 已提交
6512
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6513 6514
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6515
    helper.append_op(
6516
        type="squeeze2",
6517
        inputs={"X": input},
Y
Yibing Liu 已提交
6518
        attrs={"axes": axes},
6519 6520
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6521

6522 6523 6524
    return out


6525
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6526
    """
M
minqiyang 已提交
6527 6528 6529
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6530

M
minqiyang 已提交
6531
    For example:
H
haowang101779990 已提交
6532 6533 6534

    .. code-block:: text

M
minqiyang 已提交
6535
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6536
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6537

Y
Yibing Liu 已提交
6538
    Args:
6539
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6540
        axes (list): List of integers, indicating the dimensions to be inserted.
6541
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6542 6543 6544 6545 6546 6547 6548 6549

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6550
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6551 6552
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6553 6554
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6555
    helper.append_op(
6556
        type="unsqueeze2",
6557
        inputs={"X": input},
Y
Yibing Liu 已提交
6558
        attrs={"axes": axes},
6559 6560
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6561

6562 6563
    return out

6564

Y
yangyaming 已提交
6565
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6566
    """
Y
Yibing Liu 已提交
6567
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6568 6569 6570 6571
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6572
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6573 6574 6575 6576 6577 6578

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6579
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6580 6581 6582
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6583
            target_lod: [4, 2]
Y
yangyaming 已提交
6584 6585

            then we get a 1-level LoDTensor:
6586
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6587 6588 6589 6590 6591 6592
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6593
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6594 6595 6596 6597
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6598
                y.data = [[2, 4]]
Y
yangyaming 已提交
6599 6600 6601
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6602
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6603 6604 6605 6606 6607 6608
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6609
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6610 6611 6612 6613
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6614
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6615 6616 6617 6618
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6619
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6620 6621 6622 6623 6624
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6625
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6626
                           from :attr:`y`.
Y
yangyaming 已提交
6627
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6628
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6629 6630

    Returns:
Y
Yibing Liu 已提交
6631
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6632 6633

    Raises:
Y
Yibing Liu 已提交
6634
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6635 6636 6637 6638 6639 6640 6641 6642 6643

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6644
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6670
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6699 6700
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6713 6714 6715
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6729 6730 6731 6732


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6733
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6734
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6735

G
guosheng 已提交
6736 6737 6738 6739
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6762
                         The length of :attr:paddings must be
G
guosheng 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6773

G
guosheng 已提交
6774 6775 6776 6777 6778 6779
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6780
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6781 6782 6783 6784 6785 6786 6787
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6788 6789


C
chengduo 已提交
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6821 6822
		And
            pad_value = -1,
C
chengduo 已提交
6823

T
Tink_Y 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6859
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6860 6861 6862 6863 6864 6865 6866 6867 6868
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6869 6870 6871 6872 6873 6874 6875
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6876 6877
    called label-smoothing regularization (LSR).

6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6901
                              be :math:`(1, class\_num)`.
6902 6903
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6904
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6924
    smooth_label = helper.create_variable_for_type_inference(dtype)
6925 6926 6927 6928 6929 6930 6931
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6932 6933


W
wopeizl 已提交
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6970 6971


J
jerrywgz 已提交
6972 6973 6974 6975 6976 6977
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6978 6979
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6996 6997 6998
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6999 7000 7001 7002 7003 7004
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7005
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7046 7047
        .. code-block:: python

W
whs 已提交
7048 7049 7050 7051
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7052
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7053 7054 7055 7056 7057 7058
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7059 7060


7061 7062 7063 7064
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7065
                 resample='BILINEAR',
7066 7067
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7068
                 align_mode=1):
7069
    """
Q
qiaolongfei 已提交
7070
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7071

7072
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7073 7074 7075
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7076

7077
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7078

7079
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7080

7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7091
    Align_corners and align_mode are optinal parameters,the calculation method 
7092 7093 7094 7095
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7096
    .. code-block:: text
7097

T
Tink_Y 已提交
7098
        For scale:
7099
          
T
Tink_Y 已提交
7100
            if align_corners = True && out_size > 1 :
7101

T
Tink_Y 已提交
7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7113

T
Tink_Y 已提交
7114 7115
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7116

T
Tink_Y 已提交
7117 7118
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7119

T
Tink_Y 已提交
7120 7121
          else:
              align_corners = True
7122

T
Tink_Y 已提交
7123 7124
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7125

T
Tink_Y 已提交
7126 7127
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7128

T
Tink_Y 已提交
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7139

T
Tink_Y 已提交
7140 7141 7142 7143
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7144

T
Tink_Y 已提交
7145 7146
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7147 7148 7149 7150 7151 7152 7153 7154 7155

