distribute_transpiler.py 75.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
typhoonzero 已提交
33
import math
W
Wu Yi 已提交
34
import sys
35
import numpy as np
36
import collections
37
import six
38

39
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
40
from .. import core, framework
T
typhoonzero 已提交
41
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
42 43
    default_startup_program, Block, \
    Parameter, grad_var_name
44 45
from .details import *
from functools import reduce
46 47 48

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
49
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
50 51
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
52
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
53
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
54 55 56 57 58 59 60 61 62
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
63 64


T
typhoonzero 已提交
65 66 67 68 69 70
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
71

T
typhoonzero 已提交
72 73
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
74 75


76 77 78 79
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
80
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
81
    """
82 83 84 85 86 87
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
88
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
89 90 91

    Args:
        var_list (list): List of variables.
92 93
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
94 95
        min_block_size (int): Minimum splitted block size.
    Returns:
96
        blocks (list[(varname, block_id, current_block_size)]): A list
97
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
98 99 100
    """
    blocks = []
    for var in var_list:
101
        split_count = slice_count
T
typhoonzero 已提交
102 103 104 105
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
106
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
107 108 109 110 111 112 113 114 115
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
116
        # update split_count after aligning
T
typhoonzero 已提交
117
        split_count = int(math.ceil(var_numel / float(block_size)))
118
        for block_id in range(split_count):
T
typhoonzero 已提交
119 120 121 122 123 124 125
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
126 127 128 129 130 131 132
class DistributeTranspilerConfig(object):
    """
    slice_var_up (bool): Do Tensor slice for pservers, default is True.
    split_method (PSDispatcher): RoundRobin or HashName can be used
        try to choose the best method to balance loads for pservers.
    min_block_size (int): Minimum splitted element number in block.
        According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
133
        We can use bandwidth effiently when data size is larger than 2MB.If you
G
gongweibao 已提交
134 135 136 137 138 139
        want to change it, please be sure you see the slice_variable function.
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
140 141
    # supported modes: pserver, nccl2
    mode = "pserver"
142
    print_log = False
G
gongweibao 已提交
143 144


Y
gen rst  
yi.wu 已提交
145
class DistributeTranspiler(object):
Y
yi.wu 已提交
146 147 148 149
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
150
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
151

W
Wu Yi 已提交
152 153 154 155 156 157 158 159 160
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
161 162 163 164

    Examples:
        .. code-block:: python

W
Wu Yi 已提交
165 166 167 168 169 170
           # for pserver mode
           pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
           current_endpoint = "192.168.0.1:6174"
           trainer_id = 0
           trainers = 4
Y
yi.wu 已提交
171 172
           role = os.getenv("PADDLE_TRAINING_ROLE")

W
Wu Yi 已提交
173
           t = fluid.DistributeTranspiler()
Y
yi.wu 已提交
174 175 176 177 178 179 180 181
           t.transpile(
                trainer_id, pservers=pserver_endpoints, trainers=trainers)
           if role == "PSERVER":
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
           elif role == "TRAINER":
                trainer_program = t.get_trainer_program()
T
tangwei12 已提交
182

W
Wu Yi 已提交
183 184 185 186 187 188 189 190 191 192 193
           # for nccl2 mode
           config = fluid.DistributeTranspilerConfig()
           config.mode = "nccl2"
           t = fluid.DistributeTranspiler(config=config)
           t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
           exe = fluid.ParallelExecutor(
               use_cuda,
               loss_name=loss_var.name,
               num_trainers=len(trainers.split(",)),
               trainer_id=trainer_id
           )
Y
yi.wu 已提交
194
    """
Y
Yancey1989 已提交
195

G
gongweibao 已提交
196 197 198 199 200 201 202 203 204
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

205 206 207
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
208 209 210
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
                         startup_program=None):
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

238 239 240 241 242
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
243
                  sync_mode=True,
W
Wu Yi 已提交
244 245
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
246
        """
Y
yi.wu 已提交
247 248 249 250 251 252 253 254 255
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
256 257 258
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
259
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
260 261
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
262 263 264
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
265 266 267
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
268 269
        if startup_program is None:
            startup_program = default_startup_program()
270
        self.origin_program = program
W
Wu Yi 已提交
271 272
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
273

W
Wu Yi 已提交
274 275 276 277 278 279 280 281 282
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
                startup_program=startup_program)
            return

