pybind.cc 125.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cctype>
18
#include <cstdlib>
19
#include <iterator>
C
chengduoZH 已提交
20
#include <map>
S
sneaxiy 已提交
21
#include <memory>
C
chengduoZH 已提交
22 23
#include <mutex>  // NOLINT // for call_once
#include <string>
24 25
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
26
#include <unordered_map>
27
#include <unordered_set>
C
chengduoZH 已提交
28 29
#include <utility>
#include <vector>
30

31
#include "paddle/fluid/framework/custom_operator.h"
32
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
33 34
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
35
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
36
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
37
#include "paddle/fluid/framework/io/fs.h"
38
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
39
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
40 41 42
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/op_info.h"
44
#include "paddle/fluid/framework/op_registry.h"
45
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
49
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
51
#include "paddle/fluid/framework/selected_rows.h"
52
#include "paddle/fluid/framework/tensor_util.h"
53
#include "paddle/fluid/framework/trainer.h"
54
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
55
#include "paddle/fluid/framework/version.h"
H
hong 已提交
56
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
57
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
58
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
59
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
60
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/operators/py_func_op.h"
62
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
63
#include "paddle/fluid/platform/cpu_info.h"
64
#include "paddle/fluid/platform/device_context.h"
65
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
66
#include "paddle/fluid/platform/enforce.h"
67
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
68
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
69 70
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
71 72 73
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
74
#include "paddle/fluid/pybind/box_helper_py.h"
75
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
76
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
77
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
78
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
79
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
80
#include "paddle/fluid/pybind/generator_py.h"
81
#include "paddle/fluid/pybind/global_value_getter_setter.h"
82
#include "paddle/fluid/pybind/gloo_context_py.h"
83
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
84
#include "paddle/fluid/pybind/heter_wrapper_py.h"
85
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
86
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
87
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
88
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
89
#include "paddle/fluid/pybind/pybind_boost_headers.h"
90

91
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
92
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
93
#endif
94
#include "paddle/fluid/framework/data_type.h"
95 96
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
97
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
98
#include "paddle/fluid/pybind/tensor_py.h"
99
#include "paddle/fluid/string/to_string.h"
100 101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
102
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
103
#endif
104
#ifndef PADDLE_WITH_HIP
Y
Yi Wang 已提交
105
#include "paddle/fluid/platform/cuda_profiler.h"
106
#endif
Y
Yi Wang 已提交
107
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
108 109
#endif

110 111
#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/platform/npu_info.h"
112
#include "paddle/fluid/platform/npu_profiler.h"
113 114
#endif

115 116 117 118
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
119 120 121 122
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
123
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
124 125 126
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
127 128
#include "pybind11/stl.h"

129
DECLARE_bool(use_mkldnn);
130

Q
Qiao Longfei 已提交
131 132
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
133 134 135
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
136

137
namespace paddle {
138
namespace pybind {
139
bool IsCompiledWithCUDA() {
140 141 142 143 144 145 146 147 148
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
149 150 151 152 153 154
  return false;
#else
  return true;
#endif
}

155 156 157 158 159 160 161 162
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

163 164 165 166 167 168 169 170
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

171 172 173 174 175 176 177 178
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

179 180 181 182 183 184 185 186
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

187 188 189 190 191 192 193 194 195 196 197
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

198 199 200 201 202 203 204 205 206 207 208
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
// According to the input `place` and `dtype`, this function returns a tuple
// consists of three sets:
// 1) All operators registered in the Paddle framework.
// 2) All operators supported for `place` and `dtype`.
// 3) All operators unsupported for `place` and `dtype`.
// The input `place` is a type of string, which can only be `GPU` or `CPU`.
// The input `dtype` is a type of paddle::framework::proto::VarType::Type,
// which can be paddle::framework::proto::VarType::FP16,
// paddle::framework::proto::VarType::FP32 and so on.
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
           std::unordered_set<std::string>>
OpSupportedInfos(const std::string &place,
                 framework::proto::VarType::Type dtype) {
  std::string query_place;
  std::transform(place.begin(), place.end(), std::back_inserter(query_place),
                 [](unsigned char c) { return std::toupper(c); });
  using fn_type = std::add_pointer<bool(const platform::Place &)>::type;
  std::unordered_map<std::string, fn_type> is_target_place{
      {"GPU", &platform::is_gpu_place}, {"CPU", &platform::is_cpu_place},
  };
  PADDLE_ENFORCE_NE(
      is_target_place.count(query_place), 0,
      platform::errors::InvalidArgument(
          "The argument `place` should be 'GPU' or 'CPU', but get '%s'.",
          place));

  std::unordered_set<std::string> all_ops;
  const auto &op_info = framework::OpInfoMap::Instance().map();
  for (auto it = op_info.begin(); it != op_info.end(); it++) {
    all_ops.emplace(it->first);
  }

  std::unordered_set<std::string> supported_ops;
  auto &all_kernels = framework::OperatorWithKernel::AllOpKernels();
  for (auto it = all_kernels.begin(); it != all_kernels.end(); it++) {
    for (auto &kernel_type : it->second) {
      if (is_target_place[query_place](kernel_type.first.place_) &&
          kernel_type.first.data_type_ == dtype) {
        supported_ops.emplace(it->first);
      }
    }
  }

  std::unordered_set<std::string> unsupported_ops;
  for (auto &op : all_ops) {
    if (!supported_ops.count(op)) {
      unsupported_ops.emplace(op);
    }
  }