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7156
    Args:
7157
        input (Variable): The input tensor of image resize layer,
7158 7159
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7160
        out_shape(list|tuple|Variable|None): Output shape of image resize
7161 7162
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7163
        scale(float|None): The multiplier for the input height or width.
7164 7165 7166
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7167 7168
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7169
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7170
                       currently.
7171
                       Default: 'BILINEAR'
7172 7173 7174
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7175
                                :attr:`out_shape` and :attr:`scale` specifying
7176 7177 7178 7179 7180 7181 7182
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7183 7184
                                constructing stage.
                                Default: None
7185 7186 7187 7188
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7189
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7190 7191
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7192 7193

    Returns:
Q
update  
qiaolongfei 已提交
7194 7195
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7196

7197 7198 7199
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7200
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7201 7202 7203
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7204 7205
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7206

7207 7208 7209
    Examples:
        .. code-block:: python

7210
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7211
    """
7212 7213 7214 7215
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7216 7217
    if resample not in resample_methods:
        raise ValueError(
7218
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7219
        )
7220
    resample_type = resample_methods[resample]
7221 7222 7223 7224 7225 7226

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7227
    if out_shape is None and scale is None:
7228
        raise ValueError("One of out_shape and scale must not be None.")
7229
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7230
    dtype = helper.input_dtype()
7231 7232 7233 7234

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7235 7236 7237
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7238
    if out_shape is not None:
7239 7240 7241 7242
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7243
            inputs['OutSize'] = out_shape
7244 7245 7246 7247 7248 7249 7250 7251
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7252 7253 7254 7255
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7256 7257 7258 7259 7260
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7261
    out = helper.create_variable_for_type_inference(dtype)
7262
    helper.append_op(
7263
        type='{}_interp'.format(resample_type),
7264
        inputs=inputs,
7265
        outputs={"Out": out},
7266 7267 7268 7269 7270 7271 7272
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7273
    return out
F
stash  
fengjiayi 已提交
7274 7275


7276
@templatedoc(op_type="bilinear_interp")
7277 7278 7279 7280
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7281 7282
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7283
                    align_mode=1):
7284
    """
7285 7286
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7287 7288
    in priority order.

7289 7290 7291 7292
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7293 7294
    again in the other direction.

7295
    For details of bilinear interpolation, please refer to Wikipedia:
7296
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7297

T
tink2123 已提交
7298
    Align_corners and align_mode are optinal parameters,the calculation 
7299 7300 7301 7302
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7303
    .. code-block:: text
7304

T
Tink_Y 已提交
7305
        For scale:
7306
          
T
Tink_Y 已提交
7307
            if align_corners = True && out_size > 1 :
7308

T
Tink_Y 已提交
7309 7310 7311 7312 7313
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7314

T
Tink_Y 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7325 7326


T
Tink_Y 已提交
7327
          else:
T
tink2123 已提交
7328

T
Tink_Y 已提交
7329 7330
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7331

T
Tink_Y 已提交
7332 7333
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7334 7335 7336



Y
yuyang18 已提交
7337 7338 7339 7340
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7341

Y
yuyang18 已提交
7342 7343 7344 7345 7346
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7347 7348 7349
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7350
                                :attr:`out_shape` and :attr:`scale` specifying
7351 7352 7353 7354 7355 7356 7357
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7358 7359
                                constructing stage.
                                Default: None
7360 7361
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7362 7363 7364

    Returns:
        ${out_comment}.
7365 7366 7367 7368 7369

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7370 7371
    """

7372 7373
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7374 7375


7376
@templatedoc(op_type="nearest_interp")
7377 7378 7379 7380
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7381 7382
                   actual_shape=None,
                   align_corners=True):
7383
    """
7384
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7385 7386
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7387 7388
    out_shape and scale in priority order.

7389 7390
    Example:

T
Tink_Y 已提交
7391 7392 7393 7394 7395
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7396

T
Tink_Y 已提交
7397 7398 7399 7400 7401 7402 7403 7404
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7405
          
T
Tink_Y 已提交
7406 7407
          if:
              align_corners = False
7408

T
Tink_Y 已提交
7409 7410
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7411

T
Tink_Y 已提交
7412 7413
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7414

T
Tink_Y 已提交
7415 7416
          else:
              align_corners = True
7417

T
Tink_Y 已提交
7418 7419
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7420

T
Tink_Y 已提交
7421 7422
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7423 7424


7425
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7426
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7427 7428 7429 7430 7431

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7432

Y
yuyang18 已提交
7433 7434 7435 7436 7437
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7438 7439 7440
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7441
                                :attr:`out_shape` and :attr:`scale` specifying
7442 7443 7444 7445 7446 7447 7448
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7449 7450
                                constructing stage.
                                Default: None
7451
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7452 7453 7454

    Returns:
        ${out_comment}.
7455 7456 7457 7458 7459

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7460 7461
    """

7462 7463
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7464 7465 7466 7467


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7468 7469 7470
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7471 7472 7473 7474 7475 7476 7477
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7478
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7479

7480
    Returns:
Q
update  
qiaolongfei 已提交
7481
        Variable: The output is a 4-D tensor of the shape
7482
        (num_batches, channls, out_h, out_w).
7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7493 7494 7495
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7496 7497 7498
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7499 7500
def gather(input, index):
    """
Q
qiaolongfei 已提交
7501 7502
    **Gather Layer**

7503
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7504 7505 7506 7507
    of X indexed by `index` and concatenate them together.

