nn.py 217.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
103
    'random_crop',
Y
yuyang18 已提交
104 105 106
    'mean_iou',
    'relu',
    'log',
107
    'crop',
108
    'rank_loss',
J
jerrywgz 已提交
109
    'prelu',
110
    'flatten',
Q
qingqing01 已提交
111
    'sequence_mask',
S
sneaxiy 已提交
112
    'stack',
W
whs 已提交
113
    'pad2d',
D
dzhwinter 已提交
114
    'unstack',
115
    'sequence_enumerate',
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
124
       use_mkldnn=False,
Y
Yu Yang 已提交
125
       act=None,
J
Jacek Czaja 已提交
126
       is_test=False,
127
       name=None):
Y
Yu Yang 已提交
128
    """
129
    **Fully Connected Layer**
Y
Yu Yang 已提交
130

131 132 133 134 135 136 137 138
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
139
    to the output as well.
C
caoying03 已提交
140

C
caoying03 已提交
141
    This process can be formulated as follows:
142 143 144

    .. math::

145
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
146 147 148

    In the above equation:

C
caoying03 已提交
149 150 151 152
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
153
    * :math:`Act`: The activation function.
C
caoying03 已提交
154
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
155 156

    Args:
R
ranqiu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
172 173
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
174
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
175
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
176 177
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
178
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
179

180
    Returns:
F
fengjiayi 已提交
181
        Variable: The transformation result.
182 183

    Raises:
C
caoying03 已提交
184
        ValueError: If rank of the input tensor is less than 2.
185 186 187 188

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
189
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
190
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
191
    """
C
caoying03 已提交
192

C
caoying03 已提交
193
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
194 195 196 197

    dtype = helper.input_dtype()

    mul_results = []
198 199
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
200 201 202
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
203

Y
Yu Yang 已提交
204
        w = helper.create_parameter(
205 206
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
207
        helper.append_op(
208 209 210
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
211
            outputs={"Out": tmp},
M
mozga-intel 已提交
212 213
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
214 215 216 217
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
218
    else:
219 220
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
221 222 223 224
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
225 226 227 228
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
229 230


231 232 233
def embedding(input,
              size,
              is_sparse=False,
234
              is_distributed=False,
235 236 237
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
238
    """
239 240
    **Embedding Layer**

241
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
242 243
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
244 245 246

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
247 248

    Args:
249 250 251 252 253
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
254
        is_distributed(bool): Whether to run lookup table from remote parameter server.
255 256
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
257
            with zeros whenever lookup encounters it in :attr:`input`. If
258
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
259 260
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
261
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
262

263 264 265
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
266

267 268
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
269

C
chengduoZH 已提交
270
          dict_size = len(dataset.ids)
271
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
272
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
273 274 275 276 277 278
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
279 280
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
281 282 283 284 285
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
286 287 288 289 290
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
291 292 293
    return tmp


Y
yi.wu 已提交
294
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
295 296
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
297 298
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
299 300 301 302 303 304 305
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
306 307
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
308
    """
Y
yi.wu 已提交
309
    ${comment}
Y
Yibing Liu 已提交
310 311

    Args:
Y
yi.wu 已提交
312 313
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
314 315 316 317 318 319 320
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

321
        param_attr(ParamAttr|None): The parameter attribute for the learnable
322
                               hidden-hidden weights.
Y
Yibing Liu 已提交
323 324 325

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
326 327
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
328
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
329 330 331
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
332

333
                              1. `use_peepholes = False`
Y
yi.wu 已提交
334 335
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
336
                              2. `use_peepholes = True`
Y
yi.wu 已提交
337
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
338
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
339
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
340 341 342 343 344 345 346 347
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
348 349

    Returns:
Y
Yibing Liu 已提交
350 351
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
352

Y
Yibing Liu 已提交
353
    Examples:
Y
Yibing Liu 已提交
354 355
        .. code-block:: python

Y
Yibing Liu 已提交
356 357
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
358
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
359 360
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
361
    """
362

