nn.py 267.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
99
    'roi_align',
X
Xin Pan 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
113
    'margin_rank_loss',
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
S
sneaxiy 已提交
157
    'sequence_reverse',
158
    'affine_channel',
Y
Yu Yang 已提交
159 160 161 162 163 164 165 166 167
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
168
       is_test=False,
169
       name=None):
Y
Yu Yang 已提交
170
    """
171
    **Fully Connected Layer**
Y
Yu Yang 已提交
172

173 174 175 176 177 178 179 180
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
181
    to the output as well.
C
caoying03 已提交
182

C
caoying03 已提交
183
    This process can be formulated as follows:
184 185 186

    .. math::

187
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
188 189 190

    In the above equation:

C
caoying03 已提交
191 192 193 194
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
195
    * :math:`Act`: The activation function.
C
caoying03 已提交
196
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
197 198

    Args:
R
ranqiu 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
214 215
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
216
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
217
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
218
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
219

220
    Returns:
F
fengjiayi 已提交
221
        Variable: The transformation result.
222 223

    Raises:
C
caoying03 已提交
224
        ValueError: If rank of the input tensor is less than 2.
225 226 227 228

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
229
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
230
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
231
    """
C
caoying03 已提交
232

C
caoying03 已提交
233
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
234 235 236 237

    dtype = helper.input_dtype()

    mul_results = []
238 239
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
240 241 242
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
243

Y
Yu Yang 已提交
244
        w = helper.create_parameter(
245
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
246
        tmp = helper.create_variable_for_type_inference(dtype)
247
        helper.append_op(
248 249 250
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
251
            outputs={"Out": tmp},
M
mozga-intel 已提交
252 253
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
254 255 256 257
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
258
    else:
X
Xin Pan 已提交
259
        pre_bias = helper.create_variable_for_type_inference(dtype)
260
        helper.append_op(
261 262 263
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
264
            attrs={"use_mkldnn": False})
265 266 267 268
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
269 270


271 272 273
def embedding(input,
              size,
              is_sparse=False,
274
              is_distributed=False,
275 276 277
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
278
    """
279 280
    **Embedding Layer**

281
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
282 283
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
284 285 286

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
287 288

    Args:
289 290 291 292 293
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
294
        is_distributed(bool): Whether to run lookup table from remote parameter server.
295 296
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
297
            with zeros whenever lookup encounters it in :attr:`input`. If
298
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
299 300
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
301
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
302

303 304 305
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
306

307 308
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
309

C
chengduoZH 已提交
310
          dict_size = len(dataset.ids)
311
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
312
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
313 314 315 316 317
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
318
    tmp = helper.create_variable_for_type_inference(dtype)
319 320
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
321 322 323 324 325
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
326 327 328 329 330
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
331 332 333
    return tmp


Y
yi.wu 已提交
334
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
335 336
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
337 338
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
339 340 341 342 343 344 345
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
346 347
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
348
    """
Y
yi.wu 已提交
349
    ${comment}
Y
Yibing Liu 已提交
350 351

    Args:
Y
yi.wu 已提交
352 353
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
354 355 356 357 358 359
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
360
        param_attr(ParamAttr|None): The parameter attribute for the learnable
361
                               hidden-hidden weights.
Y
Yibing Liu 已提交
362 363 364

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
365 366
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
367 368 369 370 371

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
372
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
373 374 375
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
376

377
                              1. `use_peepholes = False`
Y
yi.wu 已提交
378 379
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
380
                              2. `use_peepholes = True`
Y
yi.wu 已提交
381
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
382
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
383
                                 - The shape is (1 x 7D).
C
chengduo 已提交
384 385 386 387 388

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
389 390 391 392 393 394 395 396
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
397 398

    Returns:
Y
Yibing Liu 已提交
399 400
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
401

Y
Yibing Liu 已提交
402
    Examples:
Y
Yibing Liu 已提交
403 404
        .. code-block:: python

Y
Yibing Liu 已提交
405 406
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
407
                                           bias_attr=False)
Y
Yibing Liu 已提交
408 409
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
410
    """
C
chengduo 已提交
411
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
412
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
413
    size = size // 4
Y
Yu Yang 已提交
414 415 416 417 418 419 420 421
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
422 423 424 425
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
426 427 428 429 430 431 432 433 434 435
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
436 437 438

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
439
        inputs=inputs,
Y
Yu Yang 已提交
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
456 457 458 459 460 461 462 463 464 465 466
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
467 468
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
469 470 471
    """
    **Dynamic LSTMP Layer**

472 473 474 475 476 477
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
478 479 480 481 482

    The formula is as follows:

    .. math::

483
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
484

485
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
486

487
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
488

489
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
490

491
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
492

493
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
494

495
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
496

Y
Yibing Liu 已提交
497 498 499 500 501 502
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
503
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
504
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
505
          bias vector).
Y
Yibing Liu 已提交
506 507 508
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
509
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
510
    * :math:`h`: The hidden state.
511
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
512 513
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
514
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
515
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
516
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
517 518
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
519 520 521 522

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
523

Y
Yibing Liu 已提交
524 525 526 527 528 529 530 531 532 533 534 535
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
536
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
537 538
                               hidden-hidden weight and projection weight.

539 540
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
541 542
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
543 544
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
545
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
546 547 548 549 550

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
551
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
552 553 554 555 556 557
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
558
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
559 560 561
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
562
                                - The shape is (1 x 7D).
C
chengduo 已提交
563 564 565 566 567

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
568 569 570 571 572 573 574 575 576
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
577
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
578 579
                              default "tanh".
        proj_activation(str): The activation for projection output.
580
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
581 582
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
583 584
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
585 586

    Returns:
587 588 589 590
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
591 592

    Examples:
593

Y
Yibing Liu 已提交
594 595
        .. code-block:: python

596 597 598 599
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
600
            hidden_dim, proj_dim = 512, 256
601
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
602
                                     act=None, bias_attr=None)
603 604 605
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
606 607 608 609
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
610
    """
611

C
chengduo 已提交
612
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
613
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
614
    size = size // 4
Y
Yibing Liu 已提交
615 616 617 618 619 620 621 622 623 624
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
625 626 627 628 629 630
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
659 660 661 662 663 664 665 666 667
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
668
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
669

670
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
671
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
672

G
guosheng 已提交
673 674 675 676 677 678 679 680 681
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
682

G
guosheng 已提交
683
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
684

G
guosheng 已提交
685
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
686 687
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
688 689 690 691
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
692
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
693 694

    Args:
695 696
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
697
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
698
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
699 700
            is the hidden size.
        size(int): The dimension of the gru cell.
701
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
702 703
            hidden-hidden weight matrix. Note:

704
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
705
              :math:`D` is the hidden size.
706
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
707
              The first part are weights of the update gate and reset gate with
708
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
709
              candidate hidden state with shape :math:`(D \\times D)`.
710
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
711
            hidden-hidden bias.
712
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
713 714 715
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
716
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
717
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
718 719 720 721
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
722 723

    Returns:
G
guosheng 已提交
724
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
725
            and sequence length is the same with the input.
726

G
guosheng 已提交
727
    Examples:
728

G
guosheng 已提交
729 730
        .. code-block:: python

731 732 733 734
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
735
            hidden_dim = 512
736
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
737 738 739 740 741 742 743 744 745 746
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
747
    batch_size = input.shape[0]
G
guosheng 已提交
748 749 750
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
751 752 753
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
754

X
Xin Pan 已提交
755 756 757 758
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
777 778 779
def gru_unit(input,
             hidden,
             size,
780 781
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
782
             activation='tanh',
783
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
784
    """
785
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
786

787 788
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
789

790
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
791

792
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
793

794
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
795 796

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
797 798 799
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
800 801
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

802 803
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
804 805 806
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
807 808 809 810 811

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
812 813
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
814 815 816 817
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
818

819 820 821 822 823 824
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
825

826
             # assuming we have x_t_data and prev_hidden of size=10
827
             x_t = fluid.layers.fc(input=x_t_data, size=30)
828 829
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
830 831 832 833 834 835 836 837 838 839 840 841

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
842
    size = size // 3
Y
Yu Yang 已提交
843 844

    # create weight
845 846
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
847

X
Xin Pan 已提交
848 849 850
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
851
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
852
    # create bias
853
    if helper.bias_attr:
Y
Yu Yang 已提交
854 855 856
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
857
        inputs['Bias'] = bias
Y
Yu Yang 已提交
858 859 860

    helper.append_op(
        type='gru_unit',
861
        inputs=inputs,
Y
Yu Yang 已提交
862 863 864 865 866 867
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
868 869
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
870 871 872 873 874
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
875
@templatedoc()
876
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
877 878 879 880 881 882 883
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
884
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
885 886 887 888
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
889 890 891
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
892 893