  VLOG(4) << "-- The size of all_ops: " << all_ops.size() << " --";
  VLOG(4) << "-- The size of supported_ops: " << supported_ops.size() << " --";
  VLOG(4) << "-- The size of unsupported_ops: " << unsupported_ops.size()
          << " --";
  return std::make_tuple(std::move(all_ops), std::move(supported_ops),
                         std::move(unsupported_ops));
}

267
bool IsCompiledWithBrpc() {
268
#ifndef PADDLE_WITH_DISTRIBUTE
269 270
  return false;
#endif
271
  return true;
272 273
}

Y
update  
Yancey1989 已提交
274
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
275
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
276 277 278 279 280 281
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
282 283 284 285 286 287 288 289 290 291
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
314 315 316
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
330 331
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
332 333
    }
    vec_res.emplace_back(
334
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
347 348
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
349 350 351 352 353 354 355 356 357 358 359 360
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
361 362 363
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
364 365 366 367
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
368 369
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
370 371 372 373
  }
  return vec_res;
}

374 375 376 377 378 379 380 381
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
382 383
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
384 385 386 387 388 389 390 391 392 393 394 395 396
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
397 398 399
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
400 401 402 403 404
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
405 406 407 408 409
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
410 411
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
412 413 414
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
415 416 417 418 419 420 421 422 423
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
424 425
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
426 427 428 429 430
  }

  return;
}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

455 456 457 458 459 460
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
461 462 463
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
464
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
465

466 467
  AssertStaticGraphAndDygraphGradMakerNoDiff();

468
  m.doc() = "C++ core of PaddlePaddle";
469

470 471 472 473
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

474
  BindException(&m);
Y
Yu Yang 已提交
475

476 477
  m.def("set_num_threads", &platform::SetNumThreads);

478
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
479 480 481
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
482 483 484 485 486
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
487
    framework::Tensor tensor;
6
633WHU 已提交
488 489 490 491

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
492
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
6
633WHU 已提交
493 494 495 496 497 498
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
  m.def("_save_lod_tensor", [](const LoDTensor &tensor,
                               const std::string &str_file_name) {
    std::ofstream fout(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(static_cast<bool>(fout), true,
                      platform::errors::Unavailable(
                          "Cannot open %s to save variables.", str_file_name));
    SerializeToStream(fout, tensor);

    int64_t tellp = fout.tellp();
    fout.close();
    return tellp;
  });
  m.def("_load_lod_tensor", [](LoDTensor &tensor,
                               const std::string &str_file_name) {
    std::ifstream fin(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(static_cast<bool>(fin), true,
                      platform::errors::Unavailable(
                          "Cannot open %s to load variables.", str_file_name));

    DeserializeFromStream(fin, &tensor);
    int64_t tellg = fin.tellg();
    fin.close();
    return tellg;
  });
  m.def("_save_selected_rows", [](const SelectedRows &selected_rows,
                                  const std::string &str_file_name) {
    std::ofstream fout(str_file_name, std::ios::binary);
    PADDLE_ENFORCE_EQ(
        static_cast<bool>(fout), true,
        platform::errors::Unavailable("Cannot open %s to save SelectedRows.",
                                      str_file_name));

    SerializeToStream(fout, selected_rows);
    int64_t tellp = fout.tellp();
    fout.close();
    return tellp;
  });
  m.def("_load_selected_rows",
        [](SelectedRows &selected_rows, const std::string &str_file_name) {
          std::ifstream fin(str_file_name, std::ios::binary);
          PADDLE_ENFORCE_EQ(
              static_cast<bool>(fin), true,
              platform::errors::Unavailable(
                  "Cannot open %s to load SelectedRows.", str_file_name));

          DeserializeFromStream(fin, &selected_rows);
          int64_t tellg = fin.tellg();
          fin.close();
          return tellg;
        });
H
hong 已提交
549 550 551 552 553 554 555 556 557
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
558
           const Scope &scope, const Executor *executor) {
H
hong 已提交
559
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
560
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
561 562 563
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

564 565 566 567 568 569
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
589

590 591 592 593 594 595
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
596 597
  });

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
623 624 625 626 627 628
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
629
  m.def(
S
sneaxiy 已提交
630
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
631 632 633 634
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
635 636 637
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
654 655 656
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
657
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
658