Y
Yu Yang 已提交
363
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
364
    size = size // 4
Y
Yu Yang 已提交
365 366 367 368 369 370 371 372 373 374 375 376
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
377 378 379 380 381 382 383 384 385 386
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
387 388 389

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
390
        inputs=inputs,
Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
407 408 409 410 411 412 413 414 415 416 417
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
418 419
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
420 421 422
    """
    **Dynamic LSTMP Layer**

423 424 425 426 427 428
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
429 430 431 432 433

    The formula is as follows:

    .. math::

434
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
435

436
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
437

438
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
439

440
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
441

442
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
443

444
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
445

446
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
447

Y
Yibing Liu 已提交
448 449 450 451 452 453
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
454
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
455
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
456
          bias vector).
Y
Yibing Liu 已提交
457 458 459
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
460
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
461
    * :math:`h`: The hidden state.
462
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
463 464
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
465
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
466
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
467
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
468 469
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
470 471 472 473

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
474

Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485 486
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
487
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
488 489
                               hidden-hidden weight and projection weight.

490 491
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
492 493
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
494 495
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
496 497
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
498 499 500 501 502 503
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
504
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
505 506 507
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
508
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
518
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
519 520
                              default "tanh".
        proj_activation(str): The activation for projection output.
521
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
522 523
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
524 525
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
526 527

    Returns:
528 529 530 531
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
532 533

    Examples:
534

Y
Yibing Liu 已提交
535 536
        .. code-block:: python

537 538 539 540
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
541
            hidden_dim, proj_dim = 512, 256
542
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
543
                                     act=None, bias_attr=None)
544 545 546
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
547 548 549 550
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
551
    """
552

Y
Yibing Liu 已提交
553
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
554
    size = size // 4
Y
Yibing Liu 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
599 600 601 602 603 604 605 606 607
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
608
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
609

610
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
611
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
612

G
guosheng 已提交
613 614 615 616 617 618 619 620 621
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
622

G
guosheng 已提交
623
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
624

G
guosheng 已提交
625
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
626 627
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
628 629 630 631
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
632
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
633 634

    Args:
635 636
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
637
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
638
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
639 640
            is the hidden size.
        size(int): The dimension of the gru cell.
641
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
642 643
            hidden-hidden weight matrix. Note:

644
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
645
              :math:`D` is the hidden size.
646
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
647
              The first part are weights of the update gate and reset gate with
648
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
649
              candidate hidden state with shape :math:`(D \\times D)`.
650
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
651
            hidden-hidden bias.
652
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
653 654 655
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
656
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
657
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
658 659 660 661
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
662 663

    Returns:
G
guosheng 已提交
664
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
665
            and sequence length is the same with the input.
666

G
guosheng 已提交
667
    Examples:
668

G
guosheng 已提交
669 670
        .. code-block:: python

671 672 673 674
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
675
            hidden_dim = 512
676
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
677 678 679 680 681 682 683 684 685 686
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
687
    batch_size = input.shape[0]
G
guosheng 已提交
688 689 690
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
691 692 693
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
717 718 719
def gru_unit(input,
             hidden,
             size,
720 721
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
722
             activation='tanh',
723
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
724
    """
725
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
726

727 728
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
729

730
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
731

732
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
733

734
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
735 736

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
737 738 739
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
740 741
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

742 743
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
744 745 746
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
747 748 749 750 751

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
752 753
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
754 755 756 757
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
758

759 760 761 762 763 764
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
765

766
             # assuming we have x_t_data and prev_hidden of size=10
767
             x_t = fluid.layers.fc(input=x_t_data, size=30)
768 769
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
770 771 772 773 774 775 776 777 778 779 780 781

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
782
    size = size // 3
Y
Yu Yang 已提交
783 784