    """
Y
Yu Yang 已提交
894 895 896 897 898 899
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
900 901 902 903 904 905 906 907
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
923
@templatedoc()
924
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
925 926 927 928 929
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
930

Y
yuyang18 已提交
931
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
932

Y
yuyang18 已提交
933 934 935
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
936
        Variable: ${viterbi_path_comment}
937

Y
yi.wu 已提交
938 939 940 941 942
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
943
    """
Y
Yu Yang 已提交
944 945
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
946 947
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
948 949 950 951 952 953 954 955 956 957
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
958
@templatedoc()
F
fengjiayi 已提交
959
def cos_sim(X, Y):
Y
Yu Yang 已提交
960
    """
Y
yi.wu 已提交
961 962 963
    ${comment}

    Args:
964 965
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
966

Y
yi.wu 已提交
967
    Returns:
968
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
969
    """
F
fengjiayi 已提交
970
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
971 972 973
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
974 975 976 977 978 979 980 981 982 983
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
984 985 986 987 988
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
989
            dropout_implementation="downgrade_in_infer"):
990 991 992 993 994
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
995
    training. The dropout operator randomly sets (according to the given dropout
996 997 998 999
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1000 1001
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1002 1003 1004 1005 1006 1007 1008
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1023

1024 1025

    Returns:
1026
        Variable: A tensor variable is the shape with `x`.
1027 1028

    Examples:
1029

1030 1031
        .. code-block:: python

1032 1033
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1034 1035
    """

F
fengjiayi 已提交
1036
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1037 1038 1039
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1040 1041 1042 1043

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1044 1045 1046 1047 1048
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1049 1050 1051 1052
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1053 1054
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1055
        })
1056 1057 1058
    return out


1059
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1060
    """
Y
Yibing Liu 已提交
1061 1062
    **Cross Entropy Layer**

1063 1064 1065
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1066 1067

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1068
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1069

Y
Yibing Liu 已提交
1070
        .. math::
Y
yangyaming 已提交
1071

Y
Yibing Liu 已提交
1072 1073 1074
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1075 1076
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1077 1078 1079 1080 1081

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1082
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1083 1084 1085
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1086 1087
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1088
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1089

Y
Yibing Liu 已提交
1090
    Args:
Y
yangyaming 已提交
1091
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1092 1093 1094 1095
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1096
        label (Variable|list): the ground truth which is a 2-D tensor. When
1097 1098 1099 1100
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1101
        soft_label (bool): a flag indicating whether to
1102
                                           interpretate the given labels as soft
1103
                                           labels. Default: `False`.
M
minqiyang 已提交
1104 1105
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1106
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1107 1108 1109 1110 1111

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1112 1113 1114 1115 1116
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1117 1118 1119 1120 1121 1122

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1123
    """
F
fengjiayi 已提交
1124
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1125
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1126 1127 1128 1129 1130
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1131 1132
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1133 1134 1135
    return out


F
fengjiayi 已提交
1136
def square_error_cost(input, label):
Y
Yu Yang 已提交
1137
    """
1138 1139
    **Square error cost layer**

1140 1141
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1156 1157
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1158 1159

    Returns:
G
guosheng 已提交
1160
        Variable: The tensor variable storing the element-wise squared error \
1161
                  difference of input and label.
1162 1163 1164 1165 1166 1167 1168 1169

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1170
    """
F
fengjiayi 已提交
1171
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1172
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1173 1174 1175 1176 1177 1178
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1179
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1180
    helper.append_op(
F
fengjiayi 已提交
1181 1182
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1183 1184 1185
    return square_out


Y
yi.wu 已提交
1186
@templatedoc()
Y
Yu Yang 已提交
1187 1188 1189 1190
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1191
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1192
    """
Y
yi.wu 已提交
1193
    **Chunk Evaluator**
Y
yi.wu 已提交
1194

Y
yangyaming 已提交
1195
    This function computes and outputs the precision, recall and
1196
    F1-score of chunk detection.
Y
yi.wu 已提交
1197

Y
yi.wu 已提交
1198 1199 1200 1201 1202 1203 1204 1205
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1206

Y
yi.wu 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1232

Y
yi.wu 已提交
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1257
    Args:
1258 1259 1260 1261 1262
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1263

Y
yi.wu 已提交
1264
    Returns:
Y
update  
yi.wu 已提交
1265 1266 1267
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1268

Y
yi.wu 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1281
    """
F
fengjiayi 已提交
1282
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1283 1284

    # prepare output
X
Xin Pan 已提交
1285 1286 1287 1288 1289 1290 1291
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1292 1293 1294 1295 1296 1297 1298 1299

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1300 1301 1302 1303
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1304 1305 1306
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1307 1308
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1309
        })
1310 1311
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1312 1313


1314
@templatedoc()
Y
Yu Yang 已提交
1315 1316 1317 1318 1319 1320 1321
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1322 1323
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1324 1325 1326 1327
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1328 1329 1330 1331 1332 1333 1334

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1348

1349 1350
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1351 1352 1353 1354 1355 1356 1357
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1358
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1369
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1370 1371 1372 1373 1374 1375
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1376
def sequence_softmax(input, use_cudnn=False, name=None):
1377 1378 1379
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1380
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1397 1398 1399
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1400

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1412 1413
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1414
    softmax_out = helper.create_variable_for_type_inference(dtype)
1415 1416 1417 1418 1419 1420 1421 1422
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1423
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1424
    """
1425
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1426
    has the same shape as the input.
Q
qiaolongfei 已提交
1427

1428 1429 1430 1431 1432 1433
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1434
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1435 1436 1437 1438 1439 1440 1441

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1442
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1443 1444 1445 1446 1447 1448 1449 1450

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1451 1452 1453
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1466 1467
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1468
    softmax_out = helper.create_variable_for_type_inference(dtype)
1469 1470 1471 1472 1473 1474 1475 1476
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1477 1478 1479
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1480 1481
           stride=1,
           padding=0,
1482
           dilation=1,
Y
Yu Yang 已提交
1483 1484 1485
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1486
           use_cudnn=True,
1487 1488
           act=None,
           name=None):
Y
Yu Yang 已提交
1489
    """
C
chengduoZH 已提交
1490
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1491 1492
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1493
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1494 1495 1496 1497 1498 1499 1500
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1501 1502 1503
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1504

1505
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1506

C
chengduoZH 已提交
1507 1508
    .. math::

C
refine  
chengduoZH 已提交
1509
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1510

T
tensor-tang 已提交
1511
    Where:
C
chengduoZH 已提交
1512

1513 1514 1515 1516 1517
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1518
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1519 1520 1521

    Example:

1522 1523
        - Input:

W
weixing02 已提交
1524
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1525

W
weixing02 已提交
1526
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1527

1528
        - Output:
T
tensor-tang 已提交
1529

W
weixing02 已提交
1530
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1531

C
chengduoZH 已提交
1532
        Where
1533 1534

        .. math::
C
chengduoZH 已提交
1535

W
weixing02 已提交
1536 1537
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1538 1539

    Args:
1540
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1541
        num_filters(int): The number of filter. It is as same as the output
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1570 1571
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1572 1573
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1574
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1575
            will be named automatically. Default: None
C
chengduoZH 已提交
1576 1577

    Returns:
G
guosheng 已提交
1578
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1579 1580
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1581
    Raises:
1582 1583
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1584

C
chengduoZH 已提交
1585 1586 1587
    Examples:
        .. code-block:: python

1588 1589
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1590 1591 1592
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1593
    assert param_attr is not False, "param_attr should not be False here."
1594
    l_type = 'conv2d'
X
xzl 已提交
1595 1596
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1597
        l_type = 'depthwise_conv2d'
1598 1599 1600 1601

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1602 1603 1604 1605 1606
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1607
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1608

C
chengduoZH 已提交
1609 1610 1611
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1612
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1613

C
chengduoZH 已提交
1614 1615
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1616 1617

    input_shape = input.shape
M
minqiyang 已提交
1618
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1619 1620

    def _get_default_param_initializer():
C
chengduo 已提交
1621 1622
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1623 1624 1625 1626 1627 1628 1629 1630
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1631
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1632 1633

    helper.append_op(
1634
        type=l_type,
Y
Yu Yang 已提交
1635 1636 1637 1638 1639
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1640 1641 1642
        attrs={
            'strides': stride,
            'paddings': padding,
1643
            'dilations': dilation,
C
chengduoZH 已提交
1644
            'groups': groups,
1645
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1646
            'use_mkldnn': False
C
chengduoZH 已提交
1647
        })
Y
Yu Yang 已提交
1648 1649 1650 1651 1652 1653

