tensor.py 65.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18
import numpy
19
import six
20
import warnings
21
from six.moves import reduce
22

Y
Yu Yang 已提交
23
from ..layer_helper import LayerHelper
24
from ..param_attr import ParamAttr
25
from ..initializer import Initializer
26
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
27
from ..framework import Variable
28
from ..initializer import Constant
29
from ..core import VarDesc
30
from .. import core
31
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
32
from . import utils
33
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
34
from paddle.utils import deprecated
35

36
from .utils import check_shape
Y
Yu Yang 已提交
37 38

__all__ = [
L
li099 已提交
39 40 41
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
42
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
Y
yaoxuefeng 已提交
43
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye', 'triu'
Y
Yu Yang 已提交
44 45 46
]


X
xuwei06 已提交
47
def create_tensor(dtype, name=None, persistable=False):
48
    """
W
wangchaochaohu 已提交
49
    Create a variable, which will hold a Tensor with data type dtype.
50 51

    Args:
W
wangchaochaohu 已提交
52 53 54 55
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
56
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
57
            default value is False.
58 59

    Returns:
W
wangchaochaohu 已提交
60
        Variable: The tensor to be created according to dtype.
61 62 63 64

    Examples:
        .. code-block:: python

65
          import paddle.fluid as fluid
66 67
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
68 69 70 71
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
72
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
73 74
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
75 76


77 78
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
79
                     name=None,
80 81 82 83
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
84
	:api_attr: Static Graph
S
swtkiwi 已提交
85

86
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
87 88 89 90 91
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

92 93 94 95 96 97 98
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
99 100 101
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
102
        default_initializer (Initializer, optional): Initializer for the parameter
103 104

    Returns:
105
        The created parameter.
Y
yuyang18 已提交
106 107

    Examples:
108 109
        .. code-block:: python

110 111 112
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
113
    """
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
133
    helper = LayerHelper("create_parameter", **locals())
134
    if attr is None:
X
xuwei06 已提交
135
        attr = ParamAttr(name=name)
136 137
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
138 139 140
                                   default_initializer)


141 142 143 144 145 146 147
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
148
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
149

150
    Parameters:
151
        shape (list[int]|tuple[int]): Shape of the variable
152
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
153
                      variable will be filled with it.
154 155
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
156
                           Default: False
157
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
158
                         Default: False
159 160
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
161 162

    Returns:
163
        Variable: The created Variable
F
fengjiayi 已提交
164 165 166 167

    Examples:
        .. code-block:: python

168 169 170
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
171
                                           persistable=True, force_cpu=True, name='new_var')
172
    """
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
190 191
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
192 193 194 195 196
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
197 198 199
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
200

Q
Qiao Longfei 已提交
201 202 203
    return var


204
def cast(x, dtype):
Y
Yu Yang 已提交
205
    """
S
swtkiwi 已提交
206

207
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
208 209
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
210 211

    Args:
212
        x(Tensor): An input N-D Tensor with data type bool, float16,
213 214
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
215
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
216 217

    Returns:
218
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
219 220 221

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
222

223
            import paddle
224

225 226
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
227
    """
228 229 230 231
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        out = core.ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
232
        return out
233

234 235 236 237
    check_variable_and_dtype(x, 'x', [
        'bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8',
        'uint16'
    ], 'cast')
238 239
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
240
        'uint8', 'uint16'
241 242 243
    ], 'cast')

    helper = LayerHelper('cast', **locals())
244 245
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
246 247 248 249 250 251 252 253 254
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


255
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
256
    """
257
    This OP concatenates the input along the axis.
258 259

    Args:
260 261
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
262 263
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
264
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
265
            as ``axis+R``. Default is 0.
266 267 268
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
269 270

    Returns:
271
        Tensor: A Tensor with the same data type as ``input``.
272 273 274

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
275

276
            import paddle.fluid as fluid
277 278
            import numpy as np

279 280 281 282 283 284
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
285 286 287 288
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
289 290
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
291 292
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
293 294 295 296 297 298 299 300
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
301
    """
302 303

    if in_dygraph_mode():
S
songyouwei 已提交
304 305
        if isinstance(axis, Variable):
            axis = axis.numpy()
306
            axis = axis.item(0)
307
        return core.ops.concat(input, 'axis', axis)
308

309 310 311 312 313 314 315 316 317 318 319
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
320
        input = [input]
321
    check_type(axis, 'axis', (int, Variable), 'concat')
322