    # create weight
785 786
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
787

788 789 790 791
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
792
    # create bias
793
    if helper.bias_attr:
Y
Yu Yang 已提交
794 795 796
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
797
        inputs['Bias'] = bias
Y
Yu Yang 已提交
798 799 800

    helper.append_op(
        type='gru_unit',
801
        inputs=inputs,
Y
Yu Yang 已提交
802 803 804 805 806 807
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
808 809
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
810 811 812 813 814
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
815
@templatedoc()
816
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
817 818 819 820 821 822 823
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
824
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
825 826 827 828
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
829 830 831
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
832 833

    """
Y
Yu Yang 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
859
@templatedoc()
860
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
861 862 863 864 865
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
868

Y
yuyang18 已提交
869 870 871
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
872
        Variable: ${viterbi_path_comment}
873

Y
yi.wu 已提交
874 875 876 877 878
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
879
    """
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
893
@templatedoc()
F
fengjiayi 已提交
894
def cos_sim(X, Y):
Y
Yu Yang 已提交
895
    """
Y
yi.wu 已提交
896 897 898
    ${comment}

    Args:
899 900
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
901

Y
yi.wu 已提交
902
    Returns:
903
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
904
    """
F
fengjiayi 已提交
905
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


919
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
920 921 922 923 924
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
925
    training. The dropout operator randomly sets (according to the given dropout
926 927 928 929
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
930 931
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
932 933 934 935 936 937 938
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
939 940

    Returns:
941
        Variable: A tensor variable is the shape with `x`.
942 943

    Examples:
944

945 946
        .. code-block:: python

947 948
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
949 950
    """

F
fengjiayi 已提交
951
    helper = LayerHelper('dropout', **locals())
952 953
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
954 955 956 957

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

958 959 960 961 962
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
963 964 965 966 967 968
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
969 970 971
    return out


972
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
973
    """
Y
Yibing Liu 已提交
974 975
    **Cross Entropy Layer**

976 977 978
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
979 980

    1) One-hot cross-entropy:
F
fengjiayi 已提交
981
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
982

Y
Yibing Liu 已提交
983
        .. math::
Y
yangyaming 已提交
984

Y
Yibing Liu 已提交
985 986 987
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
988 989
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
990 991 992 993 994

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
995
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
996 997 998
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
999 1000
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1001
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1002

Y
Yibing Liu 已提交
1003
    Args:
Y
yangyaming 已提交
1004
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1005 1006 1007 1008
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1009
        label (Variable|list): the ground truth which is a 2-D tensor. When
1010 1011 1012 1013
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1014
        soft_label (bool): a flag indicating whether to
1015
                                           interpretate the given labels as soft
1016 1017 1018 1019
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1020 1021 1022 1023 1024

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1025 1026 1027 1028 1029
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1030 1031 1032 1033 1034 1035

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1036
    """
F
fengjiayi 已提交
1037
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1038 1039 1040 1041 1042 1043
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1044 1045
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1046 1047 1048
    return out


F
fengjiayi 已提交
1049
def square_error_cost(input, label):
Y
Yu Yang 已提交
1050
    """
1051 1052
    **Square error cost layer**

1053 1054
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1069 1070
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1071 1072

    Returns:
G
guosheng 已提交
1073
        Variable: The tensor variable storing the element-wise squared error \
1074
                  difference of input and label.
1075 1076 1077 1078 1079 1080 1081 1082

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1083
    """
F
fengjiayi 已提交
1084
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1094 1095
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1096 1097 1098
    return square_out


Y
yi.wu 已提交
1099
@templatedoc()
Y
Yu Yang 已提交
1100 1101 1102 1103
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1104
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1105
    """
Y
yi.wu 已提交
1106
    **Chunk Evaluator**
Y
yi.wu 已提交
1107

Y
yangyaming 已提交
1108
    This function computes and outputs the precision, recall and
1109
    F1-score of chunk detection.
Y
yi.wu 已提交
1110

Y
yi.wu 已提交
1111 1112 1113 1114 1115 1116 1117 1118
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1119

Y
yi.wu 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1145

Y
yi.wu 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1170
    Args:
1171 1172 1173 1174 1175
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1176

Y
yi.wu 已提交
1177
    Returns:
Y
update  
yi.wu 已提交
1178 1179 1180
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1181