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1671 1672 1673 1674 1675 1676
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1686 1687
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1688 1689 1690
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1691
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1717
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1718 1719
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1720
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1721 1722
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1723
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1724 1725
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1726
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1727 1728 1729 1730 1731 1732
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1743 1744
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1745 1746
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1747
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1748
            will be named automatically. Default: None.
C
chengduoZH 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1761 1762
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1763 1764 1765
    """

    l_type = 'conv3d'
C
chengduo 已提交
1766
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1777
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1791 1792 1793
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1794 1795 1796 1797 1798 1799 1800 1801
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1802
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1817
            'use_mkldnn': False
C
chengduoZH 已提交
1818 1819
        })

1820
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1821 1822 1823 1824

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1825
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1826
    """
Y
yangyaming 已提交
1827 1828 1829
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1841
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1842 1843 1844 1845 1846
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1847
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1848 1849 1850 1851 1852 1853 1854

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1855 1856
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1857

L
Luo Tao 已提交
1858 1859
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1860
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1861 1862 1863 1864 1865 1866 1867 1868
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1869

Y
yangyaming 已提交
1870
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1871 1872 1873 1874 1875
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1876 1877
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1878
    """
F
fengjiayi 已提交
1879
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1880
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1881 1882
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1883 1884 1885 1886 1887 1888 1889 1890

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1891 1892 1893 1894 1895
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1896 1897 1898
    return pool_out


C
add doc  
chengduoZH 已提交
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1918
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1919 1920 1921 1922 1923
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1924
def sequence_first_step(input):
L
Luo Tao 已提交
1925
    """
L
Luo Tao 已提交
1926
    This function gets the first step of sequence.
L
Luo Tao 已提交
1927 1928 1929 1930

    .. code-block:: text

       x is a 1-level LoDTensor:
1931
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1932 1933 1934 1935 1936
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1937
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1938
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1939

L
Luo Tao 已提交
1940 1941 1942 1943 1944 1945 1946 1947 1948
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1949

Y
yangyaming 已提交
1950
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1951 1952 1953
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1954 1955 1956
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1957
def sequence_last_step(input):
L
Luo Tao 已提交
1958
    """
L
Luo Tao 已提交
1959
    This function gets the last step of sequence.
L
Luo Tao 已提交
1960 1961 1962 1963

    .. code-block:: text

       x is a 1-level LoDTensor:
1964
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1965 1966 1967 1968 1969
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1970
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1971
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1972

L
Luo Tao 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1982

Y
yangyaming 已提交
1983
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1984 1985 1986
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1987 1988 1989
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

2003 2004 2005 2006 2007
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2008

2009
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2010

2011 2012 2013 2014 2015
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
2016
	
2017 2018
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
2019 2020 2021
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
2022
                         sequences.
Y
Yibing Liu 已提交
2023 2024 2025 2026 2027 2028
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2029
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2045
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2060
@templatedoc()
Y
Yu Yang 已提交
2061
def pool2d(input,
C
chengduoZH 已提交
2062 2063
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2064 2065
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2066
           global_pooling=False,
C
chengduoZH 已提交
2067
           use_cudnn=True,
2068
           ceil_mode=False,
C
caoying03 已提交
2069
           name=None):
Y
Yu Yang 已提交
2070
    """
F
fengjiayi 已提交
2071
    ${comment}
2072 2073

    Args:
2074 2075 2076
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2077
                          feature, and W is the width of the feature.
2078
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2079
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2080
        pool_type: ${pooling_type_comment}
2081 2082
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2083 2084 2085
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2086
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2087 2088
                        layer will be named automatically.

2089
    Returns:
F
fengjiayi 已提交
2090
        Variable: The pooling result.
F
fengjiayi 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2104 2105 2106 2107
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2108
                            global_pooling=False)
Y
Yu Yang 已提交
2109 2110 2111 2112 2113
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2114

C
chengduoZH 已提交
2115 2116 2117 2118 2119
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2120 2121 2122 2123
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2124 2125
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2126

C
Add doc  
chengduoZH 已提交
2127
    l_type = 'pool2d'
2128 2129

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2130
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2131
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2132 2133

    helper.append_op(
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2145
            "use_mkldnn": False
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2162
    pooling configurations mentioned in input parameters.
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2175

2176
    Returns:
2177
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2178 2179 2180 2181 2182
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2183

C
chengduoZH 已提交
2184 2185 2186 2187 2188
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2189 2190 2191
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2192

C
chengduoZH 已提交
2193 2194
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2195

2196 2197
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2198
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2199
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2200 2201

    helper.append_op(
2202
        type=l_type,
Y
Yu Yang 已提交
2203 2204 2205 2206 2207 2208 2209
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2210
            "paddings": pool_padding,
2211
            "use_cudnn": use_cudnn,
2212
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2213
            "use_mkldnn": False
Y
Yu Yang 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2226
               data_layout='NCHW',
Y
Yang Yang 已提交
2227
               in_place=False,
2228 2229
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2230
               moving_variance_name=None,
2231 2232
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2233
    """
Q
qiaolongfei 已提交
2234 2235 2236 2237
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2238

Q
qiaolongfei 已提交
2239
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2240

Q
qiaolongfei 已提交
2241 2242
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2243 2244 2245
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2258 2259

    Args:
Q
qiaolongfei 已提交
2260
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2261 2262 2263 2264
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2265 2266 2267 2268 2269 2270 2271 2272
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2273
        data_layout(string, default NCHW): NCHW|NHWC
2274
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2275 2276 2277 2278
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2279
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2280
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2281 2282

    Returns:
Q
qiaolongfei 已提交
2283
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2284 2285 2286 2287 2288 2289 2290

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2291
    """
C
chengduo 已提交
2292
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2315
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2316

2317 2318
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2319 2320 2321
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2322
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2323
        shape=param_shape,
2324 2325 2326 2327 2328 2329 2330
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2331
            trainable=False,
W
wanghaoshuang 已提交
2332
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2333
        shape=param_shape,
2334 2335
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2336 2337 2338 2339 2340 2341

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2342 2343 2344 2345
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2346

X
Xin Pan 已提交
2347 2348
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2366 2367 2368 2369
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2370
            "use_mkldnn": False,
2371
            "fuse_with_relu": fuse_with_relu
2372
        })
Y
Yu Yang 已提交
2373 2374 2375 2376

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2377
@templatedoc()
G
guosheng 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2388
    ${comment}
G
guosheng 已提交
2389 2390 2391

    The formula is as follows:

Y
yuyang18 已提交
2392
    ..  math::
G
guosheng 已提交
2393 2394 2395 2396 2397 2398 2399

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2400 2401 2402 2403 2404 2405 2406 2407
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2408

G
guosheng 已提交
2409 2410
    Args:
        input(Variable): The input tensor variable.
2411
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2412
            normalization. Default True.
2413
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2414 2415
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2416
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2417
            Default 1.
2418
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2419
            division by zero. Default 1e-05.
G
guosheng 已提交
2420
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2421 2422 2423 2424
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2425
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2426 2427 2428 2429
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2430
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2431 2432 2433
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2434 2435

    Returns:
Y
yuyang18 已提交
2436
        ${y_comment}
G
guosheng 已提交
2437 2438 2439

    Examples:

Y
yuyang18 已提交
2440 2441 2442
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2458
    if shift:
G
guosheng 已提交
2459 2460 2461 2462 2463 2464
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2465 2466 2467 2468 2469
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2485 2486 2487 2488
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2489 2490 2491
                     padding=0,
                     stride=1,
                     dilation=1,
2492
                     groups=None,
C
caoying03 已提交
2493
                     param_attr=None,
2494
                     bias_attr=None,
C
chengduoZH 已提交
2495
                     use_cudnn=True,
2496
                     act=None,
C
caoying03 已提交
2497
                     name=None):
Y
Yu Yang 已提交
2498
    """
2499 2500 2501 2502 2503 2504 2505 2506
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2507 2508
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2509 2510 2511
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2512 2513 2514 2515 2516

    For each input :math:`X`, the equation is:

    .. math::

2517
        Out = \sigma (W \\ast X + b)
2518

2519
    Where:
2520 2521 2522

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2523 2524 2525 2526
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2527

2528 2529 2530 2531
    Example:

        - Input:

2532
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2533

2534
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2535 2536 2537

        - Output:

2538
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2539 2540

        Where
Y
Yu Yang 已提交
2541

2542 2543
        .. math::

2544 2545 2546 2547
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2548 2549

    Args:
2550 2551 2552 2553
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2554 2555 2556 2557
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2586
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2587 2588 2589
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2590
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2591
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2592 2593

    Returns:
2594
        Variable: The tensor variable storing the convolution transpose result.
2595 2596

    Raises:
2597 2598
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2599 2600 2601 2602

    Examples:
       .. code-block:: python

2603 2604
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2605
    """
C
chengduo 已提交
2606
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2607 2608 2609 2610 2611 2612 2613 2614
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2615 2616 2617
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2618 2619 2620
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2621