323 324 325 326 327
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

328
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
329
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
330 331

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
332 333 334 335
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

336
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
337
                "number of the elements must be 1, but received %s." % len(input)
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
357 358 359
    return out


G
Guo Sheng 已提交
360
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
361
    r"""
G
Guo Sheng 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
412 413

    Args:
G
Guo Sheng 已提交
414 415 416 417 418 419 420
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
421 422

    Returns:
G
Guo Sheng 已提交
423 424 425
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
426 427 428 429

    Examples:
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            import numpy as np
G
Guo Sheng 已提交
432 433 434 435 436 437 438
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
439
    """
440 441 442 443 444 445 446 447 448 449 450
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

451 452 453 454 455
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
456
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
457 458 459
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
460
        type='tensor_array_to_tensor',
L
li099 已提交
461 462 463
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
464 465
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
466 467 468
    return out, out_index


469
def sums(input, out=None):
470
    r"""
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
492 493

    Args:
494 495 496 497
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
498 499

    Returns:
500 501
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
502 503

    Examples:
F
fengjiayi 已提交
504
        .. code-block:: python
K
kavyasrinet 已提交
505

506 507 508 509 510 511 512 513 514
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
515

516 517
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
518
    """
519 520 521 522 523 524 525 526 527
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
528 529
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
530 531
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
532 533 534 535
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
536 537 538 539 540
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
541 542 543
    return out


F
fengjiayi 已提交
544
def assign(input, output=None):
545
    """
S
swtkiwi 已提交
546

547
    The OP copies the :attr:`input` to the :attr:`output`.
548

549
    Parameters:
550 551 552 553
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
554
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
555
            be created as :attr:`output`. Default: None.
556 557

    Returns:
558
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
559 560 561

    Examples:
        .. code-block:: python
562

563
          import paddle
564
          import numpy as np
565
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
566 567 568 569
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
570 571 572
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
573
    """
Y
Yu Yang 已提交
574
    helper = LayerHelper('assign', **locals())
575 576
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
577 578
    is_inplace = True if output is not None else False

579 580 581 582
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
583 584 585 586 587 588
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
    # but in_dygraph_mode()==False under @to_static, which means
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
A
arlesniak 已提交
589 590 591
        check_dtype(input.dtype, 'input', [
            'float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'
        ], 'assign', '(When the type of input in assign is Variable.)')
592 593 594
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
595
        helper.append_op(
R
robot 已提交
596
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
597 598
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
599 600 601 602 603 604 605 606
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
607 608 609 610
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
611
            value_name = "fp32_values"
612
            values = [float(v) for v in input.flat]
613
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
614
            value_name = "int32_values"
615
            values = [int(v) for v in input.flat]
616 617 618
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
619
        else:
620 621
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
622
                "the data type of 'input' must be bool, float32, int32 or int64, but "
623
                "received %s." % convert_dtype(dtype))
624 625 626
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
627 628 629
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
630 631 632 633 634 635
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
636
                value_name: values
X
xuwei06 已提交
637 638
            })

639 640 641
    if is_inplace and in_dygraph_mode():
        output._bump_inplace_version()

Y
Yu Yang 已提交
642 643 644
    return output


645
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
646
    """
S
swtkiwi 已提交
647

W
wangchaochaohu 已提交
648
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
649
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
650

T
tianshuo78520a 已提交
651
    The attribute `stop_gradient` of the created Tensor is set to True.
652 653

    Args:
654 655 656
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
657
        dtype(np.dtype|str): Data type of the output Tensor which can
658
            be float16, float32, float64, uint8, int32, int64.
659 660 661 662 663 664
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
665 666
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
667 668

    Returns:
669
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
670

671 672 673
    Examples:
        .. code-block:: python

674
          import paddle.fluid as fluid
675
          # attr shape is a list which doesn't contain  Tensor.
676 677
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
678
          # data1=[[5], [5]] data2=[[5], [5]]
679

680
          # attr shape is a list which contains Tensor.
681
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
682
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
683

684
          # attr shape is a Tensor.
685
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
686
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
687
          
688
          # attr value is a Tensor.
W
wangchaochaohu 已提交
689 690
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
691
    """
692