Y
yi.wu 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1194
    """
F
fengjiayi 已提交
1195
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1196 1197 1198 1199 1200

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1201 1202 1203
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1204 1205 1206 1207 1208 1209 1210 1211

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1212 1213 1214 1215
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1216 1217 1218
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1219 1220
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1221
        })
1222 1223
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1224 1225


1226
@templatedoc()
Y
Yu Yang 已提交
1227 1228 1229 1230 1231 1232 1233
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1234
                  act=None):
Y
Yu Yang 已提交
1235 1236 1237 1238
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1249

1250 1251
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1270
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1277
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1278 1279 1280
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1281
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1324
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1325
    """
1326
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1327
    has the same shape as the input.
Q
qiaolongfei 已提交
1328

1329 1330 1331 1332 1333 1334
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1335
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1336 1337 1338 1339 1340 1341 1342

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1343
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1378 1379 1380
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1381 1382
           stride=1,
           padding=0,
1383
           dilation=1,
Y
Yu Yang 已提交
1384 1385 1386
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1387
           use_cudnn=True,
1388
           use_mkldnn=False,
1389 1390
           act=None,
           name=None):
Y
Yu Yang 已提交
1391
    """
C
chengduoZH 已提交
1392
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1393 1394
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1395
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1396 1397 1398 1399 1400 1401 1402
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1403 1404 1405
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1406

1407
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1408

C
chengduoZH 已提交
1409 1410
    .. math::

C
refine  
chengduoZH 已提交
1411
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1412

T
tensor-tang 已提交
1413
    Where:
C
chengduoZH 已提交
1414

1415 1416 1417 1418 1419
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1420
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1421 1422 1423

    Example:

1424 1425
        - Input:

W
weixing02 已提交
1426
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1427

W
weixing02 已提交
1428
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1429

1430
        - Output:
T
tensor-tang 已提交
1431

W
weixing02 已提交
1432
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1433

C
chengduoZH 已提交
1434
        Where
1435 1436

        .. math::
C
chengduoZH 已提交
1437

W
weixing02 已提交
1438 1439
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1440 1441

    Args:
1442
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1443
        num_filters(int): The number of filter. It is as same as the output
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1466 1467
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1468 1469 1470
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1471 1472

    Returns:
G
guosheng 已提交
1473
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1474 1475
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1476
    Raises:
1477 1478
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1479

C
chengduoZH 已提交
1480 1481 1482
    Examples:
        .. code-block:: python

1483 1484
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1485 1486 1487
    """

    num_channels = input.shape[1]
1488 1489

    l_type = 'conv2d'
X
xzl 已提交
1490 1491
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1492
        l_type = 'depthwise_conv2d'
1493 1494 1495 1496

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1497 1498 1499 1500 1501
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1502
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1503

C
chengduoZH 已提交
1504 1505 1506
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1507
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1508

C
chengduoZH 已提交
1509 1510
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1511 1512

    input_shape = input.shape
M
minqiyang 已提交
1513
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1528
        type=l_type,
Y
Yu Yang 已提交
1529 1530 1531 1532 1533
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1534 1535 1536
        attrs={
            'strides': stride,
            'paddings': padding,
1537
            'dilations': dilation,
C
chengduoZH 已提交
1538
            'groups': groups,
1539 1540
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1541
        })
Y
Yu Yang 已提交
1542 1543 1544 1545 1546 1547

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1566 1567 1568 1569 1570 1571
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1581 1582
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1583 1584 1585
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1586
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1612
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1613 1614
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1615
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1616 1617
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1618
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1619 1620
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1621
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1648 1649
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1664
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1705
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1706 1707 1708 1709

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1710
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1711
    """
Y
yangyaming 已提交
1712 1713 1714
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1726
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1727 1728 1729 1730 1731
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1732
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1733 1734 1735 1736 1737 1738 1739

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1740 1741
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1742

L
Luo Tao 已提交
1743 1744
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1745
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1746 1747 1748 1749 1750 1751 1752 1753
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1754