C
chengduoZH 已提交
2622 2623
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2624

Y
Yu Yang 已提交
2625 2626 2627 2628 2629
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2630

Y
Yu Yang 已提交
2631 2632
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2633

C
chengduoZH 已提交
2634
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2635
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2636
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2637
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2638
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2639 2640 2641
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2642

2643 2644 2645 2646 2647 2648 2649
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2650
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2651
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2652

Y
Yu Yang 已提交
2653 2654 2655
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2656
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2657
    helper.append_op(
2658
        type=op_type,
Y
Yu Yang 已提交
2659 2660
        inputs={'Input': [input],
                'Filter': [img_filter]},
2661
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2662
        attrs={
2663
            'output_size': output_size,
2664 2665 2666 2667 2668
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2669 2670
        })

2671 2672 2673
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2674 2675


2676
def conv3d_transpose(input,
Y
Yu Yang 已提交
2677 2678 2679
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2680 2681 2682
                     padding=0,
                     stride=1,
                     dilation=1,
2683
                     groups=None,
C
caoying03 已提交
2684
                     param_attr=None,
2685
                     bias_attr=None,
C
chengduoZH 已提交
2686
                     use_cudnn=True,
2687
                     act=None,
C
caoying03 已提交
2688
                     name=None):
Y
Yu Yang 已提交
2689
    """
2690
    **Convlution3D transpose layer**
2691

2692
    The convolution3D transpose layer calculates the output based on the input,
2693
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2694 2695 2696 2697 2698 2699
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2700 2701 2702
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2703 2704 2705 2706 2707

    For each input :math:`X`, the equation is:

    .. math::

2708
        Out = \sigma (W \\ast X + b)
2709 2710 2711

    In the above equation:

2712 2713
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2714 2715 2716 2717
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2718

2719 2720 2721 2722
    Example:

        - Input:

2723
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2724

2725
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2726 2727 2728

        - Output:

2729
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2730 2731

        Where
Y
Yu Yang 已提交
2732

2733 2734
        .. math::

2735 2736 2737
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2738 2739

    Args:
2740
        input(Variable): The input image with [N, C, D, H, W] format.
2741 2742 2743
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2744
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2745 2746
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2747
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2748 2749 2750
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2751 2752
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2753
        stride(int|tuple): The stride size. If stride is a tuple, it must
2754 2755
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2756
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2757 2758 2759
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2760 2761 2762 2763 2764
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2774 2775
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2776 2777
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2778 2779
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2780 2781

    Returns:
2782
        Variable: The tensor variable storing the convolution transpose result.
2783 2784

    Raises:
2785 2786
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2787 2788 2789 2790

    Examples:
       .. code-block:: python

2791 2792
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2793
    """
C
chengduo 已提交
2794
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2795 2796
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2797
    if not isinstance(input, Variable):
2798
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2799 2800
    input_channel = input.shape[1]

2801 2802 2803
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2804

C
chengduoZH 已提交
2805 2806 2807
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2808 2809 2810 2811 2812 2813
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2814 2815 2816
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2817

2818
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2819
                         padding[0] - 1) // dilation[0] + 1
2820
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2821
                         padding[1] - 1) // dilation[1] + 1
2822
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2823
                         padding[2] - 1) // dilation[2] + 1
2824
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2825
    else:
2826 2827
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2828

2829
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2830
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2831 2832 2833
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2834
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2835
    helper.append_op(
2836
        type=l_type,
Y
Yu Yang 已提交
2837 2838
        inputs={'Input': [input],
                'Filter': [img_filter]},
2839
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2840 2841 2842 2843
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2844
            'groups': groups,
C
chengduoZH 已提交
2845 2846
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2847

2848 2849
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2850
    return out
Y
yangyaming 已提交
2851 2852


Y
yangyaming 已提交
2853
def sequence_expand(x, y, ref_level=-1, name=None):
2854
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2855 2856 2857 2858
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2859 2860 2861 2862 2863

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2864
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2865
                x.data = [[a], [b], [c], [d]]
2866 2867 2868
                x.dims = [4, 1]

            y is a LoDTensor:
2869 2870
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2871

Y
yangyaming 已提交
2872
            ref_level: 0
2873

Y
yangyaming 已提交
2874
            then output is a 1-level LoDTensor:
2875
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2876
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2877 2878 2879 2880
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2881
                x.data = [[a], [b], [c]]
2882 2883 2884
                x.dims = [3, 1]

            y is a LoDTensor:
2885
                y.lod = [[2, 0, 3]]
2886

Y
yangyaming 已提交
2887
            ref_level: -1
2888

Y
yangyaming 已提交
2889 2890 2891
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2892 2893 2894
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2895 2896
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2897
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2898
                        will be named automatically.
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2909
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2910
    """
Y
yangyaming 已提交
2911
    helper = LayerHelper('sequence_expand', input=x, **locals())
2912
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2913
    tmp = helper.create_variable_for_type_inference(dtype)
2914
    helper.append_op(
Y
yangyaming 已提交
2915 2916 2917 2918 2919
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2920
    return tmp
2921 2922


C
chengduo 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2979
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
2980 2981 2982 2983 2984 2985 2986 2987
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2988
@templatedoc()
2989
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2990 2991 2992 2993 2994
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2995 2996 2997
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2998
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2999 3000 3001 3002
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3003 3004 3005
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3006

F
fengjiayi 已提交
3007
    Returns:
M
minqiyang 已提交
3008
        Variable: The padded sequence batch and the original lengths before
3009
                  padding. All sequences has the same length.
M
minqiyang 已提交
3010

F
fengjiayi 已提交
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3024 3025
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3026 3027 3028 3029

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3030 3031 3032 3033 3034 3035
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3036 3037
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3038
        attrs={'padded_length': maxlen})
3039
    return out, length
F
fengjiayi 已提交
3040 3041


3042
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3043
    """
3044
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3060
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3061 3062 3063 3064 3065 3066

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3067
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3068 3069 3070 3071 3072 3073

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3074 3075
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3090
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3102 3103 3104 3105 3106 3107 3108 3109 3110
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3111 3112
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3113 3114 3115

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3116 3117

    This layer does the search in beams for one time step. Specifically, it
3118 3119 3120 3121 3122 3123
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3124

3125 3126 3127 3128 3129 3130 3131 3132
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3133

3134
    Args:
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3160

3161
    Returns:
3162 3163
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3164 3165 3166 3167

    Examples:
        .. code-block:: python

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3185 3186 3187 3188
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3189 3190 3191
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3192 3193 3194 3195 3196

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3197
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3215 3216 3217 3218 3219 3220 3221
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3232

3233 3234 3235 3236 3237 3238
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3239

3240 3241 3242 3243 3244 3245 3246 3247
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3248 3249
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3265 3266 3267 3268
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3269
              param_attr=None,
C
caoying03 已提交
3270 3271
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3272 3273 3274 3275
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3276
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3277

3278
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3279

3280
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3281

3282
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3283 3284 3285

            h_t & = o_t tanh(c_t)

3286 3287 3288 3289 3290 3291
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3292 3293 3294

        .. math::

3295
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3296 3297 3298 3299 3300 3301 3302 3303

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3304
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3305 3306

    Args:
Y
yangyaming 已提交
3307 3308 3309 3310 3311 3312
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3313
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3326 3327
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3328 3329

    Returns:
Y
yangyaming 已提交
3330
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3331 3332

    Raises:
3333 3334 3335 3336
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3337 3338 3339 3340 3341 3342

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3343
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3344
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3345
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3362
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3363 3364 3365 3366
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3367 3368
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3369 3370 3371
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3372
    size = cell_t_prev.shape[1]
3373
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3374 3375
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3376
                param_attr=param_attr,
3377
                bias_attr=bias_attr)
Y
yangyaming 已提交
3378
    dtype = x_t.dtype
X
Xin Pan 已提交
3379 3380
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3381 3382 3383 3384 3385 3386 3387 3388 3389

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3390
    return h, c
G
guosheng 已提交
3391 3392


C
caoying03 已提交
3393
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3394
    """
Y
yangyaming 已提交
3395
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3396 3397 3398

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3399
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3400 3401
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3402 3403
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3404
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3405
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3406
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3407 3408
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3409 3410 3411

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3412

G
guosheng 已提交
3413 3414 3415 3416 3417 3418
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3419
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3420 3421 3422 3423
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3424 3425 3426 3427

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3428
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3429 3430 3431
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3432 3433
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3434
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3435 3436
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3437 3438 3439 3440 3441
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3442
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3443 3444 3445 3446
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3447 3448


C
caoying03 已提交
3449
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3450
    """
Y
Yibing Liu 已提交
3451
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3452 3453 3454