659
  m.def("_set_fuse_parameter_group_size",
660
        &paddle::framework::ir::SetFuseParameterGroupsSize);
661
  m.def("_set_fuse_parameter_memory_size",
662
        &paddle::framework::ir::SetFuseParameterMemorySize);
663

S
sneaxiy 已提交
664 665 666
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

667 668
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

669 670 671
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

672
  BindImperative(&m);
673

674 675 676
  py::class_<framework::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
677
      .def("_is_initialized",
678
           [](const framework::Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
679
      .def("_get_dims",
680
           [](const framework::Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
681
      .def("_set_dims",
682
           [](framework::Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
683
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
684
           })
Y
yuyang18 已提交
685
      .def("_set_layout",
686
           [](framework::Tensor &self, const std::string &layout) {
D
dzhwinter 已提交
687 688
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
689
      .def("_alloc_float",
690
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
691
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
692
           })
693
      .def("_alloc_float",
694
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
695 696
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
697
      .def("_alloc_float",
698
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
699
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
700
           })
701 702 703 704
      .def("_alloc_float",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place) {
             self.mutable_data<float>(place);
           })
705
      .def("_alloc_double",
706
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
707 708
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
709
      .def("_alloc_int",
710
           [](framework::Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
711
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
712
           })
713
      .def("_alloc_int",
714
           [](framework::Tensor &self, paddle::platform::XPUPlace &place) {
715 716
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
717
      .def("_alloc_int",
718
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
719
             self.mutable_data<int>(place);
Q
qijun 已提交
720
           })
Y
yuyang18 已提交
721
      .def("_alloc_int",
722 723
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
724 725
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
726
      .def("_alloc_float",
727 728
           [](framework::Tensor &self,
              paddle::platform::CUDAPinnedPlace &place) {
C
chengduoZH 已提交
729 730
             self.mutable_data<float>(place);
           })
731
      .def("_mutable_data",
732
           [](framework::Tensor &self, paddle::platform::CPUPlace &place,
733 734 735
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
736
      .def("_mutable_data",
737
           [](framework::Tensor &self, paddle::platform::XPUPlace &place,
738 739 740
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
741
      .def("_mutable_data",
742
           [](framework::Tensor &self, paddle::platform::CUDAPlace &place,
743 744 745 746
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
747
           [](framework::Tensor &self, paddle::platform::CUDAPinnedPlace &place,
748 749 750
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
751
      .def("_clear", &framework::Tensor::clear)
752 753 754 755 756
      .def("_mutable_data",
           [](framework::Tensor &self, paddle::platform::NPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
757
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
758
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
759 760
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
761
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
762
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
763 764
      .def("set", SetTensorFromPyArray<paddle::platform::NPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
765
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
766 767
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
768 769 770 771
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
772
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace|NPUPlace): The place where the
L
Leo Chen 已提交
773
          LoDTensor is to be set.
774 775
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
789

790 791 792
      .def("shape",
           [](framework::Tensor &self) { return vectorize(self.dims()); },
           R"DOC(
L
Leo Chen 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
809
      .def("_to_dlpack",
810
           [](framework::Tensor &self) {
6
633WHU 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
831 832 833 834
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
835 836
      .def("_place", [](framework::Tensor &self) { return self.place(); })
      .def("_dtype", [](framework::Tensor &self) { return self.type(); })
837
      .def("_layout",
838 839 840 841
           [](framework::Tensor &self) {
             return DataLayoutToString(self.layout());
           })
      .def("_share_data_with", &framework::Tensor::ShareDataWith)
842
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
843
      .def("__str__", [](const framework::Tensor &self) {
844 845 846 847
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
848

L
Leo Chen 已提交
849
  // TODO(cql): add reference: en_user_guide_lod_tensor
850
  py::class_<LoDTensor, framework::Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
925 926 927 928 929 930 931

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
932 933

        )DOC")
934 935
      .def("__array__",
           [](framework::Tensor &self) { return TensorToPyArray(self); })
936 937 938 939 940 941 942 943 944
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
945 946
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
947 948 949 950
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
951 952
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
953
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
954
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
955 956
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
957 958 959
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
960
      .def("set_lod",
961
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
962
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
963
             LoD new_lod;
964 965
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
966 967
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
968 969
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
970
             self.set_lod(new_lod);
S
sneaxiy 已提交
971 972 973 974 975
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
976 977 978 979
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
980 981 982 983 984 985 986 987 988 989

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
990
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
991
           )DOC")
992 993 994 995 996 997 998 999 1000 1001 1002
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
1003 1004
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
1005 1006 1007 1008 1009
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
1010
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
1011 1012
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
1013
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
1014

L
Leo Chen 已提交
1015
           For example, if recursive_sequence_lengths=[[2, 3]], which means
1016
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
1017
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
1018 1019