Y
yangyaming 已提交
1755
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1756 1757 1758 1759 1760
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1761 1762
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1763
    """
F
fengjiayi 已提交
1764
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1776 1777 1778 1779 1780
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1781 1782 1783
    return pool_out


F
fengjiayi 已提交
1784
def sequence_first_step(input):
L
Luo Tao 已提交
1785
    """
L
Luo Tao 已提交
1786
    This function gets the first step of sequence.
L
Luo Tao 已提交
1787 1788 1789 1790

    .. code-block:: text

       x is a 1-level LoDTensor:
1791
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1792 1793 1794 1795 1796
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1797
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1798
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1799

L
Luo Tao 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1809

Y
yangyaming 已提交
1810
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1811 1812 1813
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1814 1815 1816
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1817
def sequence_last_step(input):
L
Luo Tao 已提交
1818
    """
L
Luo Tao 已提交
1819
    This function gets the last step of sequence.
L
Luo Tao 已提交
1820 1821 1822 1823

    .. code-block:: text

       x is a 1-level LoDTensor:
1824
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1825 1826 1827 1828 1829
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1830
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1831
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1832

L
Luo Tao 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1842

Y
yangyaming 已提交
1843
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1844 1845 1846
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1847 1848 1849
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1850
@templatedoc()
Y
Yu Yang 已提交
1851
def pool2d(input,
C
chengduoZH 已提交
1852 1853
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1854 1855
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1856
           global_pooling=False,
C
chengduoZH 已提交
1857
           use_cudnn=True,
1858
           ceil_mode=False,
1859
           use_mkldnn=False,
C
caoying03 已提交
1860
           name=None):
Y
Yu Yang 已提交
1861
    """
F
fengjiayi 已提交
1862
    ${comment}
1863 1864

    Args:
1865 1866 1867
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1868
                          feature, and W is the width of the feature.
1869
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1870
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1871
        pool_type: ${pooling_type_comment}
1872 1873
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1874 1875 1876 1877
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1878
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1879 1880
                        layer will be named automatically.

1881
    Returns:
F
fengjiayi 已提交
1882
        Variable: The pooling result.
F
fengjiayi 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1896 1897 1898 1899
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1900
                            global_pooling=False)
Y
Yu Yang 已提交
1901 1902 1903 1904 1905
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1906

C
chengduoZH 已提交
1907 1908 1909 1910 1911
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1912 1913 1914 1915
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1916 1917
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1918

C
Add doc  
chengduoZH 已提交
1919
    l_type = 'pool2d'
1920 1921

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1922 1923 1924 1925
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1955
    pooling configurations mentioned in input parameters.
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1969

1970
    Returns:
1971
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1972 1973 1974 1975 1976
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1977

C
chengduoZH 已提交
1978 1979 1980 1981 1982
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

1983 1984 1985
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
1986

C
chengduoZH 已提交
1987 1988
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1989

1990 1991
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1992 1993 1994 1995
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1996
        type=l_type,
Y
Yu Yang 已提交
1997 1998 1999 2000 2001 2002 2003
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2004
            "paddings": pool_padding,
2005
            "use_cudnn": use_cudnn,
2006 2007
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2020
               data_layout='NCHW',
Y
Yang Yang 已提交
2021
               in_place=False,
2022
               use_mkldnn=False,
2023 2024
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2025
               moving_variance_name=None,
2026 2027
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2028
    """
Q
qiaolongfei 已提交
2029 2030 2031 2032
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2033

Q
qiaolongfei 已提交
2034
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2035

Q
qiaolongfei 已提交
2036 2037
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2038 2039 2040
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2053 2054

    Args:
Q
qiaolongfei 已提交
2055
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2056 2057 2058 2059
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2060 2061 2062
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
Q
qiaolongfei 已提交
2063
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2064 2065 2066 2067 2068
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2069
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2070
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2071 2072

    Returns:
Q
qiaolongfei 已提交
2073
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2074 2075 2076 2077 2078 2079 2080

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2104
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2105