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3455 3456 3457
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3458
            must be in the range :math:`[-rank(input), rank(input))`. If
3459
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3460
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3461 3462
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3463
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3464
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3465
                       will be named automatically.
G
guosheng 已提交
3466 3467

    Returns:
Y
Yibing Liu 已提交
3468
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3469

G
guosheng 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3480 3481
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3482 3483 3484 3485 3486 3487 3488

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3489 3490
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3491
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3492 3493
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3494 3495 3496 3497 3498
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3499
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3500 3501 3502 3503
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3504 3505


C
caoying03 已提交
3506
def reduce_max(input, dim=None, keep_dim=False, name=None):
3507
    """
Y
yangyaming 已提交
3508
    Computes the maximum of tensor elements over the given dimension.
3509 3510 3511

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3512
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3513 3514 3515
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3516
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3517 3518
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3519
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3520 3521
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3522 3523 3524

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3525

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3537 3538 3539 3540 3541 3542 3543

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3544 3545
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3546
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3547 3548
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3549 3550 3551 3552 3553
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3554
            'dim': dim if dim != None else [0],
3555 3556 3557 3558 3559 3560
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3561
def reduce_min(input, dim=None, keep_dim=False, name=None):
3562
    """
Y
yangyaming 已提交
3563
    Computes the minimum of tensor elements over the given dimension.
3564 3565 3566

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3567
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3568 3569 3570
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3571
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3572 3573
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3574
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3575 3576
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3577 3578 3579

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3580

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3592 3593 3594 3595 3596 3597 3598

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3599 3600
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3601
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3602 3603
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3604 3605 3606 3607 3608
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3609
            'dim': dim if dim != None else [0],
3610 3611 3612 3613
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3614 3615


3616 3617 3618 3619 3620 3621
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3622
        dim (list|int|None): The dimensions along which the product is performed. If
3623 3624
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3625 3626
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3627 3628 3629
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3630
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3631
            layer will be named automatically.
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3646
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3647
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3648 3649 3650 3651 3652 3653 3654

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3655 3656
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3657
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3658 3659
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3660 3661 3662 3663 3664
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3665
            'dim': dim if dim != None else [0],
3666 3667 3668 3669 3670 3671
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3672
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3673
    """
C
caoying03 已提交
3674
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3675 3676 3677

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3678 3679 3680 3681 3682
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3683
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3684
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3685
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3686 3687
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3688 3689

    Returns:
D
dzhwinter 已提交
3690
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3691 3692 3693 3694 3695 3696 3697 3698 3699

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3700 3701
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3717
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3740
    .. math::
3741 3742

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3743 3744 3745 3746 3747

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3748
        x(Variable|list): The input tensor to l2_normalize layer.
3749
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3750 3751
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3752
        epsilon(float): The epsilon value is used to avoid division by zero, \
3753
            the defalut value is 1e-10.
3754
        name(str|None): A name for this layer(optional). If set None, the layer \
3755
            will be named automatically.
C
caoying03 已提交
3756 3757

    Returns:
3758
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3759 3760

    Examples:
3761

C
caoying03 已提交
3762 3763
        .. code-block:: python

3764 3765 3766 3767
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3768 3769
    """

F
fengjiayi 已提交
3770 3771
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3772 3773
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3774 3775
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3776
    helper.append_op(
3777 3778 3779 3780
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3781
        attrs={
3782 3783
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3784 3785
        })
    return out
3786 3787


S
sneaxiy 已提交
3788
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3789
    """
Y
ying 已提交
3790 3791 3792 3793
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3794

C
chengduoZH 已提交
3795
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3796
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3797

3798 3799 3800 3801 3802
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3803
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3804

C
chengduoZH 已提交
3805
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3806
      performs in the following way.
G
guosheng 已提交
3807

3808
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3809
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3810
        last two dimensions and a batched matrix multiply supporting broadcast
3811
        applies on the two tensors.
G
guosheng 已提交
3812

Y
ying 已提交
3813 3814
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3815
    removed after matrix multiplication.
G
guosheng 已提交
3816 3817 3818

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3819 3820 3821
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3822
        alpha (float): The scale of output. Default 1.0.
3823
        name(str|None): A name for this layer(optional). If set None, the layer
3824
            will be named automatically.
G
guosheng 已提交
3825 3826

    Returns:
3827
        Variable: The product Tensor variable.
G
guosheng 已提交
3828

G
guosheng 已提交
3829 3830 3831
    Examples:
        .. code-block:: python

3832
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3833 3834
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3835

3836 3837
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3838

3839 3840
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3841

3842 3843
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3844 3845 3846 3847

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3848 3849
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3850

Y
ying 已提交
3851
            # x: [M], y: [N]
3852
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3853
    """
Y
ying 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3866
            y_shape = y_shape + [1]
Y
ying 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3883
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3884
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3885
    helper.append_op(
3886 3887 3888 3889
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3890 3891 3892
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3893
            'alpha': float(alpha),
S
sneaxiy 已提交
3894
        })
3895
    return out
3896 3897


3898
def topk(input, k, name=None):
Q
qingqing01 已提交
3899 3900 3901 3902
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3903
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3904 3905 3906 3907 3908 3909
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3931 3932 3933
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3934
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3935
                 of input.
3936
        name(str|None): A name for this layer(optional). If set None, the layer
3937
                       will be named automatically.
F
fengjiayi 已提交
3938
                       Default: None
Q
qingqing01 已提交
3939 3940

    Returns:
3941 3942 3943
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3944
        within the last dimension of input.
Q
qingqing01 已提交
3945

F
fengjiayi 已提交
3946 3947
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3948 3949 3950 3951 3952 3953 3954

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
3955 3956
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3968
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3969
    """
Y
ying 已提交
3970 3971 3972 3973 3974 3975 3976 3977 3978
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3979

Y
ying 已提交
3980
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3981

3982
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3983 3984
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3985
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3986

3987
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3988 3989
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3990

3991 3992 3993
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3994
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3995
                          the length of reference string.
3996
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3997
                                     calculating edit distance.
3998
        name (str): The name of this layer. It is optional.
3999

W
wanghaoshuang 已提交
4000
    Returns:
W
wanghaoshuang 已提交
4001
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4002 4003 4004 4005 4006

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4007
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4008
            cost = fluid.layers.edit_distance(input=x,label=y)
4009
    """
4010
    helper = LayerHelper("edit_distance", **locals())
4011

4012
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4013
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4014 4015
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4016 4017 4018 4019 4020

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4021
            attrs={"tokens": ignored_tokens})
4022 4023 4024 4025 4026
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4027
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4028
            attrs={"tokens": ignored_tokens})
4029 4030
        label = erased_label

4031
    # edit distance op
X
Xin Pan 已提交
4032 4033
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4034 4035 4036 4037
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4038 4039
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4040 4041
        attrs={"normalized": normalized})

4042
    return edit_distance_out, sequence_num
4043 4044 4045 4046 4047


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4048

Y
ying 已提交
4049 4050 4051 4052
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4070
        input.lod = [[4, 4]]
4071 4072 4073 4074 4075 4076 4077

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4078
        output.lod = [[2, 1]]
4079 4080 4081

    Args:

Y
ying 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4091
        name (str): The name of this layer. It is optional.
4092 4093

    Returns:
4094
        Variable: CTC greedy decode result. If all the sequences in result were
4095
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4096 4097 4098 4099 4100

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4101

4102
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4103
    """
4104
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4105
    _, topk_indices = topk(input, k=1)
4106 4107

    # ctc align op
X
Xin Pan 已提交
4108
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4109 4110 4111
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4112
        outputs={"Output": [ctc_out]},
4113 4114
        attrs={"merge_repeated": True,
               "blank": blank})
4115
    return ctc_out
4116 4117


F
fengjiayi 已提交
4118
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4119
    """
4120 4121
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4122
    to compute Connectionist Temporal Classification (CTC) loss.
4123 4124
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4125 4126 4127
    input tensor.