    .. math::

7508
        Out = X[Index]
W
whs 已提交
7509 7510 7511 7512 7513 7514 7515


    .. code-block:: text


                Given:

7516 7517
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7528
        input (Variable): The source input with rank>=1.
W
whs 已提交
7529 7530 7531 7532 7533 7534
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7535

W
whs 已提交
7536 7537 7538 7539 7540 7541
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7542
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7543 7544 7545 7546 7547 7548 7549 7550
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7582
    out = helper.create_variable_for_type_inference(dtype)
7583 7584 7585 7586 7587 7588 7589 7590 7591
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7592 7593 7594 7595 7596 7597 7598 7599 7600
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7601

Q
Qingsheng Li 已提交
7602
    Given the following input:
H
haowang101779990 已提交
7603

Q
Qingsheng Li 已提交
7604
    .. code-block:: text
H
haowang101779990 已提交
7605

Q
Qingsheng Li 已提交
7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7618

Q
Qingsheng Li 已提交
7619
    .. code-block:: text
H
haowang101779990 已提交
7620

Q
Qingsheng Li 已提交
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7636
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7647
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7648 7649 7650 7651 7652 7653 7654 7655 7656
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7670

7671 7672 7673
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7674
    """
F
stash  
fengjiayi 已提交
7675
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7676
    dtype = x.dtype
X
Xin Pan 已提交
7677
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7678
    if seed is None:
7679
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7680
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7681
    if isinstance(seed, int):
F
fengjiayi 已提交
7682 7683 7684 7685 7686
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7687 7688 7689 7690
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7691
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7692 7693
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7694 7695
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7696
    return out
W
whs 已提交
7697 7698


7699
def log(x, name=None):
W
wanghaoshuang 已提交
7700 7701 7702 7703 7704
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7705
        Out = \\ln(x)
W
wanghaoshuang 已提交
7706 7707

    Args:
7708
        x (Variable): Input tensor.
7709 7710
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7711 7712 7713 7714 7715 7716 7717 7718

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7719
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7720 7721
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7722
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7723
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7724
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7725 7726 7727
    return out


7728
def relu(x, name=None):
W
wanghaoshuang 已提交
7729 7730
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7731
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7732 7733 7734 7735
    the tensor elementwise.

    .. math::

7736
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7737 7738

    Args:
7739
        x (Variable): The input tensor.
7740 7741
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7742 7743 7744 7745 7746 7747 7748 7749

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7750
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7751 7752
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7753
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7754
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7755 7756
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7757
    return out
7758 7759


C
chengduo 已提交
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7801 7802 7803
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7804 7805 7806 7807
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7808
    .. math::
7809

H
haowang101779990 已提交
7810
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7811

7812
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7813 7814 7815 7816 7817
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7818
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7819
                           Its shape should be the same as input.
7820
        num_classes (int): The possible number of labels.
W
whs 已提交
7821 7822

    Returns:
M
minqiyang 已提交
7823 7824
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7825
                     Three variables:
M
minqiyang 已提交
7826

H
haowang101779990 已提交
7827 7828 7829
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7830 7831 7832 7833

    Examples:

        .. code-block:: python
7834

W
whs 已提交
7835 7836 7837 7838
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7839 7840 7841
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7842 7843
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7844 7845
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7846
        outputs={
W
whs 已提交
7847 7848 7849
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7850 7851 7852
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7921
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7922 7923 7924 7925 7926

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7927
            isinstance(shape, Variable)):
7928 7929 7930 7931 7932
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7933
    out = helper.create_variable_for_type_inference(x.dtype)
7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7951 7952


W
whs 已提交
7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7970

W
whs 已提交
7971
              out_shape = [2, 3, 5, 5]
7972

W
whs 已提交
7973
          Step 1:
7974

W
whs 已提交
7975 7976 7977
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7978

W
whs 已提交
7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
8024
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
8025
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8038

W
whs 已提交
8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8050
            isinstance(out_shape, Variable)):
W
whs 已提交
8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8072 8073
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8074

8075 8076
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8077
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8078 8079 8080
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8081

8082 8083
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8084

H
haowang101779990 已提交
8085 8086
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8087 8088
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8089

H
haowang101779990 已提交
8090 8091 8092 8093 8094 8095 8096 8097
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8098 8099 8100

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8135
    out = helper.create_variable_for_type_inference("float32")
8136 8137 8138 8139 8140 8141 8142 8143

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8144 8145


M
minqiyang 已提交
8146 8147
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8148
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8149
    which compares left score and right score passed in.
M
minqiyang 已提交
8150
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8151 8152 8153

    .. math::