2106 2107
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2108 2109 2110
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2111
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2112
        shape=param_shape,
2113 2114 2115 2116 2117 2118 2119
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2120
            trainable=False,
W
wanghaoshuang 已提交
2121
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2122
        shape=param_shape,
2123 2124
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2131 2132
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2133

Y
Yang Yang 已提交
2134
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2152 2153 2154 2155
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2156 2157
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2158
        })
Y
Yu Yang 已提交
2159 2160 2161 2162

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2163
@templatedoc()
G
guosheng 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2174
    ${comment}
G
guosheng 已提交
2175 2176 2177

    The formula is as follows:

Y
yuyang18 已提交
2178
    ..  math::
G
guosheng 已提交
2179 2180 2181 2182 2183 2184 2185

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2186 2187 2188 2189 2190 2191 2192 2193
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2194

G
guosheng 已提交
2195 2196
    Args:
        input(Variable): The input tensor variable.
2197
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2198
            normalization.
2199
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2200
            normalization.
2201
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2202
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2203
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2204 2205 2206 2207 2208 2209
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2210
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2211 2212

    Returns:
Y
yuyang18 已提交
2213
        ${y_comment}
G
guosheng 已提交
2214 2215 2216

    Examples:

Y
yuyang18 已提交
2217 2218 2219
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2235
    if shift:
G
guosheng 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2260 2261 2262 2263
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2264 2265 2266
                     padding=0,
                     stride=1,
                     dilation=1,
2267
                     groups=None,
C
caoying03 已提交
2268
                     param_attr=None,
2269
                     bias_attr=None,
C
chengduoZH 已提交
2270
                     use_cudnn=True,
2271
                     act=None,
C
caoying03 已提交
2272
                     name=None):
Y
Yu Yang 已提交
2273
    """
2274 2275 2276 2277 2278 2279 2280 2281
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2282 2283
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2284 2285 2286
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2287 2288 2289 2290 2291

    For each input :math:`X`, the equation is:

    .. math::

2292
        Out = \sigma (W \\ast X + b)
2293

2294
    Where:
2295 2296 2297

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2298 2299 2300 2301
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2302

2303 2304 2305 2306
    Example:

        - Input:

2307
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2308

2309
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2310 2311 2312

        - Output:

2313
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2314 2315

        Where
Y
Yu Yang 已提交
2316

2317 2318 2319 2320
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2321 2322

    Args:
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2356 2357

    Returns:
2358
        Variable: The tensor variable storing the convolution transpose result.
2359 2360

    Raises:
2361 2362
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2363 2364 2365 2366

    Examples:
       .. code-block:: python

2367 2368
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2369
    """
2370 2371 2372 2373 2374 2375 2376 2377 2378

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2379 2380 2381
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2382 2383 2384
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2385

C
chengduoZH 已提交
2386 2387
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2388

Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2394

Y
Yu Yang 已提交
2395 2396
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2397

C
chengduoZH 已提交
2398
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2399
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2400
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2401
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2402
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2403 2404 2405
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2406

2407
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2408
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2409 2410 2411
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2412
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2413
    helper.append_op(
2414
        type=op_type,
Y
Yu Yang 已提交
2415 2416
        inputs={'Input': [input],
                'Filter': [img_filter]},
2417
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2418
        attrs={
2419 2420 2421 2422 2423
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2424 2425
        })

2426 2427 2428
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2429 2430


2431
def conv3d_transpose(input,
Y
Yu Yang 已提交
2432 2433 2434
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2435 2436 2437
                     padding=0,
                     stride=1,
                     dilation=1,
2438
                     groups=None,
C
caoying03 已提交
2439
                     param_attr=None,
2440
                     bias_attr=None,
C
chengduoZH 已提交
2441
                     use_cudnn=True,
2442
                     act=None,
C
caoying03 已提交
2443
                     name=None):
Y
Yu Yang 已提交
2444
    """
2445
    **Convlution3D transpose layer**
2446

2447
    The convolution3D transpose layer calculates the output based on the input,
2448
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2449 2450 2451 2452 2453 2454
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2455 2456 2457
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2458 2459 2460 2461 2462