    Args:
4128
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4129 4130 4131 4132
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4133
       label (Variable): The ground truth of variable-length sequence,
4134 4135 4136
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4137 4138
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4139 4140 4141
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4142
         follewed by a mean_op.
W
wanghaoshuang 已提交
4143 4144

    Returns:
4145 4146
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4147 4148

    Examples:
4149

W
wanghaoshuang 已提交
4150
        .. code-block:: python
4151

4152 4153 4154
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4155 4156

    """
F
fengjiayi 已提交
4157
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4158 4159
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4184 4185 4186
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4187 4188 4189 4190 4191
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4192

4193
            out.lod  = [[0, 1, 3]]
4194 4195 4196 4197

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4198 4199 4200 4201 4202 4203 4204
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4205 4206 4207

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4208 4209

    Returns:
4210

4211 4212 4213 4214 4215
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4216
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4217
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4218 4219
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4220
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4221 4222 4223 4224 4225 4226
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4227 4228


4229 4230 4231 4232
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4233 4234 4235 4236 4237 4238
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4239 4240
        num_neg_samples=None,
        name=None):
4241 4242 4243 4244 4245 4246 4247
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4248 4249
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4250
            sample is 1.0.
C
chengduo 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4260
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4261 4262
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4263

4264
    Returns:
Y
Yibing Liu 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4292
    """
Y
Yang Yu 已提交
4293 4294 4295
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4296 4297

    dim = input.shape[1]
Y
Yang Yu 已提交
4298 4299 4300 4301 4302 4303
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4317 4318 4319
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4320

Y
Yang Yu 已提交
4321 4322 4323 4324 4325 4326 4327 4328 4329
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4330 4331 4332

    helper.append_op(
        type='nce',
C
chengduo 已提交
4333
        inputs=inputs,
Y
Yang Yu 已提交
4334 4335 4336 4337 4338 4339
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4340
    return cost / (num_neg_samples + 1)
4341 4342


C
chengduo 已提交
4343 4344 4345 4346 4347 4348
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4349 4350
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4351
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4361

W
weixing02 已提交
4362
    Args:
M
minqiyang 已提交
4363
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4364 4365 4366 4367 4368
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4380 4381 4382 4383 4384 4385 4386 4387

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4388 4389 4390
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4391 4392 4393 4394
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4395 4396
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4397 4398
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4399
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4400 4401 4402 4403 4404
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4405 4406 4407 4408 4409 4410 4411 4412
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4413 4414
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4415
        inputs=inputs,
W
weixing02 已提交
4416 4417 4418 4419 4420 4421
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4422
def transpose(x, perm, name=None):
Y
ying 已提交
4423 4424 4425 4426 4427 4428 4429
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4430 4431 4432
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4433 4434 4435 4436 4437 4438 4439 4440

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4441
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4442 4443
    """

Y
fix ci.  
ying 已提交
4444
    if len(perm) != len(x.shape):
Y
ying 已提交
4445 4446 4447
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4448 4449 4450 4451 4452 4453
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4454 4455

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4456 4457
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4458
    helper.append_op(
4459
        type='transpose2',
Y
fix ci.  
ying 已提交
4460
        inputs={'X': [x]},
4461 4462
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4463 4464
        attrs={'axis': perm})
    return out
4465 4466


4467 4468 4469 4470 4471 4472 4473
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4474
    """
4475 4476 4477 4478 4479 4480 4481
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4510 4511 4512 4513 4514 4515 4516 4517 4518
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4519 4520 4521
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4522 4523 4524 4525 4526
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4554 4555 4556
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4569
            output.dims = {8, 8}
4570

4571
            output.lod = [[4, 4]]
4572

D
dzhwinter 已提交
4573
     Examples:
4574 4575 4576

        .. code-block:: python

4577 4578
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4579 4580

    """
W
wanghaoshuang 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4591 4592 4593 4594 4595 4596 4597
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4598
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4599
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4600
    helper.append_op(
4601
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4602
    return out
4603 4604


Y
yuyang18 已提交
4605
@templatedoc()
4606
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4607 4608
    """
    ${comment}
4609 4610

    Args:
Y
yuyang18 已提交
4611
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4612 4613
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4614 4615 4616 4617 4618
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4619
        ${out_comment}.
4620 4621

    Examples:
Y
yuyang18 已提交
4622 4623 4624 4625
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4626 4627 4628 4629 4630 4631
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4632
    out = helper.create_variable_for_type_inference(dtype)
4633 4634 4635 4636 4637
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4638
    return helper.append_activation(out)
4639 4640


Y
yuyang18 已提交
4641
@templatedoc()
4642 4643
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4644 4645 4646 4647 4648 4649 4650
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4651 4652

    Args:
Y
yuyang18 已提交
4653 4654
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4655 4656

    Returns:
Y
yuyang18 已提交
4657
        ${out_comment}.
4658 4659
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4660 4661 4662 4663 4664

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4665
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4666 4667 4668 4669 4670 4671
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4672 4673


4674 4675 4676 4677
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4678 4679
    """
    **Softmax With Cross Entropy Operator.**
4680

4681 4682 4683 4684
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4685

4686 4687 4688
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4689

4690 4691 4692
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4693

4694
    The equation is as follows:
4695

4696
    1) Hard label (one-hot label, so every sample has exactly one class)
4697

4698 4699 4700 4701
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4702

4703 4704 4705
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4706

4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4719 4720
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4721 4722
                            if soft_label is set to False. Default: -100

4723 4724 4725 4726 4727 4728 4729 4730 4731
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4732 4733
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4734 4735
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4736 4737
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4738 4739 4740 4741 4742 4743
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4744 4745
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4746 4747 4748 4749 4750
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4751 4752
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4753
    For each instance, it computes the smooth L1 loss element by element first
4754
    and then sums all the losses. So the shape of ouput Variable is
4755
    [batch_size, 1].
4756

4757 4758
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4759
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4760
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4761
            L1 loss op with same shape as :attr:`x`.
4762
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4763 4764
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4765
            by this tensor element by element.
4766
        outside_weight (Variable|None): A tensor with rank at least 2. This
4767 4768
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4769
            element by element.
4770
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4771 4772
           scalar with default value 1.0.

4773
    Returns:
4774
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4775 4776 4777 4778 4779

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4780 4781
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4782
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4783
            out = fluid.layers.smooth_l1(x=fc, y=label)
4784
    """
4785

4786
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4787 4788
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4801 4802 4803 4804


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4805
    This layer creates the one-hot representations for input indices.
4806 4807

    Args:
Y
Yibing Liu 已提交
4808 4809
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4810 4811

    Returns:
Y
Yibing Liu 已提交
4812
        Variable: The one-hot representations of input.
4813 4814

    Examples:
C
caoying03 已提交
4815
        .. code-block:: python
4816

Y
Yibing Liu 已提交
4817 4818
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4819 4820
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4821
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4822 4823 4824 4825 4826 4827
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4828 4829


Y
Yu Yang 已提交
4830
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4831
    """
Y
yi.wu 已提交
4832 4833 4834
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4835 4836 4837 4838 4839 4840

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4841 4842
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4843 4844 4845 4846 4847 4848

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4849 4850
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4851 4852
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4853 4854 4855 4856 4857
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4858
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4859
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4860 4861
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4862 4863
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4864 4865 4866
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4867 4868


4869
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4870
    """
C
caoying03 已提交
4871 4872
    Gives a new shape to the input Tensor without changing its data.

4873 4874 4875 4876 4877
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4878

4879
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4880

4881 4882 4883 4884
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4885
    2. 0 means the actual dimension value is going to be copied from the
4886 4887 4888 4889
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4890 4891

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4892
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4893
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4894

4895
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4896 4897
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4898 4899
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4900
    dimensions.
C
caoying03 已提交
4901

4902
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4903 4904 4905 4906
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4907 4908

    Args:
4909
        x(variable): The input tensor.
C
caoying03 已提交
4910 4911
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4912 4913 4914 4915 4916
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
4917 4918
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
4919 4920 4921 4922 4923 4924 4925
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
4926
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4927

4928
    Returns:
G
guosheng 已提交
4929 4930 4931 4932
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
4933

X
Xin Pan 已提交
4934 4935 4936
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4937 4938
    Examples:
        .. code-block:: python
G
guosheng 已提交
4939

4940
            data = fluid.layers.data(
4941
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4942
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
4943
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
4944 4945 4946
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4947
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4948 4949 4950 4951 4952
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4953

4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4969
    helper = LayerHelper("reshape2", **locals())
4970 4971
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
4972
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4973
    helper.append_op(
4974
        type="reshape2",
X
Xin Pan 已提交
4975
        inputs=inputs,
D
dzhwinter 已提交
4976
        attrs={"shape": shape},
4977 4978
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4979

D
dzhwinter 已提交
4980
    return helper.append_activation(out)
4981

4982

4983
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4984
    """
M
minqiyang 已提交
4985 4986 4987
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4988
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4989

Y
Yibing Liu 已提交
4990 4991
    Examples:
    Case 1:
M
minqiyang 已提交
4992
      Given
Y
Yibing Liu 已提交
4993 4994 4995 4996 4997 4998 4999 5000
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5001
        and
Y
Yibing Liu 已提交
5002 5003 5004
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5005

Y
Yibing Liu 已提交
5006
    Args:
5007
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5008
        axes (list): List of integers, indicating the dimensions to be squeezed.
5009
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5010 5011 5012 5013 5014 5015 5016 5017

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5018
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5019 5020
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5021 5022
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5023
    helper.append_op(
5024
        type="squeeze2",
5025
        inputs={"X": input},
Y
Yibing Liu 已提交
5026
        attrs={"axes": axes},
5027 5028
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5029