283 284 285 286 287 288 289
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
290
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
291
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()
292
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
293
        self.grad_name_to_param_name = dict()
294 295
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
296
            self.grad_name_to_param_name[grad_var.name] = param_var.name
297

T
tangwei12 已提交
298 299 300 301 302 303
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

304
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
305
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
306
        self._init_splited_vars()
307

G
gongweibao 已提交
308
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
309
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
310
        send_vars = []
311 312 313 314 315 316

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
317
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
318

G
gongweibao 已提交
319
        if not self.config.slice_var_up:
320 321
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
322

323
        self.grad_name_to_send_dummy_out = dict()
324
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
325
            eplist = ps_dispatcher.dispatch(splited_vars)
326

G
gongweibao 已提交
327
            if not self.config.slice_var_up:
328 329
                assert (len(splited_vars) == 1)

330
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
331
            if len(splited_vars) == 1:
332
                splited_grad_varname = splited_vars[0].name
333 334
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
335
            elif len(splited_vars) > 1:
336
                orig_var = program.global_block().vars[splited_grad_varname]
337 338
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Y
Yancey1989 已提交
339
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
340
                index += 1
Y
Yancey1989 已提交
341 342
            else:
                AssertionError("Can not insert the send op by original "
343
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
344

W
Wu Yi 已提交
345 346
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
347
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
348

W
Wu Yi 已提交
349 350 351 352
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
353
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
354
                index=index + 1,
355
                type="send",
Y
update  
Yancey1989 已提交
356
                inputs={"X": splited_vars},
357
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
358 359
                attrs={
                    "epmap": eplist,
360
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
361 362 363 364
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
365
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
366
                })
Y
update  
Yancey1989 已提交
367 368
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
369 370

        if self.sync_mode:
W
Wu Yi 已提交
371 372
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
373 374 375 376
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
377
            input_deps = list(self.grad_name_to_send_dummy_out.values())
378

Y
Yancey1989 已提交
379 380
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
381
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
382
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
383 384
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
385
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
386
                })
Y
Yancey1989 已提交
387

G
gongweibao 已提交
388
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
389
        recv_vars = []
Y
update  
Yancey1989 已提交
390
        for _, var in enumerate(send_vars):
391
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
392
        ps_dispatcher.reset()
Y
Yancey1989 已提交
393 394
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
395
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
396 397
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
398

Y
Yancey1989 已提交
399
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
400
        all_recv_outputs = []
401
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
402 403 404 405
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
W
Wu Yi 已提交
406 407 408 409
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
410
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
411 412
                    self.param_name_to_grad_name[param_varname]]
            all_recv_outputs.extend(splited_var)
W
Wu Yi 已提交
413 414 415 416 417 418 419 420 421
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Y
Yancey1989 已提交
422 423
            program.global_block().append_op(
                type="recv",
W
Wu Yi 已提交
424
                inputs={"X": [recv_dep_in]},
Y
Yancey1989 已提交
425 426 427
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
428
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
429 430
                    OP_ROLE_VAR_ATTR_NAME:
                    [param_varname, recv_op_role_var_name],
431
                    "sync_mode": not self.sync_mode
Y
Yancey1989 已提交
432
                })
T
typhoonzero 已提交
433

Q
qiaolongfei 已提交
434
        if self.sync_mode:
W
Wu Yi 已提交
435
            # form a WAW dependency
Q
qiaolongfei 已提交
436 437 438
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
439
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
440 441 442 443
                attrs={
                    "endpoints": pserver_endpoints,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
444

445
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
446 447
            if len(splited_var) <= 1:
                continue
448
            orig_param = program.global_block().vars[param_varname]
T
typhoonzero 已提交
449
            program.global_block().append_op(
T
typhoonzero 已提交
450
                type="concat",
T
typhoonzero 已提交
451
                inputs={"X": splited_var},
T
typhoonzero 已提交
452
                outputs={"Out": [orig_param]},
453 454 455 456
                attrs={
                    "axis": 0,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
457

G
gongweibao 已提交
458 459
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

460
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
461 462
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
463
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
464

W
Wu Yi 已提交
465
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
466 467 468 469 470 471
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
472
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
473
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
T
typhoonzero 已提交
474
        lr_ops = self._get_lr_ops()
475
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
476 477
        delete_ops(self.origin_program.global_block(), lr_ops)