    For each input :math:`X`, the equation is:

    .. math::

2463
        Out = \sigma (W \\ast X + b)
2464 2465 2466

    In the above equation:

2467 2468
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2469 2470 2471 2472
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2473

2474 2475 2476 2477
    Example:

        - Input:

2478
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2479

2480
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2481 2482 2483

        - Output:

2484
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2485 2486

        Where
Y
Yu Yang 已提交
2487

2488 2489
        .. math::

2490 2491 2492
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2493 2494

    Args:
2495
        input(Variable): The input image with [N, C, D, H, W] format.
2496 2497 2498
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2499
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2500 2501
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2502
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2503 2504 2505
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2506 2507
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2508
        stride(int|tuple): The stride size. If stride is a tuple, it must
2509 2510
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2511
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2512 2513 2514
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2515 2516 2517 2518 2519
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2520 2521 2522
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2523 2524 2525 2526 2527
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2528 2529

    Returns:
2530
        Variable: The tensor variable storing the convolution transpose result.
2531 2532

    Raises:
2533 2534
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2535 2536 2537 2538

    Examples:
       .. code-block:: python

2539 2540
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2541
    """
2542 2543
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2544
    if not isinstance(input, Variable):
2545
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2546 2547
    input_channel = input.shape[1]

2548 2549 2550
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2551

C
chengduoZH 已提交
2552 2553 2554
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2555 2556 2557 2558 2559 2560
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2561 2562 2563
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2564

2565
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2566
                         padding[0] - 1) // dilation[0] + 1
2567
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2568
                         padding[1] - 1) // dilation[1] + 1
2569
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2570
                         padding[2] - 1) // dilation[2] + 1
2571
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2572
    else:
2573 2574
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2575

2576
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2577
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2578 2579 2580
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2581
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2582
    helper.append_op(
2583
        type=l_type,
Y
Yu Yang 已提交
2584 2585
        inputs={'Input': [input],
                'Filter': [img_filter]},
2586
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2587 2588 2589 2590
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2591
            'groups': groups,
C
chengduoZH 已提交
2592 2593
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2594

2595 2596
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2597
    return out
Y
yangyaming 已提交
2598 2599


Y
yangyaming 已提交
2600
def sequence_expand(x, y, ref_level=-1, name=None):
2601
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2602 2603 2604 2605
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2606 2607 2608 2609 2610

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2611
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2612
                x.data = [[a], [b], [c], [d]]
2613 2614 2615
                x.dims = [4, 1]

            y is a LoDTensor:
2616 2617
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2618

Y
yangyaming 已提交
2619
            ref_level: 0
2620

Y
yangyaming 已提交
2621
            then output is a 1-level LoDTensor:
2622
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2623
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2624 2625 2626 2627
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2628
                x.data = [[a], [b], [c]]
2629 2630 2631
                x.dims = [3, 1]

            y is a LoDTensor:
2632
                y.lod = [[2, 0, 3]]
2633

Y
yangyaming 已提交
2634
            ref_level: -1
2635

Y
yangyaming 已提交
2636 2637 2638
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2639 2640 2641
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2642 2643
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2644
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2645
                        will be named automatically.
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2656
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2657
    """
Y
yangyaming 已提交
2658
    helper = LayerHelper('sequence_expand', input=x, **locals())
2659 2660 2661
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2662 2663 2664 2665 2666
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2667
    return tmp
2668 2669


C
chengduo 已提交
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2780 2781 2782 2783 2784 2785 2786 2787 2788
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2789 2790
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2791 2792 2793

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2794 2795

    This layer does the search in beams for one time step. Specifically, it
2796 2797 2798 2799 2800 2801
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2802

2803 2804 2805 2806 2807 2808 2809 2810
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2811

2812
    Args:
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2838

2839
    Returns:
2840 2841
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2842 2843 2844 2845

    Examples:
        .. code-block:: python

2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2874
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2892 2893 2894 2895 2896 2897 2898
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2899