H
haowang101779990 已提交
8154
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8155 8156

    Args:
M
minqiyang 已提交
8157
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8158 8159
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8160
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8161 8162
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8163

M
minqiyang 已提交
8164
    Returns:
M
minqiyang 已提交
8165
       Variable: The ranking loss.
H
haowang101779990 已提交
8166

M
minqiyang 已提交
8167
    Raises:
M
minqiyang 已提交
8168
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8169

M
minqiyang 已提交
8170
    Examples:
H
haowang101779990 已提交
8171

M
minqiyang 已提交
8172
        .. code-block:: python
H
haowang101779990 已提交
8173

M
minqiyang 已提交
8174 8175 8176 8177 8178
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8179
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8180 8181 8182 8183 8184 8185
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8186 8187
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8211
        .. code-block:: text
W
whs 已提交
8212

T
Tink_Y 已提交
8213
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8214

T
Tink_Y 已提交
8215 8216
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8217

T
Tink_Y 已提交
8218
	      Case 0:
M
minqiyang 已提交
8219

T
Tink_Y 已提交
8220 8221 8222
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8223

T
Tink_Y 已提交
8224 8225 8226
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8227

T
Tink_Y 已提交
8228
	      Case 1:
M
minqiyang 已提交
8229

T
Tink_Y 已提交
8230 8231
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8232

T
Tink_Y 已提交
8233 8234 8235
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8236

T
Tink_Y 已提交
8237
	      Case 2:
M
minqiyang 已提交
8238

T
Tink_Y 已提交
8239 8240
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8241

T
Tink_Y 已提交
8242 8243 8244
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8245 8246


W
whs 已提交
8247 8248
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8249
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8273
    out = helper.create_variable_for_type_inference(dtype)
8274 8275 8276 8277 8278 8279 8280 8281 8282
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8283
    helper.append_op(
8284
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8285 8286 8287 8288

    return out


8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8301 8302 8303 8304 8305

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8306 8307
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8308 8309
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8310
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8331 8332 8333 8334 8335

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8336 8337
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8338 8339
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8340
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8361 8362 8363 8364 8365

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8366 8367
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8368 8369
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8370
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8392 8393 8394 8395 8396

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8397
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8398
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8399 8400
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8401
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8424 8425 8426 8427 8428

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8429 8430
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8431 8432
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8433
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8455 8456 8457 8458 8459

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8460 8461
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8462 8463
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8464
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8465 8466 8467 8468 8469 8470 8471 8472
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8473 8474 8475 8476
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8477 8478
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8479 8480 8481

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8482
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8483
          weight (alpha).
J
jerrywgz 已提交
8484
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8485 8486 8487
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8488
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8489
          will be named automatically.
J
jerrywgz 已提交
8490 8491 8492 8493 8494 8495 8496 8497

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8498
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8512
        attr=helper.param_attr,
J
jerrywgz 已提交
8513 8514 8515 8516
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8517
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8518 8519 8520 8521 8522 8523 8524 8525 8526
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8527 8528 8529 8530 8531 8532 8533 8534 8535 8536
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8537
    Returns:
8538
        output(${out_type}): ${out_comment}
8539 8540 8541

    Examples:

8542
    .. code-block:: python
8543

H
haowang101779990 已提交
8544 8545
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8546 8547
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8548
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8567
    Returns:
8568
        output(${out_type}): ${out_comment}
8569 8570 8571 8572 8573

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8574 8575
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8576 8577
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8578
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8596
    Returns:
8597
        output(${out_type}): ${out_comment}
8598 8599 8600 8601 8602

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8603 8604
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8605 8606
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8607
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8608 8609 8610 8611 8612 8613 8614 8615
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8616 8617 8618 8619
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8620

H
haowang101779990 已提交
8621
    For Example:
M
minqiyang 已提交
8622

H
haowang101779990 已提交
8623
    .. code-block:: text
8624

H
haowang101779990 已提交
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8646 8647 8648

    Args:
        x (Variable): A tensor of rank >= axis.
8649 8650
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8651 8652 8653 8654 8655 8656 8657 8658
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8659 8660 8661
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8662 8663 8664 8665
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8666
        ValueError: If axis is not in range [0, rank(x)].
8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8683 8684
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8685
    helper.append_op(
8686
        type='flatten2',
8687
        inputs={"X": x},
8688 8689
        outputs={'Out': out,
                 'XShape': x_shape},
8690 8691
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8692 8693


C
chenweihang 已提交
8694
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8695
    """
C
chenweihang 已提交
8696
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8697
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8698 8699
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8700

H
haowang101779990 已提交
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8718 8719

    Args:
C
chenweihang 已提交
8720 8721 8722
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8734 8735
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8736 8737 8738 8739 8740 8741
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8742
    return out
8743

8744

S
sneaxiy 已提交
8745 8746 8747 8748 8749 8750 8751 8752 8753
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8754