478 479 480 481 482 483 484 485 486
        # delete table init op
        if self.has_distributed_lookup_table:
            trainer_table_param_init_op = []
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
                    trainer_table_param_init_op.append(op)
            delete_ops(self.startup_program.global_block(),
                       trainer_table_param_init_op)

487
        self.origin_program.__str__()
G
gongweibao 已提交
488

W
Wu Yi 已提交
489 490 491
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

492
        return self.origin_program
T
typhoonzero 已提交
493

W
Wu Yi 已提交
494
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
495 496 497 498
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
499
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
500
            eplist (list): A list of strings indicating
G
gongweibao 已提交
501 502 503 504

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
505
        startup_program = self.startup_program
G
gongweibao 已提交
506 507 508 509

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
510
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
531
                inputs={"X": []},
G
gongweibao 已提交
532 533 534 535 536 537
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
538 539
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
540 541 542
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
543
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
544 545 546 547 548
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
549
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
550
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
551 552
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
553
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
554
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
555 556 557 558 559 560 561 562 563 564
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
565 566 567 568 569 570 571 572
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
573 574
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
575
        Get parameter server side program.
576

Y
yi.wu 已提交
577 578
        Args:
            endpoint (str): current parameter server endpoint.
579

Y
yi.wu 已提交
580 581
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
582
        """
Y
yi.wu 已提交
583 584 585 586
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
587 588 589
        sys.stderr.write("get_pserver_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
T
typhoonzero 已提交
590 591
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
592
        pserver_program.random_seed = self.origin_program.random_seed
593
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
594 595 596 597 598 599 600 601
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
602 603 604 605 606
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
607 608 609 610 611 612 613 614 615
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
616
            if self.sync_mode and self.trainer_num > 1:
617
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
618 619 620 621 622 623 624 625 626
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
627

Q
qiaolongfei 已提交
628
        # step 3
629
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
630 631 632
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
633
        # step 3.2
T
typhoonzero 已提交
634 635 636 637
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
638 639
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
640
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
641
        # step 3.3
T
typhoonzero 已提交
642
        # Iterate through the ops, and if an op and the optimize ops
643
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
644
        # append it into the sub program.
T
typhoonzero 已提交
645 646 647

        global_ops = []

Y
wip  
yi.wu 已提交
648 649
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
650
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
651
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
652
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
653
            elif op not in lr_ops:
Q
Qiyang Min 已提交
654
                self._append_pserver_non_opt_ops(block, op)
655 656 657 658 659 660

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
661

Y
Yancey1989 已提交
662
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
663 664 665 666 667 668 669 670
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
671
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
672 673 674

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
675
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
676 677

            # clone ops
Y
Yancey1989 已提交
678 679
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
680
                # clone sub_block of op
Y
Yancey1989 已提交
681
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
682 683

            # reset the block of op
W
Wu Yi 已提交
684
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
685

686
        # append lr decay ops to the child block if exists
687
        lr_ops = self._get_lr_ops()
688 689
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
690
        if len(lr_ops) > 0:
W
Wu Yi 已提交
691
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
692
                pserver_program.num_blocks - 1)
693
            optimize_blocks.append(lr_decay_block)
694
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
695
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
696
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
697 698
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
699

T
typhoonzero 已提交
700
        # append op to the current block
Q
qiaolongfei 已提交
701
        grad_to_block_id = []
Q
qiaolongfei 已提交
702
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
703
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
704
            per_opt_block = pserver_program._create_block(pre_block_idx)
705
            optimize_blocks.append(per_opt_block)
706
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
707
            # append grad merging ops before clip and weight decay
708 709
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
710
            for _, op in enumerate(self.optimize_ops):
711 712 713 714 715
                # find the origin grad var before clipping/L2Decay,
                # merged_var should be the input var name of L2Decaybuil
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
716 717 718
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
719 720 721 722 723 724 725 726 727 728 729 730
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
                        op not in global_ops:
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
731

W
Wu Yi 已提交
732 733
        # dedup grad to ids list
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
734
        # append global ops
735
        if global_ops:
W
Wu Yi 已提交
736
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
737
                pserver_program.num_blocks - 1)
738
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
739
            for glb_op in global_ops:
X
Xi Chen 已提交
740
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
741
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
742

743
        # process distributed lookup_table
Q
qiaolongfei 已提交
744
        prefetch_var_name_to_block_id = []
745 746
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
747
            table_opt_block = self._create_table_optimize_block(
748
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
749
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
750
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
751
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
752 753
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
754