5030 5031 5032
    return out


5033
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5034
    """
M
minqiyang 已提交
5035 5036 5037
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5038

M
minqiyang 已提交
5039 5040
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5041
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5042

Y
Yibing Liu 已提交
5043
    Args:
5044
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5045
        axes (list): List of integers, indicating the dimensions to be inserted.
5046
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5047 5048 5049 5050 5051 5052 5053 5054

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5055
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5056 5057
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5058 5059
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5060
    helper.append_op(
5061
        type="unsqueeze2",
5062
        inputs={"X": input},
Y
Yibing Liu 已提交
5063
        attrs={"axes": axes},
5064 5065
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5066

5067 5068
    return out

5069

Y
yangyaming 已提交
5070
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5071
    """
Y
Yibing Liu 已提交
5072
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5073 5074 5075 5076
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5077
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5078 5079 5080 5081 5082 5083

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5084
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5085 5086 5087
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5088
            target_lod: [4, 2]
Y
yangyaming 已提交
5089 5090

            then we get a 1-level LoDTensor:
5091
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5092 5093 5094 5095 5096 5097
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5098
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5099 5100 5101 5102
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5103
                y.data = [[2, 4]]
Y
yangyaming 已提交
5104 5105 5106
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5107
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5108 5109 5110 5111 5112 5113
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5114
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5115 5116 5117 5118
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5119
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5120 5121 5122 5123
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5124
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5125 5126 5127 5128 5129
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5130
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5131
                           from :attr:`y`.
Y
yangyaming 已提交
5132
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5133
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5134 5135

    Returns:
Y
Yibing Liu 已提交
5136
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5137 5138

    Raises:
Y
Yibing Liu 已提交
5139
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5149
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5175
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5204 5205
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5218 5219 5220
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5234 5235 5236 5237


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5238
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5239
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5240

G
guosheng 已提交
5241 5242 5243 5244
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5267
                         The length of :attr:paddings must be
G
guosheng 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5278

G
guosheng 已提交
5279 5280 5281 5282 5283 5284
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5285
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5286 5287 5288 5289 5290 5291 5292
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5293 5294


C
chengduo 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5365
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5366 5367 5368 5369 5370 5371 5372 5373 5374
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5375 5376 5377 5378 5379 5380 5381
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5382 5383
    called label-smoothing regularization (LSR).

5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5407
                              be :math:`(1, class\_num)`.
5408 5409
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5410
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5430
    smooth_label = helper.create_variable_for_type_inference(dtype)
5431 5432 5433 5434 5435 5436 5437
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5438 5439


Y
yi.wu 已提交
5440
@templatedoc()
5441 5442
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5443
    ${comment}
5444 5445

    Args:
Y
yi.wu 已提交
5446 5447
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5448 5449 5450
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5451 5452

    Returns:
Y
update  
yi.wu 已提交
5453
        Variable: ${out_comment}.
5454 5455

    Examples:
5456 5457
        .. code-block:: python

5458
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5459 5460 5461
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5462 5463
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5476 5477


J
jerrywgz 已提交
5478 5479 5480 5481 5482 5483
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5484 5485
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

            align_out = fluid.layers.roi_align(input=x, 
                                               rois=rois, 
                                               pooled_height=7, 
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5511
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5552 5553
        .. code-block:: python

W
whs 已提交
5554 5555 5556 5557
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5558
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5559 5560 5561 5562 5563 5564
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5565 5566


5567 5568 5569 5570 5571
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5572
    """
Q
qiaolongfei 已提交
5573
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5574

5575
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5576 5577 5578
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5579

5580
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5581

5582
    Args:
5583
        input (Variable): The input tensor of image resize layer,
5584 5585
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5586
        out_shape(list|tuple|Variable|None): Output shape of image resize
5587 5588
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5589
        scale(float|None): The multiplier for the input height or width.
5590 5591 5592
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5593 5594
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5595 5596
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5597 5598

    Returns:
Q
update  
qiaolongfei 已提交
5599 5600
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5601

5602 5603 5604
    Examples:
        .. code-block:: python

5605
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5606
    """
5607 5608 5609 5610
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5611 5612
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5613 5614
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5615 5616 5617 5618

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5619 5620 5621
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5622
    if out_shape is not None:
B
baiyf 已提交
5623 5624 5625
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5626 5627 5628 5629 5630 5631
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5632 5633 5634 5635
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

X
Xin Pan 已提交
5636
    out = helper.create_variable_for_type_inference(dtype)
5637
    helper.append_op(
5638
        type=resample_methods[resample],
5639
        inputs=inputs,
5640 5641 5642 5643
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5644 5645


Y
yuyang18 已提交
5646
@templatedoc(op_type="bilinear_interp")
5647 5648
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5649 5650 5651 5652 5653 5654
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5655

Y
yuyang18 已提交
5656 5657 5658 5659 5660 5661 5662 5663
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5664 5665 5666 5667 5668 5669 5670
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5671 5672 5673
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5674 5675 5676 5677 5678 5679 5680
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5681
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5682

5683
    Returns:
Q
update  
qiaolongfei 已提交
5684
        Variable: The output is a 4-D tensor of the shape
5685
        (num_batches, channls, out_h, out_w).
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5696 5697 5698
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5699 5700 5701
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5702 5703
def gather(input, index):
    """
Q
qiaolongfei 已提交
5704 5705
    **Gather Layer**

5706
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5707 5708 5709 5710
    of X indexed by `index` and concatenate them together.

    .. math::

5711
        Out = X[Index]
W
whs 已提交
5712 5713 5714 5715 5716 5717 5718


    .. code-block:: text


                Given:

5719 5720
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5731
        input (Variable): The source input with rank>=1.
W
whs 已提交
5732 5733 5734 5735 5736 5737
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5738

W
whs 已提交
5739 5740 5741 5742 5743 5744
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5745
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5746 5747 5748 5749 5750 5751 5752 5753
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5785
    out = helper.create_variable_for_type_inference(dtype)
5786 5787 5788 5789 5790 5791 5792 5793 5794
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5845
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
5846 5847 5848 5849 5850 5851 5852 5853 5854
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5868

5869 5870 5871
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5872
    """
F
stash  
fengjiayi 已提交
5873
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5874
    dtype = x.dtype
X
Xin Pan 已提交
5875
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
5876
    if seed is None:
5877
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5878
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5879
    if isinstance(seed, int):
F
fengjiayi 已提交
5880 5881 5882 5883 5884
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5885 5886 5887 5888
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5889
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5890 5891
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5892 5893
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5894
    return out
W
whs 已提交
5895 5896


5897
def log(x, name=None):
W
wanghaoshuang 已提交
5898 5899 5900 5901 5902
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5903
        Out = \\ln(x)
W
wanghaoshuang 已提交
5904 5905

    Args:
5906
        x (Variable): Input tensor.
5907 5908
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5909 5910 5911 5912 5913 5914 5915 5916

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5917
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5918 5919
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5920
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5921
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5922
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5923 5924 5925
    return out


5926
def relu(x, name=None):
W
wanghaoshuang 已提交
5927 5928
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5929
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5930 5931 5932 5933
    the tensor elementwise.

    .. math::

5934
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5935 5936

    Args:
5937
        x (Variable): The input tensor.
5938 5939
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5940 5941 5942 5943 5944 5945 5946 5947

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5948
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5949 5950
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5951
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
5952
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
5953
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5954
    return out
5955 5956


W
whs 已提交
5957 5958 5959
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5960 5961 5962 5963
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5964
    .. math::
5965 5966

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5967

5968
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5969 5970 5971 5972 5973
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5974
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5975
                           Its shape should be the same as input.
5976
        num_classes (int): The possible number of labels.
W
whs 已提交
5977 5978 5979 5980

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5981
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5982 5983 5984 5985

    Examples:

        .. code-block:: python
5986

W
whs 已提交
5987 5988 5989 5990
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5991 5992 5993
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
5994 5995
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5996 5997
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5998
        outputs={
W
whs 已提交
5999 6000 6001
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6002 6003 6004
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6079
                    isinstance(shape, Variable)):
6080 6081 6082 6083 6084
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6085
    out = helper.create_variable_for_type_inference(x.dtype)
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6103 6104 6105 6106 6107 6108 6109 6110 6111 6112


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6113

6114 6115
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6116

6117 6118 6119 6120
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6121

6122 6123 6124 6125 6126
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6127 6128 6129

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6165
    out = helper.create_variable_for_type_inference("float32")
6166 6167 6168 6169 6170 6171 6172 6173

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6174 6175


M
minqiyang 已提交
6176 6177
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6178
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6179
    which compares left score and right score passed in.
M
minqiyang 已提交
6180
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6181 6182 6183 6184 6185 6186