S
sneaxiy 已提交
8755
    .. math::
8756

S
sneaxiy 已提交
8757 8758 8759
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8760
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8761 8762 8763 8764
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8765 8766 8767
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8768 8769
    Returns:
        Variable: The output sequence mask.
8770

S
sneaxiy 已提交
8771 8772
    """

Q
qingqing01 已提交
8773
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8774
    if name is None:
X
Xin Pan 已提交
8775
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8776
    else:
X
Xin Pan 已提交
8777
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8778

Q
qingqing01 已提交
8779 8780 8781
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8782 8783
        outputs={'Y': out},
        attrs={
8784
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8785 8786 8787
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8788 8789


X
Xin Pan 已提交
8790
def stack(x, axis=0):
S
sneaxiy 已提交
8791 8792 8793 8794
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8795 8796 8797 8798 8799 8800 8801

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8802
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8803
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8804

C
chengduozh 已提交
8805 8806
    For Example:

C
chengduozh 已提交
8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8845
    Args:
8846
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8847
        axis (int|None): The axis along which all inputs are stacked.
8848

S
sneaxiy 已提交
8849 8850
    Returns:
        Variable: The stacked variable.
8851

S
sneaxiy 已提交
8852 8853
    """

X
Xin Pan 已提交
8854 8855 8856 8857 8858 8859
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8860
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8861
    helper.append_op(
S
sneaxiy 已提交
8862 8863
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8864

X
Xin Pan 已提交
8865
    return out
D
dzhwinter 已提交
8866 8867 8868 8869 8870 8871 8872


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8873

D
dzhwinter 已提交
8874 8875 8876
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8877
    raised.
D
dzhwinter 已提交
8878 8879

    Args:
M
minqiyang 已提交
8880
        x (Variable): Input variable.
D
dzhwinter 已提交
8881 8882
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8883

D
dzhwinter 已提交
8884 8885
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8886

D
dzhwinter 已提交
8887 8888 8889 8890 8891 8892 8893 8894 8895 8896
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8897
    for _ in range(num):
X
Xin Pan 已提交
8898
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8899 8900 8901 8902 8903 8904 8905 8906

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8919

W
whs 已提交
8920 8921 8922 8923
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8924

W
whs 已提交
8925
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8926

W
whs 已提交
8927
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8928

W
whs 已提交
8929 8930 8931 8932
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8933

W
whs 已提交
8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8950
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8951 8952 8953 8954 8955 8956
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8957 8958


G
fix  
gongweibao 已提交
8959 8960 8961
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8962
@templatedoc()
G
fix  
gongweibao 已提交
8963 8964 8965 8966 8967 8968 8969 8970 8971
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8972
    ${comment}
G
fix  
gongweibao 已提交
8973 8974

    Args:
G
gongweibao 已提交
8975 8976 8977
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8978
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8979 8980 8981
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8982 8983
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8984
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8985

8986 8987 8988 8989 8990
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8991 8992 8993
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8994
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
9011 9012


G
gongweibao 已提交
9013
@templatedoc()
X
Xin Pan 已提交
9014
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9015
    """
G
gongweibao 已提交
9016
    ${comment}
G
fix  
gongweibao 已提交
9017 9018

    Args:
G
gongweibao 已提交
9019 9020 9021 9022
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9023 9024 9025
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
9026
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9027

9028 9029 9030 9031
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
9032 9033 9034
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
9035
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9046
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9047 9048 9049 9050 9051
        })

    return out


G
gongweibao 已提交
9052
@templatedoc()
G
fix  
gongweibao 已提交
9053
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9054
    """
G
gongweibao 已提交
9055
    ${comment}
G
fix  
gongweibao 已提交
9056 9057

    Args:
G
gongweibao 已提交
9058 9059 9060 9061
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9062
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9063 9064

    Returns:
G
gongweibao 已提交
9065
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9066

9067 9068 9069 9070 9071 9072 9073 9074 9075 9076
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9077 9078 9079
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9080
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9092
@templatedoc()
G
fix  
gongweibao 已提交
9093 9094 9095 9096 9097 9098 9099 9100 9101
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9102
    ${comment}
G
fix  
gongweibao 已提交
9103 9104

    Args:
G
gongweibao 已提交
9105 9106
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9107
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9108 9109 9110 9111
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9112
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9113 9114

    Returns:
G
gongweibao 已提交
9115
        out (Variable): ${out_comment}
9116 9117 9118 9119 9120 9121 9122 9123

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9124 9125 9126
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9127
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9146
@templatedoc()
X
Xin Pan 已提交
9147
def sum(x):
G
fix  
gongweibao 已提交
9148
    """
G
gongweibao 已提交
9149
    ${comment}
G
fix  
gongweibao 已提交
9150 9151

    Args:
G
gongweibao 已提交
9152
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9153 9154

    Returns:
G
gongweibao 已提交
9155
        out (Variable): ${out_comment}
9156 9157 9158 9159 9160 9161