T
tangwei12 已提交
755
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
756 757
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
758

759
        attrs = {
760
            "optimize_blocks": optimize_blocks,
761 762 763
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
764
            "grad_to_block_id": grad_to_block_id,
765
        }
T
tangwei12 已提交
766 767

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
768
            attrs['checkpint_block_id'] = checkpoint_block_id
769

T
tangwei12 已提交
770 771 772 773
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
774 775 776 777 778
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
779
            attrs=attrs)
780

T
tangwei12 已提交
781
        # add distributed attrs
T
tangwei12 已提交
782
        pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs(
T
tangwei12 已提交
783
            endpoint)
784

W
Wu Yi 已提交
785
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
786 787
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
788 789
        return pserver_program

W
Wu Yi 已提交
790 791 792 793 794 795
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
796

W
Wu Yi 已提交
797 798 799 800
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
801 802
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
803 804
        return pserver_prog, pserver_startup

805 806
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
807
                            pserver_program=None,
808
                            startup_program=None):
T
typhoonzero 已提交
809
        """
W
Wu Yi 已提交
810 811
        **Deprecated**

T
typhoonzero 已提交
812 813 814
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
815 816 817

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
818 819
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
820
                when initalizing
821

Y
yi.wu 已提交
822 823
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
824
        """
825 826 827
        sys.stderr.write("get_startup_program() is deprecated, call \
get_pserver_programs() to get pserver main and startup \
in a single call.")
W
Wu Yi 已提交
828
        if pserver_program != None:
829 830 831
            sys.stderr.write("passing pserver_program to get_startup_program() \
is deprecated, you can use new API get_pserver_programs() to \
get both pserver main program and startup program.")
W
Wu Yi 已提交
832
        if startup_program != None:
833 834 835
            sys.stderr.write("passing startup_program to get_startup_program() \
is deprecated, use fluid.program_guard() or pass this argument \
to transpile() call.")
W
Wu Yi 已提交
836

T
typhoonzero 已提交
837
        s_prog = Program()
W
Wu Yi 已提交
838
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
839
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
840 841 842 843 844 845 846 847 848 849 850
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
851
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
852
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
853
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
854 855 856 857
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
858
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
859 860
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
861 862 863 864 865 866 867 868 869 870
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
871 872

            if op_on_pserver:
873 874 875
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
876 877 878
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
879
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
880 881 882 883
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
884
                    attrs=op.all_attrs())
885 886

        # add slice vars
T
tangwei12 已提交
887
        s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint)
888

T
typhoonzero 已提交
889 890
        return s_prog

T
tangwei12 已提交
891 892 893
    def _get_slice_vars_and_attrs(self, endpoint):
        slice_vars_and_attrs = []
        block_suffix = "block"
894
        for param in self.param_grad_ep_mapping[endpoint]["params"]:
T
tangwei12 已提交
895
            orig_var_name, block_name, _ = self._get_varname_parts(param.name)
T
tangwei12 已提交
896
            if not block_name:
897 898
                continue

T
tangwei12 已提交
899
            block_idx = int(block_name.split(block_suffix)[1])
900 901 902 903 904 905
            orig_var = self.origin_program.global_block().vars[orig_var_name]

            skip_numel = 0
            slice_vars = self.param_var_mapping[orig_var_name]
            for slice_var in slice_vars[:block_idx]:
                skip_numel += reduce(lambda x, y: x * y, slice_var.shape)
T
tangwei12 已提交
906
            slice_vars_and_attrs.append([orig_var, skip_numel, param])
907

T
tangwei12 已提交
908
        return slice_vars_and_attrs
909

910 911
    # ====================== private transpiler functions =====================

Y
yi.wu 已提交
912 913 914 915 916 917 918 919 920
    def _has_distributed_lookup_table(self):
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in self.origin_program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
G
gongweibao 已提交
921
                if op.attr('is_distributed') is True:
Y
yi.wu 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        return len(distributed_lookup_table_ops) > 0

    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
973
    def _init_splited_vars(self):
Y
yi.wu 已提交
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
997
        if self.config.slice_var_up:
Y
yi.wu 已提交
998 999
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1000 1001 1002
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1003
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1004 1005
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1006 1007 1008
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1009 1010 1011 1012
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1013 1014
        assert (len(grad_blocks) == len(param_blocks))

1015
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1016 1017
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1018
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1019 1020 1021 1022
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1023
        # dict(grad_splited_var -> param_splited_var)
1024
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1025 1026 1027
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1028
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1029
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1030 1031