           Args:
L
Leo Chen 已提交
1020 1021 1022 1023
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
1034 1035
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
1036
           )DOC")
1037 1038 1039 1040 1041 1042 1043 1044
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1045 1046 1047 1048 1049
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
1050 1051
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
1062
           )DOC")
G
gongweibao 已提交
1063
      // Set above comments of set_lod.
1064 1065 1066 1067 1068 1069 1070 1071
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
1072 1073
           },
           R"DOC(
L
Leo Chen 已提交
1074 1075
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
1076 1077

           Returns:
L
Leo Chen 已提交
1078
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
1090 1091 1092 1093 1094 1095 1096 1097
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
1098
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
1099 1100

           Returns:
L
Leo Chen 已提交
1101
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
1113 1114 1115 1116 1117 1118 1119
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
1120
           )DOC")
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
1139
#ifdef _WIN32
1140
      });
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1191

Q
qijun 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1203 1204
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1205 1206
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1207 1208
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
1209
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
Q
qijun 已提交
1210 1211 1212 1213 1214 1215
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1216
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1217
      .def("rows", [](SelectedRows &self) {
1218 1219 1220 1221 1222
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1223
      });
Q
qijun 已提交
1224

1225
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1226 1227 1228

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1229
      .def(py::init<>())
1230
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1231
      .def("set_int",
1232 1233
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1234 1235 1236 1237 1238 1239 1240
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1241
      .def("get_tensor",
1242 1243
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1244 1245
           },
           py::return_value_policy::reference)
1246 1247 1248 1249
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1250 1251 1252
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1253 1254 1255 1256 1257
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1258 1259 1260
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1261 1262 1263
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1264
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1265 1266 1267 1268 1269
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1270
#endif
Y
Refine  
Yu Yang 已提交
1271 1272
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1273 1274 1275 1276
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1277 1278
             return self.GetMutable<framework::ReaderHolder>();
           },
1279 1280 1281 1282 1283
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1284

S
sneaxiy 已提交
1285
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1286

S
sneaxiy 已提交
1287
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1301
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1302 1303 1304 1305 1306 1307
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1308 1309
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1310
      .def("var",
1311
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1312
             return self.Var(name);
Y
Yu Yang 已提交
1313
           },
S
sneaxiy 已提交
1314 1315
           py::arg("name"),
           R"DOC(
1316
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1317

1318
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1319
           current scope, the variable would be created. Otherwise,
1320
           return the existing variable.
S
sneaxiy 已提交
1321 1322

           Args:
1323 1324
               name (str): the variable name.

S
sneaxiy 已提交
1325
           Returns:
1326
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1327 1328 1329 1330
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1331
           Find variable named :code:`name` in the current scope or
1332
           its parent scope. Return None if not found. 
1333

S
sneaxiy 已提交
1334 1335
           Args:
               name (str): the variable name.
1336

S
sneaxiy 已提交
1337
           Returns:
1338
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1339
           )DOC",
1340
           py::return_value_policy::reference)
1341
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1342 1343 1344 1345 1346 1347
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1348
           py::return_value_policy::reference)
S
sneaxiy 已提交
1349 1350 1351
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1352 1353
           )DOC")
      .def("_kids", &Scope::kids);
1354

S
sneaxiy 已提交
1355 1356 1357 1358 1359 1360
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1361 1362
        R"DOC(
        Create a new scope.
1363

S
sneaxiy 已提交
1364 1365 1366
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1367 1368
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1369 1370
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1371 1372
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1373 1374 1375 1376
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1377 1378
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1379 1380
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1381 1382 1383
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1384 1385
    return ret_values;
  });
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1415 1416 1417
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1418 1419 1420 1421 1422
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1423 1424 1425
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1440
  m.def("prune", [](const ProgramDesc &origin,
1441
                    const std::set<std::string> &feeded_var_names,
1442
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1443
    ProgramDesc prog_with_targets(origin);
1444

1445
    for (const auto &t : targets) {
1446
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1447
    }
1448
    proto::ProgramDesc pruned_desc;
1449 1450 1451 1452
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1453
  });
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1471 1472 1473 1474
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1475 1476 1477
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1478 1479
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1480

Q
qijun 已提交
1481
  // clang-format off
Y
Yu Yang 已提交
1482
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1483 1484
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1485
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1486 1487
                    return new paddle::platform::CPUDeviceContext();
                  })
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
        .def_static("create",
                    [](paddle::platform::NPUPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_ASCEND_CL
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use NPUPlace in CPU/GPU/XPU version, "
                 "Please recompile or reinstall Paddle with NPU support."));
#else
                return new paddle::platform::NPUDeviceContext(place);
#endif
        })
Q
qijun 已提交
1512
      .def_static("create",
D
dzhwinter 已提交
1513
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1514
                      -> paddle::platform::DeviceContext* {
1515
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1516 1517 1518 1519
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1520
#else
Q
qijun 已提交
1521
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1522
#endif
C
chengduoZH 已提交
1523 1524 1525 1526
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
1527
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1528 1529 1530 1531
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1532 1533 1534 1535
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1536
// clang-format on
1537
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1538 1539
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1540
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1541 1542 1543 1544 1545