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9162 9163 9164
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9165 9166
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9167 9168 9169 9170
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9171
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9172 9173 9174 9175

    return out


G
gongweibao 已提交
9176
@templatedoc()
G
fix  
gongweibao 已提交
9177 9178
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9179
    ${comment}
G
fix  
gongweibao 已提交
9180 9181

    Args:
G
gongweibao 已提交
9182 9183 9184 9185
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9186 9187

    Returns:
G
gongweibao 已提交
9188
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9189

9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9201 9202 9203
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9204 9205
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9219 9220
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9221
    Get the shape of the input.
G
fix  
gongweibao 已提交
9222 9223

    Args:
C
chengduozh 已提交
9224
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9225 9226

    Returns:
C
fix doc  
chengduozh 已提交
9227
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9228

9229 9230 9231 9232 9233 9234
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9235 9236 9237
    """

    helper = LayerHelper('shape', **locals())
9238
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9239
    helper.append_op(
G
fix  
gongweibao 已提交
9240
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9241 9242

    return out
G
merge  
gongweibao 已提交
9243 9244


S
sneaxiy 已提交
9245 9246 9247 9248
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
9249 9250 9251 9252
    if _in_imperative_mode():
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9253 9254 9255 9256
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9257 9258
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9259
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9260 9261 9262
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9263

S
sneaxiy 已提交
9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9275
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9276 9277 9278 9279 9280 9281 9282 9283
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9284
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9285
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9286 9287 9288 9289 9290 9291

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9292
    if name is None:
X
Xin Pan 已提交
9293
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9294 9295 9296
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9297 9298 9299 9300 9301 9302 9303 9304 9305 9306

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9307
    return helper.append_activation(out)
S
sneaxiy 已提交
9308 9309


X
Xin Pan 已提交
9310
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9311 9312 9313
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9314
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9315 9316 9317
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9318
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9319 9320 9321
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9322
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9323 9324 9325
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9326
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9327 9328 9329
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9330
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9331 9332 9333
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9334
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9335 9336 9337
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9338 9339 9340 9341 9342 9343 9344 9345
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9346
for func in [
9347 9348 9349 9350 9351 9352 9353 9354 9355
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9356 9357 9358 9359 9360
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9361 9362
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9363
        ])
M
minqiyang 已提交
9364 9365


9366
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9367 9368
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9369 9370
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9371 9372 9373

    if out is None:
        if name is None:
X
Xin Pan 已提交
9374
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9390
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9402 9403 9404 9405 9406 9407 9408 9409 9410

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9411 9412 9413 9414 9415 9416 9417
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9418
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9430 9431 9432 9433 9434 9435 9436 9437 9438

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9439 9440 9441 9442 9443 9444 9445
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9446
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9458 9459 9460 9461 9462 9463 9464 9465 9466

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9467 9468 9469 9470 9471 9472 9473
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9474
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9475 9476 9477 9478 9479 9480 9481 9482 9483 9484
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9485 9486 9487 9488 9489 9490 9491

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9492 9493 9494 9495
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9511 9512 9513 9514 9515 9516 9517

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9518 9519 9520 9521 9522
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9523 9524 9525 9526
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9550 9551 9552 9553 9554 9555 9556

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9557 9558 9559 9560 9561
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9562 9563 9564 9565
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9566 9567 9568 9569 9570 9571 9572 9573

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9592
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9645
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9646 9647 9648 9649 9650 9651 9652 9653 9654
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9655 9656
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9657 9658 9659 9660 9661 9662
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9663 9664 9665
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9666 9667
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9668 9669 9670 9671 9672 9673
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9674
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9675
        name(basestring|None): Name of the output.
9676 9677
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9678 9679 9680

    Returns:
        out(${out_type}): ${out_comment}
9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9695 9696 9697 9698 9699
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9700
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9701 9702 9703 9704 9705 9706 9707 9708
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9709 9710
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9731
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9732 9733 9734 9735 9736 9737 9738 9739 9740 9741
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9742 9743


J
JiabinYang 已提交
9744
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9745
    """
J
JiabinYang 已提交
9746
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9747 9748 9749

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9750
    The attr blocksize indicates the input block size.
9751 9752

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9753
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9754 9755

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9756
    (but keeping all data)
J
JiabinYang 已提交
9757

J
JiabinYang 已提交
9758
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9759
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9760 9761 9762 9763 9764
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9765
    Args:
J
JiabinYang 已提交
9766
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9767
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9768 9769

    Returns:
J
JiabinYang 已提交
9770
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9771 9772

    Raises:
J
JiabinYang 已提交
9773
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9774 9775 9776 9777 9778 9779

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
9780
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9781
                x=data, blocksize=2)
J
JiabinYang 已提交
9782 9783
    """