W
wangchaochaohu 已提交
693
    attrs = {'force_cpu': force_cpu}
694
    dtype = convert_dtype(dtype)
695
    if not isinstance(value, Variable):
696
        if dtype in ['uint8', 'int64', 'int32']:
W
wangchaochaohu 已提交
697
            attrs['str_value'] = str(int(value))
698
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
699 700
        else:
            attrs['str_value'] = str(float(value))
701
            attrs['value'] = float(value)
702 703

    if in_dygraph_mode():
704
        shape = utils.convert_shape_to_list(shape)
705 706
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
707 708

        if isinstance(value, Variable):
709
            if dtype in ['uint8', 'int64', 'int32']:
710
                attrs['str_value'] = str(int(value.numpy().item(0)))
W
wangchaochaohu 已提交
711
            else:
712
                attrs['str_value'] = str(float(value.numpy().item(0)))
W
wangchaochaohu 已提交
713

714 715
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
716 717
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
718 719 720
        out.stop_gradient = True
        return out

721 722 723
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
724 725
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
726 727
        inputs['ValueTensor'] = value

728
    check_shape(shape)
729 730 731 732
    check_dtype(
        dtype, 'dtype',
        ['bool', 'float16', 'float32', 'float64', 'uint8', 'int32', 'int64'],
        'fill_constant')
733
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
734

735 736 737 738 739
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
740
    utils.get_shape_tensor_inputs(
741
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
742

Y
Yu Yang 已提交
743
    if out is None:
X
Xin Pan 已提交
744
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
745
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
746 747
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
748
        inputs=inputs,
Y
Yu Yang 已提交
749
        outputs={'Out': [out]},
L
liym27 已提交
750
        attrs=attrs,
M
minqiyang 已提交
751
        stop_gradient=True)
Y
Yu Yang 已提交
752 753 754 755
    out.stop_gradient = True
    return out


756
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
757
@templatedoc()
Y
Yu Yang 已提交
758 759 760 761 762
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
763 764
                                  output_dim_idx=0,
                                  force_cpu=False):
765
    """
T
tianshuo78520a 已提交
766
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
767 768 769 770
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
771 772

    Args:
W
wangchaochaohu 已提交
773 774 775 776 777 778 779 780 781 782 783
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
784
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
785 786

    Returns:
W
wangchaochaohu 已提交
787
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
788 789 790 791 792

    Examples:

        .. code-block:: python

793
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
794
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
795
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
796
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
797

798
    """
Y
Yu Yang 已提交
799
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
800
    out = helper.create_variable_for_type_inference(dtype=dtype)
801 802 803 804 805 806
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
807
        'force_cpu': force_cpu
808 809 810 811 812
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
813 814 815 816
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
817
        attrs=attrs)
Y
Yu Yang 已提交
818 819 820 821
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
822 823
def argmin(x, axis=0):
    """
824 825 826
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
827

S
sneaxiy 已提交
828 829
    **argmin**

830 831
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
832 833

    Args:
834 835 836 837 838
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
839

S
sneaxiy 已提交
840
    Returns:
841
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
842

S
sneaxiy 已提交
843 844
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
845

846
            import paddle.fluid as fluid
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
874
    """
875 876 877
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
878
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
879
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
880 881 882 883 884
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
885
    out.stop_gradient = True
S
sneaxiy 已提交
886 887 888 889 890 891 892
    return out


def argmax(x, axis=0):
    """
    **argmax**

893 894
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
895 896

    Args:
897 898 899 900 901
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
902

S
sneaxiy 已提交
903
    Returns:
904
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
905

S
sneaxiy 已提交
906 907
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
908

909
            import paddle.fluid as fluid
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
937
    """
938 939 940
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
941
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
942
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
943 944 945 946 947
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
948
    out.stop_gradient = True
S
sneaxiy 已提交
949 950 951
    return out


952
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
953
    """
954 955 956
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
957

958 959 960
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
961 962

    Args:
963 964 965 966 967
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
968 969 970
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
971 972 973
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
974 975

    Returns:
976 977 978
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
979 980 981 982

    Examples:
        .. code-block:: python

983
            import paddle.fluid as fluid
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1025
    """
1026 1027 1028
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1029
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1030 1031 1032 1033
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1034 1035 1036 1037
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1038
                 'Indices': ids},
1039 1040
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1041 1042 1043
    return out, ids


Y
Yang Yu 已提交
1044
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1045
    """
1046 1047
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1048

1049
    Parameters:
1050
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1051
        dtype (np.dtype|str): Data type of output Tensor, it supports
1052
            bool, float16, float32, float64, int32 and int64.
1053 1054
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1055
            Default: False.
1056 1057