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1546
    The memory of CUDAPlace with different dev_id is not accessible.
1547 1548 1549 1550 1551 1552 1553 1554
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1555 1556 1557 1558

    Examples:
        .. code-block:: python

1559 1560 1561
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1562

1563
        )DOC")
S
sneaxiy 已提交
1564 1565
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
1566
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1591 1592
             new (&self) platform::CUDAPlace(dev_id);
#else
1593 1594 1595 1596 1597 1598 1599 1600 1601
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1602 1603
#endif
           })
1604
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1605 1606
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1607 1608 1609 1610
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1611
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
1612
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1613 1614
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1615 1616 1617
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1618
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1619
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1620

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1666
#ifdef PADDLE_WITH_XPU
1667 1668 1669 1670 1671 1672 1673
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1674 1675 1676
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1677
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1678
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1679 1680 1681
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1682

1683
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1684
    CPUPlace is a descriptor of a device.
1685
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1686 1687 1688 1689

    Examples:
        .. code-block:: python

1690 1691
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1692

1693
        )DOC")
1694
      .def(py::init<>())
S
sneaxiy 已提交
1695 1696
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1697
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
1698
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1699 1700 1701 1702
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1703
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1704
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1705

1706
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1707 1708 1709 1710 1711 1712
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1713 1714 1715 1716

    Examples:
        .. code-block:: python

1717 1718
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1719

1720
        )DOC")
S
sneaxiy 已提交
1721
      .def("__init__",
S
sneaxiy 已提交
1722
           [](platform::CUDAPinnedPlace &self) {
1723
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1724 1725 1726
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1727
#endif
S
sneaxiy 已提交
1728
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1729
           })
S
sneaxiy 已提交
1730 1731 1732 1733
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1734 1735
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
1736 1737
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::NPUPlace>)
S
sneaxiy 已提交
1738 1739 1740 1741
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1742
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1743 1744
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
  // NPUPlace
  py::class_<platform::NPUPlace>(m, "NPUPlace", R"DOC(
    NPUPlace is a descriptor of a device.
    It represents a NPU device on which a tensor will be allocated and a model will run.

    Examples:
        .. code-block:: python
          import paddle
          npu_place = paddle.NPUPlace(0)

        )DOC")
      .def("__init__",
           [](platform::NPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_ASCEND_CL
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid NPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetNPUDeviceCount())) {
               if (platform::GetNPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use NPU because there is no NPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid NPUPlace(%d), must inside [0, %d), because NPU "
                     "number on your machine is %d",
                     dev_id, platform::GetNPUDeviceCount(),
                     platform::GetNPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::NPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use NPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use NPU, please try to install NPU version "
1787
                 "PaddlePaddle by: pip install paddlepaddle-npu\n"
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
                 "If you only have CPU, please change NPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
      .def("_type", &PlaceIndex<platform::NPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::NPUPlace, platform::NPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::NPUPlace, platform::CUDAPinnedPlace>)
      .def("__str__", string::to_string<const platform::NPUPlace &>);

Y
Yu Yang 已提交
1804 1805
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1806 1807 1808 1809
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1810
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
1811
      .def("_equals", &IsSamePlace<platform::Place, platform::NPUPlace>)
S
sneaxiy 已提交
1812
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1813 1814
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1815 1816
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1817 1818
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
1819 1820
      .def("is_npu_place",
           [](platform::Place &self) { return platform::is_npu_place(self); })
S
sneaxiy 已提交
1821 1822 1823 1824
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1825 1826
      .def("gpu_device_id",
           [](platform::Place &self) {
1827
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1828
           })
1829 1830 1831 1832
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
1833 1834 1835 1836
      .def("npu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::NPUPlace, self).device;
           })
S
sneaxiy 已提交
1837 1838
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1839 1840 1841 1842
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1843 1844 1845 1846
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1847
      .def("set_place",
D
dzhwinter 已提交
1848
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1849
             self = gpu_place;
C
chengduoZH 已提交
1850
           })
1851 1852 1853 1854 1855
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
1856 1857 1858 1859
      .def("set_place",
           [](platform::Place &self, const platform::NPUPlace &npu_place) {
             self = npu_place;
           })
1860 1861
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1862

Y
Yu Yang 已提交
1863
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1864 1865 1866 1867 1868
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1869 1870 1871 1872 1873 1874 1875
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1876 1877
            return OpRegistry::CreateOp(desc);
          })
1878
      .def("run",
1879
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1880
              const platform::CPUPlace &place) { self.Run(scope, place); })
1881 1882 1883
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
1884 1885 1886
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::NPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1887 1888
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1889
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1890 1891 1892 1893 1894
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1895 1896 1897 1898 1899 1900 1901
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1902 1903
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1904
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1905
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1906 1907 1908 1909
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1910