        # create mapping of endpoint -> split var to create pserver side program
1032
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1042
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1043 1044
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1045
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
1055 1056 1057 1058 1059 1060 1061 1062 1063

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

1064
                    lookup_table_op_index = list(all_ops).index(op)
1065 1066 1067
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1068
                    ids_var = program.global_block().vars[ids_name[0]]
W
Wu Yi 已提交
1069
                    prefetch_input_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1070 1071 1072 1073 1074 1075
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
W
Wu Yi 已提交
1076
                    prefetch_output_vars = self._create_splited_vars(
Q
qiaolongfei 已提交
1077 1078 1079 1080
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
1081 1082

                    # insert split_ids_op
W
Wu Yi 已提交
1083
                    program.global_block()._insert_op(
1084
                        index=lookup_table_op_index,
1085 1086 1087 1088 1089 1090 1091
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
1092
                        outputs={"Out": prefetch_input_vars})
1093 1094

                    # insert prefetch_op
W
Wu Yi 已提交
1095
                    program.global_block()._insert_op(
1096
                        index=lookup_table_op_index + 1,
1097
                        type="prefetch",
Q
qiaolongfei 已提交
1098 1099
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
1100
                        attrs={
1101
                            "epmap": pserver_endpoints,
1102 1103 1104
                            # FIXME(qiao) temporarily disable this config because prefetch
                            # is not act as other rpc op, it's more like a forward op
                            # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
1105
                        })
1106 1107

                    # insert concat_op
W
Wu Yi 已提交
1108
                    program.global_block()._insert_op(
1109 1110 1111 1112 1113 1114 1115
                        index=lookup_table_op_index + 2,
                        type="merge_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ],
1116
                            'X': prefetch_output_vars
1117
                        },
1118 1119 1120 1121 1122
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
1123
                        })
1124 1125

                    # delete lookup_table_op
1126
                    delete_ops(program.global_block(), [op])
1127 1128 1129
                    # break for loop
                    break

Y
Yancey1989 已提交
1130
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1131
        # 2. add split_ids_op and send_op to send gradient to pservers
1132

1133 1134
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1135
        table_grad_name = grad_var_name(self.table_name)
1136 1137 1138 1139
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1140
                program.global_block()._insert_op(
1141 1142 1143 1144 1145
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
1146
                    outputs={"Out": self.trainer_side_table_grad_list})
W
Wu Yi 已提交
1147
                program.global_block()._insert_op(
1148
                    index=op_index + 2,
1149
                    type="send",
1150
                    inputs={'X': self.trainer_side_table_grad_list},
1151 1152 1153 1154 1155
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1156
                    attrs={
1157
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1158
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1159 1160 1161 1162 1163
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1164
                    })
1165 1166 1167 1168 1169 1170
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1171 1172
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
W
Wu Yi 已提交
1173
            prefetch_block = pserver_program._create_block(optimize_block.idx)
Q
qiaolongfei 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
1199 1200

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1201
                                     pre_block_idx, grad_to_block_id):
1202
        # STEP: create table optimize block
1203
        table_opt_block = pserver_program._create_block(pre_block_idx)
1204
        # create table param and grad var in pserver program
1205 1206
        # create table optimize block in pserver program
        table_opt_op = [
1207 1208
            op for op in self.optimize_ops if 'Param' in op.input_names and
            op.input("Param")[0] == self.table_name
1209 1210
        ][0]

Y
Yancey1989 已提交
1211 1212
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1213

T
tangwei12 已提交
1214
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1215 1216
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1217 1218 1219
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1220 1221
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1222
            shape=table_shape,
Y
Yancey1989 已提交
1223 1224 1225
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1226

1227 1228
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1229
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1230
            self.origin_program.global_block().vars[grad_var_name(
1231
                self.table_name)])
1232

1233 1234 1235
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1236

1237 1238 1239
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1240
            pserver_side_table_grad_list = [
1241 1242 1243 1244 1245 1246 1247 1248 1249
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1250
            # append sum op for pserver_side_table_grad_list
1251 1252
            table_opt_block.append_op(
                type="sum",
1253
                inputs={"X": pserver_side_table_grad_list},
1254 1255
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1256 1257
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1258
            origin_grad_name = grad_var.name
1259 1260
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1261 1262
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1263
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1264
            grad_var = pserver_program.global_block()._rename_var(
1265
                origin_grad_name, splited_grad_name)
1266 1267 1268 1269 1270 1271 1272