    Returns:
1058
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1059 1060 1061 1062

    Examples:
        .. code-block:: python

1063
          import paddle.fluid as fluid
1064 1065 1066 1067 1068
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1069 1070 1071 1072
    """
    return fill_constant(value=1.0, **locals())


1073
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1074
    """
1075 1076
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1077

1078
    Parameters:
1079
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1080
        dtype (np.dtype|str): Data type of output Tensor, it supports
1081
            bool, float16, float32, float64, int32 and int64.
1082 1083
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1084
            Default: False.
1085 1086
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1087 1088

    Returns:
1089
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1090 1091 1092 1093

    Examples:
        .. code-block:: python

1094
          import paddle.fluid as fluid
1095
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1096 1097 1098 1099
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1100 1101
    """
    return fill_constant(value=0.0, **locals())
1102 1103


F
fengjiayi 已提交
1104 1105
def reverse(x, axis):
    """
1106 1107 1108
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1109

1110
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1136
    Parameters:
1137 1138
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1139 1140
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1141 1142
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1143 1144

    Returns:
1145
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1146 1147 1148 1149

    Examples:
        .. code-block:: python

1150
          import paddle.fluid as fluid
1151 1152 1153 1154
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1165
    """
1166 1167 1168
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1169 1170 1171
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1172
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1173 1174
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1175
        inputs={'X': x},
F
fengjiayi 已提交
1176 1177 1178 1179 1180
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1181 1182 1183 1184 1185 1186 1187
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1188 1189 1190
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1206 1207
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1208
        file_path(str): The file path where variables will be saved.
1209
        overwrite(bool): Whether or not cover the given file when it has already
1210 1211
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1212 1213 1214 1215 1216 1217 1218 1219

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1220
            import paddle.fluid as fluid
1221 1222 1223 1224 1225 1226 1227
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1240
    Loads a list of variable from a single file.
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1252 1253 1254 1255 1256 1257 1258


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1259
       x (Tensor): The Tensor to be checked.
1260 1261

    Returns:
S
Steffy-zxf 已提交
1262
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1263 1264 1265 1266
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1267 1268
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1269
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1270
          # [False]
1271

1272
    """
S
Steffy-zxf 已提交
1273 1274 1275
    if in_dygraph_mode():
        return core.ops.isinf(x)

1276
    check_type(x, 'x', (Variable), 'has_inf')
1277
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1278
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1279 1280 1281 1282 1283 1284 1285 1286 1287
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1288
       x (Tensor): The Tensor to be checked.
1289 1290

    Returns:
S
Steffy-zxf 已提交
1291
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1292 1293 1294 1295
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1296 1297
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1298
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1299
          # [False]
1300

1301
    """
S
Steffy-zxf 已提交
1302 1303 1304
    if in_dygraph_mode():
        return core.ops.isnan(x)

1305
    check_type(x, 'x', (Variable), 'has_nan')
1306
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1307
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1308 1309 1310 1311 1312 1313
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1314

1315 1316 1317 1318
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1319
        x(Tensor): The Tensor to be checked.
1320 1321

    Returns:
N
Noel 已提交
1322
        Tensor: The tensor storing the output, contains a bool value.
1323 1324 1325 1326 1327

    Examples:

        .. code-block:: python

N
Noel 已提交
1328 1329 1330 1331 1332 1333
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1334
    """
1335 1336
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1337
    helper = LayerHelper("isfinite", **locals())
1338

1339
    out = helper.create_variable_for_type_inference(dtype='bool')
1340 1341
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1342 1343


1344
def range(start, end, step, dtype, name=None):
W
whs 已提交
1345
    """
1346
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1347

1348 1349
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1350

1351 1352
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1353

L
Liufang Sang 已提交
1354
    Parameters:
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1378 1379 1380 1381 1382

    examples:

        .. code-block:: python

1383
            import paddle.fluid as fluid
W
whs 已提交
1384

1385 1386
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1387

1388 1389 1390 1391 1392 1393 1394
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1395

1396 1397 1398 1399 1400
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

W
whs 已提交
1401
    if not isinstance(start, Variable):
1402
        with device_guard("cpu"):
1403
            start = fill_constant([1], dtype, start, force_cpu=True)
1404 1405
    elif start.dtype != dtype:
        start = cast(start, dtype)
1406