1911 1912 1913
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1914 1915 1916 1917 1918 1919 1920 1921 1922
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1923
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1924
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1925
      .def("close", &Executor::Close)
1926 1927
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1928 1929
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1930 1931 1932 1933
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1934
             pybind11::gil_scoped_release release;
1935 1936 1937 1938 1939 1940 1941
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1942 1943 1944
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1945
              std::map<std::string, FetchType *> *fetch_targets,
1946 1947 1948 1949 1950 1951 1952 1953
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1954
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1955 1956 1957 1958 1959 1960 1961
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1972
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1973 1974
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1975
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1976 1977
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1978
      });
S
sneaxiy 已提交
1979

D
dzhwinter 已提交
1980
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1981
  m.def("init_glog", framework::InitGLOG);
1982 1983
  m.def("load_op_meta_info_and_register_op",
        framework::LoadOpMetaInfoAndRegisterOp);
1984
  m.def("init_devices", []() { framework::InitDevices(); });
1985

1986
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1987
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1988
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1989
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1990
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1991
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1992
  m.def("supports_bfloat16", SupportsBfloat16);
1993
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1994
  m.def("op_supported_infos", OpSupportedInfos);
1995
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1996
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1997 1998 1999
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
2019 2020 2021 2022 2023 2024 2025
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
2026 2027 2028 2029 2030 2031 2032 2033 2034
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

2035
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2036 2037 2038 2039 2040
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
2041

2042
  m.def("set_feed_variable", framework::SetFeedVariable);
2043 2044 2045 2046 2047
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2048
            return py::cast(BOOST_GET(LoDTensor, var));
2049
          } else {
2050
            return py::cast(BOOST_GET(LoDTensorArray, var));
2051 2052
          }
        });
2053
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2054

X
Xin Pan 已提交
2055 2056
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2057 2058 2059 2060 2061
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
2062
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
2063

Y
Yu Yang 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
2073
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
2074
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2075 2076 2077

    Examples:
        .. code-block:: python
2078

Z
Zeng Jinle 已提交
2079 2080 2081 2082
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
2083 2084
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
2085 2086 2087 2088 2089 2090
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
2091 2092 2093 2094
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2095 2096 2097
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
2098 2099 2100 2101 2102 2103
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
2104 2105
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
2106 2107 2108 2109 2110 2111
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
2143
                 auto &data = BOOST_GET(LoDTensor, self[i]);
2144 2145
                 res[i] = py::cast(std::move(data));
               } else {
2146
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
2162
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
2163 2164 2165 2166 2167 2168 2169 2170
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
2171
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
2172 2173 2174 2175 2176 2177 2178 2179 2180
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2181 2182
        )DOC")
      .def("_move_to_list",
2183
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
2184 2185 2186 2187
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
2188
                 if (data_is_lod_tensor(self[i][j])) {
2189
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
2190 2191
                   tmp[j] = py::cast(std::move(var));
                 } else {
2192
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
2193 2194 2195 2196 2197 2198
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
2208
  m.def("op_support_gpu", OpSupportGPU);
2209
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
D
Dong Zhihong 已提交
2210
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
2211

2212
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2213 2214 2215
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2216 2217 2218 2219
  m.def("nvprof_nvtx_push", platform::CudaNvtxRangePush);
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2220
#endif
P
peizhilin 已提交
2221
#endif
Y
Yu Yang 已提交
2222

2223 2224
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2225
  m.def("npu_finalize", []() { platform::AclInstance::Instance().Finalize(); });
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

2246 2247 2248 2249 2250 2251
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2252 2253 2254 2255
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2256
      .value("kAll", platform::ProfilerState::kAll)
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2268
  m.def("set_tracer_option", platform::SetTracerOption);
2269 2270
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2271
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2272
  m.def("reset_profiler", platform::ResetProfiler);
2273
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2274 2275 2276
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2277

2278 2279
  m.def("size_of_dtype", framework::SizeOfType);

2280
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2281 2282
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2283 2284
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2285 2286
#endif  // PADDLE_WITH_CUDA

2287 2288 2289
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2290 2291
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2292
      .def("has", &ir::Pass::Has)
2293 2294 2295
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2296
           })
2297
      .def(
2298
          "set",
2299 2300 2301
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2302 2303
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2304 2305
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2320 2321
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2322
        self.Apply(graph.get());
F
flame 已提交
2323
      });
2324

X
fix  
Xin Pan 已提交
2325 2326
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2341
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2342

Y
yuyang18 已提交
2343
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2344 2345 2346 2347
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2348 2349 2350
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2351 2352 2353
    Examples:
        .. code-block:: python

2354 2355 2356 2357 2358 2359 2360 2361 2362
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2363