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1273
        # only support sgd now
1274 1275 1276 1277
        import logging
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1278
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1279

1280 1281 1282
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1283 1284
        return table_opt_block

T
tangwei12 已提交
1285 1286 1287 1288 1289 1290
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """
        import os

T
tangwei12 已提交
1291
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1292
            name="kLookupTablePath",
T
tangwei12 已提交
1293 1294
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1295

W
Wu Yi 已提交
1296
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1297
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1298 1299 1300 1301
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1302
            attrs={'file_path': "none"})
T
tangwei12 已提交
1303 1304 1305

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1306 1307 1308 1309 1310
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1311
        Create vars for each split.
T
typhoonzero 已提交
1312 1313
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1314 1315 1316 1317
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1318
        Returns:
1319
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1320
                from original var name to each var split.
T
typhoonzero 已提交
1321
        """
1322 1323

        # varname->[(block_id, current_block_size)]
1324
        block_map = collections.OrderedDict()
1325

1326
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1327 1328
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1329
            if varname not in block_map:
T
typhoonzero 已提交
1330
                block_map[varname] = []
1331
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1332

M
minqiyang 已提交
1333
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1334
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1335
            if len(splited) == 1:
1336
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1337
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1338
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1339
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1340 1341 1342 1343 1344
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1345
                continue
T
typhoonzero 已提交
1346
            var_mapping[varname] = []
T
typhoonzero 已提交
1347 1348 1349 1350
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1351

T
typhoonzero 已提交
1352
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1353
                size = block[1]
M
minqiyang 已提交
1354
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1355 1356 1357
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1358
                new_var_name = ""
1359
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1360
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1361
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1362 1363
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1364
                                   (varname, i)
T
typhoonzero 已提交
1365
                var = program.global_block().create_var(
T
typhoonzero 已提交
1366 1367
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1368
                    dtype=orig_var.dtype,
1369
                    type=orig_var.type,
T
typhoonzero 已提交
1370
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1371
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1372
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1373
        return var_mapping
T
done  
typhoonzero 已提交
1374

W
Wu Yi 已提交
1375
    def _create_splited_vars(self, source_var, block, tag):
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1386 1387 1388 1389 1390 1391
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1392
            persistable=persistable)
T
done  
typhoonzero 已提交
1393

Y
Yancey1989 已提交
1394
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
1395 1396 1397 1398
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
W
Wu Yi 已提交
1399
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1400 1401 1402 1403
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1404 1405 1406 1407
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1408 1409 1410 1411
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
W
Wu Yi 已提交
1412
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1413 1414 1415 1416
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1417 1418 1419 1420
                attrs={
                    "sections": sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1421 1422 1423
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1424

T
typhoonzero 已提交
1425 1426 1427 1428
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1429
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1445 1446
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1447
                return param_shape
1448 1449 1450
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
T
typhoonzero 已提交
1451 1452 1453 1454
        elif op_type == "sgd":
            pass
        return orig_shape

1455 1456
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1457
        orig_var_name = ""
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1468
        else:
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1491
            return None
1492 1493 1494 1495
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1496
        else:
1497
            merged_var_name = orig_varname
1498 1499

        merged_var = pserver_block.vars[merged_var_name]
1500 1501 1502
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1503
            for i in range(self.trainer_num):
1504
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1505
                                   (merged_var_name, i)
1506 1507 1508 1509
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1510 1511
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1512 1513 1514 1515 1516
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1517
        return merged_var
T
typhoonzero 已提交
1518

1519
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1520
                            grad_to_block_id, origin_program, merged_var):
1521
        program = optimize_block.program
T
typhoonzero 已提交
1522
        pserver_block = program.global_block()
1523
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

T
typhoonzero 已提交
1534
        for key in opt_op.input_names:
T
typhoonzero 已提交
1535 1536 1537
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
W
Wu Yi 已提交
1538
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1539 1540
                if not param_block:
                    return
T
typhoonzero 已提交
1541
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1542
                    name=param_block.name,
T
typhoonzero 已提交
1543
                    persistable=True,
T
typhoonzero 已提交
1544 1545 1546
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1547
            elif key == "LearningRate":
1548
                # learning rate variable has already be created by non-optimize op,
1549
                # don't create it once again.
1550
                lr_varname = opt_op.input(key)[0]
1551
                if lr_varname in pserver_block.vars:
1552 1553 1554 1555 1556 1557 1558 1559 1560
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1561