J
JiabinYang 已提交
9784
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9785

J
JiabinYang 已提交
9786 9787
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9788 9789

    if name is None:
J
JiabinYang 已提交
9790 9791
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9792 9793 9794 9795 9796
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9797
        type="space_to_depth",
J
JiabinYang 已提交
9798
        inputs={"X": x},
J
JiabinYang 已提交
9799
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9800
        outputs={"Out": out})
J
JiabinYang 已提交
9801 9802
    return out

J
JiabinYang 已提交
9803

S
sneaxiy 已提交
9804 9805
@templatedoc()
def sequence_reverse(x, name=None):
9806
    """
S
sneaxiy 已提交
9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9818
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9819 9820 9821 9822 9823 9824 9825 9826 9827 9828
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9829 9830


9831 9832 9833 9834 9835 9836
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9837 9838 9839 9840 9841
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9842

9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9855
        act (str, default None): Activation to be applied to the output of this layer.
9856 9857 9858 9859 9860 9861 9862

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9863
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9875
    return helper.append_activation(out)
9876 9877


B
barrierye 已提交
9878
def similarity_focus(input, axis, indexes, name=None):
9879
    """
B
barrierye 已提交
9880
    SimilarityFocus Operator
B
barrierye 已提交
9881 9882

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9883

9884 9885 9886
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9887
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9888 9889 9890 9891 9892 9893 9894
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9895
       each index.
B
barrierye 已提交
9896 9897 9898 9899
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9949
    Args:
9950
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9951
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9952
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9953
            1, 2 or 3.
B
barrierye 已提交
9954
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9955 9956

    Returns:
H
haowang101779990 已提交
9957 9958
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9959

B
barrierye 已提交
9960 9961
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9962

B
barrierye 已提交
9963
            data = fluid.layers.data(
B
barrierye 已提交
9964 9965
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9966

B
barrierye 已提交
9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9979 9980 9981 9982 9983
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9984 9985 9986 9987 9988 9989 9990
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9991 9992


M
minqiyang 已提交
9993 9994
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9995 9996
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9997 9998
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10037
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10038
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10039 10040 10041 10042 10043 10044

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10045

M
minqiyang 已提交
10046 10047 10048
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10049 10050
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10051 10052
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10053 10054 10055 10056 10057 10058 10059
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10060 10061


D
dengkaipeng 已提交
10062
@templatedoc()
10063 10064
def grid_sampler(x, grid, name=None):
    """
10065
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10066
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10067 10068 10069 10070
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10071
    interpolation value of 4 nearest corner points.
10072

H
haowang101779990 已提交
10073
    .. code-block:: text
10074

H
haowang101779990 已提交
10075 10076
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10077

H
haowang101779990 已提交
10078 10079
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10080

H
haowang101779990 已提交
10081 10082 10083
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10084

H
haowang101779990 已提交
10085 10086 10087 10088 10089 10090 10091 10092 10093
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10094

H
haowang101779990 已提交
10095 10096 10097 10098
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10099

H
haowang101779990 已提交
10100 10101 10102 10103
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10104

H
haowang101779990 已提交
10105 10106 10107 10108
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10109

H
haowang101779990 已提交
10110 10111
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10112 10113

    Args:
10114 10115 10116
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10117 10118

    Returns:
H
haowang101779990 已提交
10119
        Variable: Output of shape [N, C, H, W] data samples input X
10120 10121
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10122 10123 10124 10125 10126 10127 10128 10129
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10130

D
dengkaipeng 已提交
10131 10132 10133 10134 10135 10136 10137 10138 10139
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10140
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10141 10142
    ipts = {'X': x, 'Grid': grid}

10143
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10144 10145 10146
    return out


G
gmcather 已提交
10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10213
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10214 10215 10216 10217 10218 10219 10220
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10221

H
heqiaozhi 已提交
10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10236 10237 10238 10239
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10240
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10241 10242
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10243
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10244 10245

    .. math::
H
haowang101779990 已提交
10246 10247 10248
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10249 10250

    Where:
H
haowang101779990 已提交
10251 10252
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10267

G
gmcather 已提交
10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10284 10285 10286 10287 10288 10289 10290 10291 10292 10293


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10294
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10295

Q
Qiao Longfei 已提交
10296
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10297 10298 10299
    For example:

    .. math::
H
haowang101779990 已提交
10300
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10301

Q
Qiao Longfei 已提交
10302
    In this formula:
10303 10304
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10305
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10306
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10307 10308 10309
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10310 10311
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10312 10313 10314
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10315
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10316
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10317
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10318 10319 10320 10321
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10322
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10323 10324 10325 10326

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10327
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10328 10329
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10330
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10331 10332 10333 10334

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10335
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10376 10377


S
shippingwang 已提交
10378
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10379 10380
    """
    **Shuffle Channel Operator**
10381

S
shippingwang 已提交
10382 10383 10384 10385 10386 10387
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10388
    
S
shippingwang 已提交
10389
    .. code-block:: text
10390

S
shippingwang 已提交
10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10419
    Args: 
S
shippingwang 已提交
10420 10421
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10422 10423