2364 2365
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2366

2367
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2368 2369
          sgd_optimizer.minimize(avg_loss)

2370
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2371 2372
          exec_strategy.num_threads = 4

2373 2374 2375
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2376 2377
        )DOC");

2378 2379 2380 2381
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2382

Y
yuyang18 已提交
2383
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2384 2385 2386 2387 2388
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2389
          },
2390 2391
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2392 2393 2394 2395 2396 2397 2398
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2412
      .def_property(
2413 2414
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2415
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2416 2417 2418
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2419 2420 2421 2422 2423
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2424 2425 2426
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2427 2428
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2429 2430 2431 2432 2433 2434 2435
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2436 2437 2438 2439
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2440
                because the temp variable's shape maybe the same between two iterations.
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2451

2452 2453 2454 2455 2456 2457 2458
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2459
              )DOC")
Q
Qiao Longfei 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2481
              )DOC")
2482 2483 2484 2485 2486 2487 2488 2489
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2490 2491 2492 2493 2494
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2495

Y
yuyang18 已提交
2496
  exec_strategy.def_property(
Y
yuyang18 已提交
2497 2498 2499 2500 2501 2502 2503
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2504 2505
      });

C
chengduo 已提交
2506 2507 2508 2509
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2510 2511 2512
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2513 2514 2515
    Examples:
        .. code-block:: python

2516
            import os
2517 2518 2519 2520
            import paddle
            import paddle.static as static

            paddle.enable_static()
2521

2522 2523
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2524

2525 2526 2527 2528
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2529

2530
            build_strategy = static.BuildStrategy()
2531 2532
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2533 2534
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2535
            program = program.with_data_parallel(loss_name=loss.name,
2536 2537
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2538
)DOC");
Y
yuyang18 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2555 2556 2557 2558
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2559
            self.reduce_ = strategy;
C
chengduo 已提交
2560
          },
2561
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2562 2563
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2564
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2565 2566
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2567
                Default is 'AllReduce'.
F
flame 已提交
2568 2569 2570 2571

                Examples:
                    .. code-block:: python

2572 2573 2574 2575 2576 2577 2578
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2579
                  )DOC")
Y
yuyang18 已提交
2580 2581 2582 2583 2584
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2585 2586 2587 2588
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2589
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2590
          },
2591
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2592
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2593 2594
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2595
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2596 2597 2598 2599

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2600 2601
                        import numpy
                        import os
2602 2603 2604 2605
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2606 2607

                        use_cuda = True
2608 2609
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2610 2611

                        # NOTE: If you use CPU to run the program, you need
2612
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2613 2614 2615 2616 2617 2618
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2619
                            places = static.cpu_places()
C
chengduo 已提交
2620
                        else:
2621
                            places = static.cuda_places()
C
chengduo 已提交
2622

2623 2624 2625 2626
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2627

2628
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2629

2630
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2631
                        build_strategy.gradient_scale_strategy = \
2632 2633 2634
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2635
                                          loss_name=loss.name, build_strategy=build_strategy,
2636
                                          places=places)
C
chengduo 已提交
2637 2638 2639 2640 2641 2642

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2643 2644
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2645
                   )DOC")
Y
yuyang18 已提交
2646 2647 2648 2649
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2650 2651 2652 2653
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2654
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2655
          },
2656
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2657
                writing the SSA Graph to file in the form of graphviz.
2658
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2659 2660 2661 2662

                Examples:
                    .. code-block:: python

2663 2664 2665 2666
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2667

2668 2669
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2670
                    )DOC")
S
sneaxiy 已提交
2671 2672 2673 2674 2675 2676
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2677 2678 2679 2680
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2681 2682
            self.enable_sequential_execution_ = b;
          },
2683 2684
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2685 2686 2687 2688

                Examples:
                    .. code-block:: python

2689 2690 2691 2692 2693 2694
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2695 2696
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2697 2698 2699 2700 2701 2702
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2703 2704 2705 2706
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2707 2708
            self.remove_unnecessary_lock_ = b;
          },
2709 2710
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2711 2712 2713 2714

                Examples:
                    .. code-block:: python

2715 2716 2717 2718 2719 2720
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2721 2722
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2723 2724 2725 2726
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2727
#ifdef WIN32
2728
            PADDLE_THROW(platform::errors::Unavailable(
2729
                "Distribution mode is not supported on Windows platform."));
2730
#endif
2731 2732
            self.num_trainers_ = num_trainers;
          })
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2745 2746 2747 2748 2749 2750
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2751 2752 2753 2754 2755 2756
      .def_property(
          "bkcl_comm_num",
          [](const BuildStrategy &self) { return self.bkcl_comm_num_; },
          [](BuildStrategy &self, int bkcl_comm_num) {
            self.bkcl_comm_num_ = bkcl_comm_num;
          })
2757
      .def_property("use_hierarchical_allreduce",
2758 2759 2760 2761 2762 2763
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2764
      .def_property("hierarchical_allreduce_inter_nranks",
2765 2766 2767 2768 2769 2770 2771
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2772 2773 2774 2775 2776 2777
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2778 2779 2780 2781
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2782 2783
            self.fuse_elewise_add_act_ops_ = b;
          },
2784
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2785
                to fuse elementwise_add_op and activation_op,
2786
                it may make the execution faster. Default is False.
F
flame 已提交
2787 2788 2789 2790