T
typhoonzero 已提交
1562
        for key in opt_op.input_names:
1563
            new_shape = None
W
Wu Yi 已提交
1564
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1565
                continue
1566
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1567 1568 1569 1570
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1571
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1572 1573 1574 1575 1576
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1577

1578
        # change output's ParamOut variable
1579 1580
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1581
        outputs["ParamOut"] = new_inputs["Param"]
1582
        optimize_block.append_op(
T
typhoonzero 已提交
1583 1584
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1585
            outputs=outputs,
G
gongweibao 已提交
1586
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1587

1588 1589
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
M
minqiyang 已提交
1590
        for _, g in six.iteritems(var_dict):
1591 1592 1593 1594 1595 1596
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

Q
Qiyang Min 已提交
1597 1598 1599
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1600
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1601 1602 1603 1604
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1605
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1606 1607 1608

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1609
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1610 1611 1612 1613
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1614
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1615

Y
Yancey1989 已提交
1616
        return block.append_op(
G
gongweibao 已提交
1617
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1618 1619

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1620
        program = optimize_block.program
1621
        # Append the ops for parameters that do not need to be optimized/updated
1622 1623
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1624
        for key, varlist in six.iteritems(inputs):
1625 1626
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1627
            for var in varlist:
1628 1629 1630 1631 1632 1633
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
1634
                elif var.name not in program.global_block().vars:
1635
                    program.global_block().create_var(
T
typhoonzero 已提交
1636 1637 1638 1639 1640
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1641 1642
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1643
        for key, varlist in six.iteritems(outputs):
1644 1645 1646
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1647 1648 1649 1650
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
1651
                elif var.name not in program.global_block().vars:
W
Wu Yi 已提交
1652
                    program.global_block()._clone_variable(var)
1653

Y
Yancey1989 已提交
1654
        return optimize_block.append_op(
T
typhoonzero 已提交
1655
            type=opt_op.type,
T
typhoonzero 已提交
1656 1657
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1658
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1659

1660 1661 1662 1663
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1664
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1665
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1666 1667 1668 1669 1670 1671
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1672 1673
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1674 1675 1676 1677 1678 1679
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1680
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1681
        if "Param" in op.input_names and \
T
tangwei12 已提交
1682
                "LearningRate" in op.input_names:
1683 1684 1685 1686 1687 1688 1689
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1690
        if op.input("Param")[0] in param_names:
1691 1692 1693
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1694
                param = op.input("Param")[0]
T
typhoonzero 已提交
1695
                if same_or_split_var(n, param) and n != param:
1696 1697 1698
                    return True
            return False

T
typhoonzero 已提交
1699
    def _get_input_map_from_op(self, varmap, op):
1700
        """Returns a dict from op input name to the vars in varmap."""
1701
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1713
        """Returns a dict from op output name to the vars in varmap."""
1714
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1724 1725

    def _get_lr_ops(self):
1726 1727 1728
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
1729 1730 1731 1732
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
1733 1734 1735 1736 1737
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
1738 1739 1740 1741
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1742
            if self._is_optimizer_op(op):
1743 1744 1745 1746
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1747
        block = self.origin_program.global_block()
1748 1749 1750 1751 1752
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1753

1754 1755 1756 1757 1758
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
1759
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1760 1761 1762 1763 1764 1765
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1766 1767
                    # we only need to append op for once
                    break
1768
        return lr_ops
Y
Yancey1989 已提交
1769

W
Wu Yi 已提交
1770 1771 1772 1773 1774
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
1775 1776
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
1777 1778 1779
            return True
        return False

Y
Yancey1989 已提交
1780
    def _get_optimize_pass(self):
1781
        """
1782
        Get optimizer operators, parameters and gradients from origin_program
1783 1784 1785 1786
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1787 1788 1789
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1790 1791
        # tmp set to dedup
        optimize_params = set()
1792
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1793
        for op in block.ops:
W
Wu Yi 已提交
1794
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1795
                opt_ops.append(op)
1796 1797 1798 1799 1800 1801
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
1802 1803
                        params_grads.append([
                            origin_var_dict[param_name],
1804
                            origin_var_dict[grad_name]
1805
                        ])
Y
Yancey1989 已提交
1806 1807 1808
            else:
                pass
        return opt_ops, params_grads