W
whs 已提交
1407
    if not isinstance(end, Variable):
1408
        with device_guard("cpu"):
1409
            end = fill_constant([1], dtype, end, force_cpu=True)
1410 1411
    elif end.dtype != dtype:
        end = cast(end, dtype)
1412

W
whs 已提交
1413
    if not isinstance(step, Variable):
1414
        with device_guard("cpu"):
1415
            step = fill_constant([1], dtype, step, force_cpu=True)
1416 1417
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1418

1419 1420
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1421

1422 1423 1424
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1425
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1426 1427 1428 1429 1430
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1431
        outputs={'Out': out})
1432
    out.stop_gradient = True
W
whs 已提交
1433
    return out
Z
zhoukunsheng 已提交
1434 1435


1436
def linspace(start, stop, num, dtype=None, name=None):
1437
    r"""
1438
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1439 1440

    Args:
1441 1442 1443 1444
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1445
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1446
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1447
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1448
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1449 1450
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1451 1452

    Returns:
1453
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1454 1455
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1456

Z
zhoukunsheng 已提交
1457
    Examples:
Z
zhoukunsheng 已提交
1458 1459
        .. code-block:: python

1460 1461 1462
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1463 1464

    """
1465 1466
    if dtype is None:
        dtype = 'float32'
1467 1468 1469
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1470 1471
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1472 1473
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1474
    if not isinstance(start, Variable):
1475 1476
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1477
    if not isinstance(stop, Variable):
1478 1479
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1480
    if not isinstance(num, Variable):
1481 1482
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
1483
    if in_dygraph_mode():
1484 1485
        return core.ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                                 dtype)
1486 1487 1488

    helper = LayerHelper("linspace", **locals())

1489 1490 1491
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1492
    if isinstance(start, Variable):
1493 1494
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1495 1496
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1497

1498
    if isinstance(stop, Variable):
1499 1500
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1501 1502 1503 1504 1505 1506
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1507 1508 1509 1510 1511 1512 1513 1514
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1515 1516

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1517 1518 1519

    helper.append_op(
        type='linspace',
1520 1521 1522 1523
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1524
        outputs={'Out': [out]})
1525 1526
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1527
    return out
1528 1529


Z
zhoukunsheng 已提交
1530 1531
def zeros_like(x, out=None):
    """
1532
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1533 1534 1535
    with `x`.

    Args:
1536 1537 1538 1539 1540 1541
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1542 1543

    Returns:
1544 1545 1546
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1547 1548 1549 1550

    Examples:
        .. code-block:: python

1551
          import paddle.fluid as fluid
1552
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1553 1554
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1555 1556
    """

1557 1558
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1559 1560 1561
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1562 1563 1564
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1565
            'zeros_like')
1566

Z
zhoukunsheng 已提交
1567 1568 1569 1570
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1571 1572


1573
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1574
def diag(diagonal):
1575
    r"""
1576 1577 1578
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1579

1580
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1581 1582

    Args:
1583 1584
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1585 1586

    Returns:
1587 1588
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1589 1590 1591 1592 1593 1594 1595

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1596 1597 1598

          import paddle.fluid as fluid
          import numpy as np
1599 1600 1601
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1602 1603

    """
1604 1605 1606
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1619 1620


1621 1622 1623 1624 1625
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1626
    """
1627
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1628 1629 1630

    Args:
        num_rows(int): the number of rows in each batch tensor.
1631 1632
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1633 1634
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1635
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1636 1637 1638 1639
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1640 1641

    Returns:
1642
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1643 1644 1645 1646 1647

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1648 1649
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1650
          #  [0, 1, 0]
1651 1652
          #  [0, 0, 1]]

1653
          data = fluid.layers.eye(2, 3, dtype='int32')
1654
          # [[1, 0, 0]
1655
          #  [0, 1, 0]]
1656 1657

          data = fluid.layers.eye(2, batch_shape=[3])
1658 1659 1660 1661 1662
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1663 1664
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1665 1666 1667 1668 1669
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1692 1693

    if batch_shape is not None:
1694 1695 1696 1697 1698
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
1699
            return core.ops.expand(out, None, 'expand_times', expand_times)
1700

1701 1702
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1703
        for batch_val in (batch_shape):
1704 1705
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1706 1707 1708 1709 1710 1711

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1712 1713 1714
    return out


Z
zhoukunsheng 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1727
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1738 1739
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1740 1741 1742 1743

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1744 1745 1746 1747
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1748 1749 1750 1751 1752 1753
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1754 1755 1756 1757 1758 1759


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)