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6187
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6188 6189
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6190
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6191 6192 6193
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6194
       Variable: The ranking loss.
M
minqiyang 已提交
6195
    Raises:
M
minqiyang 已提交
6196
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6197 6198 6199 6200 6201 6202 6203
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6204
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6205 6206 6207 6208 6209 6210
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6211 6212
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6238

W
whs 已提交
6239 6240
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6241

W
whs 已提交
6242
      Case 0:
M
minqiyang 已提交
6243

W
whs 已提交
6244 6245 6246
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6247

W
whs 已提交
6248 6249 6250
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6251

W
whs 已提交
6252
      Case 1:
M
minqiyang 已提交
6253

W
whs 已提交
6254 6255
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6256

W
whs 已提交
6257 6258 6259
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6260

W
whs 已提交
6261
      Case 2:
M
minqiyang 已提交
6262

W
whs 已提交
6263 6264
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6265

W
whs 已提交
6266 6267 6268
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6269 6270


W
whs 已提交
6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6297
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6326
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6349
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6372
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6396
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6421
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6445
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6446 6447 6448 6449 6450 6451 6452 6453
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6468
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6469
                        will be named automatically.
J
jerrywgz 已提交
6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6497
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6521
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6544
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6566
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6567 6568 6569 6570 6571 6572 6573 6574
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6588

6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6599 6600
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6616
        ValueError: If axis is not in range [0, rank(x)].
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6633 6634
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6635
    helper.append_op(
6636
        type='flatten2',
6637
        inputs={"X": x},
6638 6639
        outputs={'Out': out,
                 'XShape': x_shape},
6640 6641
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6642 6643


C
chenweihang 已提交
6644
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6645
    """
C
chenweihang 已提交
6646
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6647
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6648 6649
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6650

C
chenweihang 已提交
6651 6652 6653 6654
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6655
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6656 6657 6658 6659 6660 6661
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6662
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6663 6664 6665
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6666 6667 6668
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
6680 6681
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6682 6683 6684 6685 6686 6687
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6688
    return out
6689

6690

S
sneaxiy 已提交
6691 6692 6693 6694 6695 6696 6697 6698 6699
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6700

S
sneaxiy 已提交
6701
    .. math::
6702

S
sneaxiy 已提交
6703 6704 6705
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6706
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6707 6708 6709 6710
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6711 6712 6713
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6714 6715
    Returns:
        Variable: The output sequence mask.
6716

S
sneaxiy 已提交
6717 6718
    """

Q
qingqing01 已提交
6719
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6720
    if name is None:
X
Xin Pan 已提交
6721
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
6722
    else:
X
Xin Pan 已提交
6723
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
6724

Q
qingqing01 已提交
6725 6726 6727
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6728 6729
        outputs={'Y': out},
        attrs={
6730
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6731 6732 6733
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6734 6735


X
Xin Pan 已提交
6736
def stack(x, axis=0):
S
sneaxiy 已提交
6737 6738 6739 6740
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6741 6742 6743 6744 6745 6746 6747

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6748
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6749
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6750 6751

    Args:
6752
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6753
        axis (int|None): The axis along which all inputs are stacked.
6754

S
sneaxiy 已提交
6755 6756
    Returns:
        Variable: The stacked variable.
6757

S
sneaxiy 已提交
6758 6759
    """

X
Xin Pan 已提交
6760 6761 6762 6763 6764 6765
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
6766
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
6767
    helper.append_op(
S
sneaxiy 已提交
6768 6769
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6770

X
Xin Pan 已提交
6771
    return out
D
dzhwinter 已提交
6772 6773 6774 6775 6776 6777 6778


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6779

D
dzhwinter 已提交
6780 6781 6782
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6783
    raised.
D
dzhwinter 已提交
6784 6785

    Args:
M
minqiyang 已提交
6786
        x (Variable): Input variable.
D
dzhwinter 已提交
6787 6788
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6789

D
dzhwinter 已提交
6790 6791
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6792

D
dzhwinter 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
6804
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
6805 6806 6807 6808 6809 6810 6811 6812

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6825

W
whs 已提交
6826 6827 6828 6829
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6830

W
whs 已提交
6831
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6832

W
whs 已提交
6833
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6834

W
whs 已提交
6835 6836 6837 6838
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6839

W
whs 已提交
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6856
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6857 6858 6859 6860 6861 6862
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6863 6864


G
fix  
gongweibao 已提交
6865 6866 6867
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6868
@templatedoc()
G
fix  
gongweibao 已提交
6869 6870 6871 6872 6873 6874 6875 6876 6877
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6878
    ${comment}
G
fix  
gongweibao 已提交
6879 6880

    Args:
G
gongweibao 已提交
6881 6882 6883
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6884
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6885 6886 6887
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6888 6889
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6890
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6891 6892 6893 6894

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
6895
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6912 6913


G
gongweibao 已提交
6914
@templatedoc()
X
Xin Pan 已提交
6915
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6916
    """
G
gongweibao 已提交
6917
    ${comment}
G
fix  
gongweibao 已提交
6918 6919

    Args:
G
gongweibao 已提交
6920 6921 6922 6923
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6924 6925 6926
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6927
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6928 6929 6930 6931

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
6932
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6933 6934 6935 6936 6937 6938 6939 6940 6941 6942
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6943
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6944 6945 6946 6947 6948
        })

    return out


G
gongweibao 已提交
6949
@templatedoc()
G
fix  
gongweibao 已提交
6950
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6951
    """
G
gongweibao 已提交
6952
    ${comment}
G
fix  
gongweibao 已提交
6953 6954

    Args:
G
gongweibao 已提交
6955 6956 6957 6958
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6959
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6960 6961

    Returns:
G
gongweibao 已提交
6962
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6963 6964 6965 6966

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
6967
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6979
@templatedoc()
G
fix  
gongweibao 已提交
6980 6981 6982 6983 6984 6985 6986 6987 6988
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6989
    ${comment}
G
fix  
gongweibao 已提交
6990 6991

    Args:
G
gongweibao 已提交
6992 6993
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6994
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6995 6996 6997 6998
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6999
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7000 7001

    Returns:
G
gongweibao 已提交
7002
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7003 7004 7005
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7006
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7025
@templatedoc()
X
Xin Pan 已提交
7026
def sum(x):
G
fix  
gongweibao 已提交
7027
    """
G
gongweibao 已提交
7028
    ${comment}
G
fix  
gongweibao 已提交
7029 7030

    Args:
G
gongweibao 已提交
7031
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7032 7033

    Returns:
G
gongweibao 已提交
7034
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7035 7036 7037
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7038 7039
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7040 7041 7042 7043
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7044
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7045 7046 7047 7048

    return out


G
gongweibao 已提交
7049
@templatedoc()
G
fix  
gongweibao 已提交
7050 7051
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7052
    ${comment}
G
fix  
gongweibao 已提交
7053 7054

    Args:
G
gongweibao 已提交
7055 7056 7057 7058
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7059 7060

    Returns:
G
gongweibao 已提交
7061
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7062 7063 7064 7065

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7066 7067
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7079
@templatedoc()
G
fix  
gongweibao 已提交
7080 7081
def shape(input):
    """
G
gongweibao 已提交
7082
    ${comment}
G
fix  
gongweibao 已提交
7083 7084

    Args:
G
gongweibao 已提交
7085
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7086 7087

    Returns:
G
gongweibao 已提交
7088
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7089 7090 7091 7092

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7093 7094
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7095
    helper.append_op(
G
fix  
gongweibao 已提交
7096
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7097 7098

    return out
G
merge  
gongweibao 已提交
7099 7100


S
sneaxiy 已提交
7101 7102 7103 7104 7105 7106 7107 7108
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7109 7110
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7111
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7112 7113 7114
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7115

S
sneaxiy 已提交
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7127
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7128 7129 7130 7131 7132 7133 7134 7135
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7136
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7137
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7138 7139 7140 7141 7142 7143

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7144
    if name is None:
X
Xin Pan 已提交
7145
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7146 7147 7148
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7159
    return helper.append_activation(out)
S
sneaxiy 已提交
7160 7161


X
Xin Pan 已提交
7162
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7163 7164 7165
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7166
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7167 7168 7169
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7170
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7171 7172 7173
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7174
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7175 7176 7177
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7178
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7179 7180 7181
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7182
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7183 7184 7185
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7186
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7198 7199
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7200
        ])
M
minqiyang 已提交
7201 7202


7203
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7204 7205
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7206 7207
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7208 7209 7210

    if out is None:
        if name is None:
X
Xin Pan 已提交
7211
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7227
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7246
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7265
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7284
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
X
Xin Pan 已提交
7319
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
X
Xin Pan 已提交
7351
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7381
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7411
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7412 7413 7414 7415 7416 7417 7418 7419 7420
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7421 7422
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7445
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7475
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7486 7487


S
sneaxiy 已提交
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7502
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7513 7514


7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7541
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out