                Examples:
                    .. code-block:: python

2791 2792 2793 2794 2795 2796
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2797 2798
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2799 2800 2801 2802
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2803
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2804
                              platform::errors::PreconditionNotMet(
2805 2806
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2816 2817 2818 2819 2820 2821
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2822 2823
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2849 2850 2851 2852
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2853
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2854
                              platform::errors::PreconditionNotMet(
2855 2856
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2867 2868 2869 2870 2871 2872
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2873 2874
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2875 2876 2877 2878 2879 2880
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2881 2882 2883 2884
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2885 2886
            self.fuse_relu_depthwise_conv_ = b;
          },
2887
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2888 2889 2890
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2891
                Default is False.
F
flame 已提交
2892 2893 2894 2895

                Examples:
                    .. code-block:: python

2896 2897 2898 2899 2900 2901
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2902 2903
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2904 2905 2906 2907 2908 2909
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2910 2911 2912 2913
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2914 2915
                      self.fuse_broadcast_ops_ = b;
                    },
2916
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2917 2918 2919 2920
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2921 2922 2923 2924 2925
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2926 2927 2928 2929 2930 2931
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2932 2933
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2934 2935
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2936 2937
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2938 2939
                    },
                    [](BuildStrategy &self, bool b) {
2940 2941 2942 2943
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2944 2945
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2946 2947 2948 2949
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2950 2951 2952 2953
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2954 2955
            self.sync_batch_norm_ = b;
          },
2956
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2957 2958 2959
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2960 2961
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2962 2963 2964 2965

                Examples:
                    .. code-block:: python

2966 2967 2968 2969 2970 2971
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2972 2973
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2974 2975
      .def_property(
          "memory_optimize",
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2990 2991 2992
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2993 2994
            }
          },
2995
          R"DOC((bool, optional): memory opitimize aims to save total memory
2996
                consumption, set to True to enable it.
2997

2998 2999 3000
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
3015 3016 3017
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
3018 3019 3020
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
3021
              PADDLE_THROW(platform::errors::Unavailable(
3022
                  "Distribution mode is not supported on Windows platform."));
3023 3024 3025 3026 3027
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
3028 3029 3030
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
3031
      .def_property(
D
dzhwinter 已提交
3032 3033 3034
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
3035 3036 3037 3038
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
3039 3040
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
3041 3042 3043 3044
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
3045
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
3046 3047 3048 3049 3050 3051 3052
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
3053 3054 3055 3056
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
3057 3058 3059 3060 3061 3062 3063 3064 3065
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
3066
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
3067
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
3068 3069 3070 3071 3072
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
3073 3074

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
3075
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
3076
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
3077
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
3078 3079 3080 3081
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
3082 3083 3084 3085 3086
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
3087 3088 3089
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
3090 3091 3092 3093
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
3094 3095
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
3096 3097 3098 3099 3100 3101 3102 3103
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
3104
               return py::cast(
3105
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
3106 3107
             } else {
               return py::cast(std::move(
3108
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
3109
             }
3110 3111
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
3112

D
dongdaxiang 已提交
3113
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
3114

T
Thunderbrook 已提交
3115 3116
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
3117
#endif
T
Thunderbrook 已提交
3118
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
3119
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
3120
#endif
3121
  BindGlooWrapper(&m);
H
hutuxian 已提交
3122
  BindBoxHelper(&m);
H
hutuxian 已提交
3123 3124 3125
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
3126
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
3127
  BindNCCLWrapper(&m);
3128 3129 3130
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
3131
#endif
F
flame 已提交
3132 3133
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
3134
  BindInferenceApi(&m);
3135
  BindCompatible(&m);
3136
  BindDataset(&m);
Y
yaoxuefeng 已提交
3137
  BindGenerator(&m);
3138 3139 3140
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
3141
  BindAscendDevice(&m);
3142
#endif
Y
Yanghello 已提交
3143 3144 3145
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
3146

T
tangwei12 已提交
3147
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
3148 3149
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
3150
  BindCommunicatorContext(&m);
T
tangwei12 已提交
3151 3152
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
3153 3154 3155 3156 3157
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
3158 3159 3160 3161
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
3162
  BindSparseShardingTools(&m);
3163
#endif
L
Luo Tao 已提交
3164
}
3165
}  // namespace pybind
3166
}  // namespace paddle