    Returns:
S
shippingwang 已提交
10424 10425
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10426 10427

    Raises:
S
shippingwang 已提交
10428
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10429 10430 10431

    Examples:
        .. code-block:: python
10432 10433

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10434
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10435 10436 10437
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10438
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10439 10440 10441 10442 10443 10444 10445 10446 10447

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10448
    return out
S
Add  
shippingwang 已提交
10449 10450


S
sneaxiy 已提交
10451
class PyFuncRegistry(object):
S
sneaxiy 已提交
10452 10453 10454
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10455
        if func is None or not callable(func):
S
sneaxiy 已提交
10456 10457 10458
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10459
        # find named args using reflection
S
sneaxiy 已提交
10460 10461 10462 10463 10464 10465 10466
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10467 10468 10469
        '''
        Why record self here?

M
minqiyang 已提交
10470 10471
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10472
           to find the registered function corresponding
M
minqiyang 已提交
10473
           to :code:`idx`.
S
sneaxiy 已提交
10474

M
minqiyang 已提交
10475 10476
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10477
           whose reference count is 1 would cause
M
minqiyang 已提交
10478
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10479 10480
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10481
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10496 10497 10498 10499 10500 10501 10502 10503 10504
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10505

S
sneaxiy 已提交
10506 10507
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10508 10509

        ret = []
S
sneaxiy 已提交
10510 10511 10512
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10513 10514
                continue

S
sneaxiy 已提交
10515 10516
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10517

S
sneaxiy 已提交
10518 10519 10520
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10521

S
sneaxiy 已提交
10522
        return tuple(ret)
S
sneaxiy 已提交
10523 10524


S
sneaxiy 已提交
10525 10526 10527 10528
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10529

S
sneaxiy 已提交
10530 10531 10532 10533 10534 10535 10536 10537
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10538
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10539

S
sneaxiy 已提交
10540 10541
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10542 10543 10544 10545
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10546
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10547
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10548 10549
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10550 10551 10552 10553 10554
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10555
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10556
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10557
                                       None means no backward. Default None.
S
sneaxiy 已提交
10558
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10559
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10560 10561
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10562
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10563 10564 10565

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10566 10567

    Examples:
M
minqiyang 已提交
10568

S
sneaxiy 已提交
10569 10570 10571 10572 10573
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10574
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10575 10576
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10577
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10578 10579 10580
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10581
        >>>
S
sneaxiy 已提交
10582 10583 10584 10585 10586
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10587
        >>>     print(x)
S
sneaxiy 已提交
10588 10589 10590 10591 10592 10593
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10594
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10595 10596
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10597 10598
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10599 10600 10601 10602 10603 10604 10605 10606
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10607
    """
S
sneaxiy 已提交
10608
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10609 10610 10611
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10612
        x = [x]
S
sneaxiy 已提交
10613 10614
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10615

S
sneaxiy 已提交
10616 10617 10618
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10619
        out_list = [out]
S
sneaxiy 已提交
10620
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10621
        out_list = out
S
sneaxiy 已提交
10622 10623 10624
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10625

S
sneaxiy 已提交
10626 10627
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10628
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10629 10630

    for each_out in out_list:
S
sneaxiy 已提交
10631 10632
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10633 10634
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10635

S
sneaxiy 已提交
10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10651 10652 10653 10654

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10655 10656
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10657 10658 10659
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10660
        })
S
sneaxiy 已提交
10661
    return out
S
sneaxiy 已提交
10662 10663 10664


# For debug usage
S
sneaxiy 已提交
10665 10666 10667 10668
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10721

M
minqiyang 已提交
10722

M
minqiyang 已提交
10723
def huber_loss(input, label, delta):
10724
    """
M
minqiyang 已提交
10725 10726 10727
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10728 10729 10730 10731

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10732
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10733 10734 10735 10736

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10737
        huber\_loss = 0.5 * (label - input) * (label - input)
10738 10739 10740 10741 10742 10743 10744


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10745
        delta (float): The parameter of huber loss, which controls
10746 10747 10748
                       the range of outliers

    Returns:
M
minqiyang 已提交
10749
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10750 10751 10752 10753 10754

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10755
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10756
    """
M
minqiyang 已提交
10757
    helper = LayerHelper('huber_loss', **locals())
10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838


@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10839 10840


C
ceci3 已提交
10841
from .ops import square
C
ceci3 已提交
10842
from .control_flow import equal
C
ceci3 已提交
10843 10844


C
ceci3 已提交
10845 10846 10847
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10848

C
ceci3 已提交
10849
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10850 10851

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10852
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10853 10854 10855 10856 10857
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10858 10859
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10860 10861 10862 10863 10864 10865 10866

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10867 10868 10869 10870 10871 10872 10873 10874
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10875 10876 10877 10878 10879 10880 10881
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10882
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10883 10884
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10885 10886
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10887 10888 10889 10890
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10891 10892 10893
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10894 10895 10896
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939


def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out