2900 2901 2902 2903 2904 2905 2906 2907 2908
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2909

2910 2911 2912 2913 2914 2915
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2916

2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2942 2943 2944 2945
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2946
              param_attr=None,
C
caoying03 已提交
2947 2948
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2949 2950 2951 2952
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2953
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2954

2955
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2956

2957
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2958

2959
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2960 2961 2962

            h_t & = o_t tanh(c_t)

2963 2964 2965 2966 2967 2968
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2969 2970 2971

        .. math::

2972
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2973 2974 2975 2976 2977 2978 2979 2980

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2981
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2982 2983

    Args:
Y
yangyaming 已提交
2984 2985 2986 2987 2988 2989
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2990
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2991 2992
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2993 2994
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2995 2996
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2997 2998

    Returns:
Y
yangyaming 已提交
2999
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3000 3001

    Raises:
3002 3003 3004 3005
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3006 3007 3008 3009 3010 3011

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3012
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3013
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3014
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3031
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3032 3033 3034 3035
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3036 3037
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3038 3039 3040
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3041
    size = cell_t_prev.shape[1]
3042
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3043 3044
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3045
                param_attr=param_attr,
3046
                bias_attr=bias_attr)
Y
yangyaming 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3059
    return h, c
G
guosheng 已提交
3060 3061


C
caoying03 已提交
3062
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3063
    """
Y
yangyaming 已提交
3064
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3065 3066 3067

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3068
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3069 3070
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3071 3072
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3073
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3074
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3075
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3076 3077
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3078 3079 3080

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3081

G
guosheng 已提交
3082 3083 3084 3085 3086 3087
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3088
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3089 3090 3091 3092
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3093 3094 3095 3096

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3097
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3098 3099 3100
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3101 3102 3103
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3104 3105
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3106 3107 3108 3109 3110
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3111
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3112 3113 3114 3115
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3116 3117


C
caoying03 已提交
3118
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3119
    """
Y
Yibing Liu 已提交
3120
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3121 3122 3123

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3124 3125 3126
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3127
            must be in the range :math:`[-rank(input), rank(input))`. If
3128
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3129
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3130 3131
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3132
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3133
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3134
                       will be named automatically.
G
guosheng 已提交
3135 3136

    Returns:
Y
Yibing Liu 已提交
3137
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3138

G
guosheng 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3149 3150
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3151 3152 3153 3154 3155 3156 3157

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3158 3159 3160
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3161 3162
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3163 3164 3165 3166 3167
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3168
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3169 3170 3171 3172
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3173 3174


C
caoying03 已提交
3175
def reduce_max(input, dim=None, keep_dim=False, name=None):
3176
    """
Y
yangyaming 已提交
3177
    Computes the maximum of tensor elements over the given dimension.
3178 3179 3180

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3181
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3182 3183 3184
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3185
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3186 3187
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3188
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3189 3190
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3191 3192 3193

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3194

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3206 3207 3208 3209 3210 3211 3212

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3213 3214 3215
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3216 3217
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3218 3219 3220 3221 3222
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3223
            'dim': dim if dim != None else [0],
3224 3225 3226 3227 3228 3229
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3230
def reduce_min(input, dim=None, keep_dim=False, name=None):
3231
    """
Y
yangyaming 已提交
3232
    Computes the minimum of tensor elements over the given dimension.
3233 3234 3235

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3236
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3237 3238 3239
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3240
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3241 3242
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3243
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3244 3245
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3246 3247 3248

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3261 3262 3263 3264 3265 3266 3267

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3268 3269 3270
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3271 3272
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3273 3274 3275 3276 3277
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3278
            'dim': dim if dim != None else [0],
3279 3280 3281 3282
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3283 3284


3285 3286 3287 3288 3289 3290
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3291
        dim (list|int|None): The dimensions along which the product is performed. If
3292 3293
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3294 3295
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3296 3297 3298
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3299
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3300
            layer will be named automatically.
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3315
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3316
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3317 3318 3319 3320 3321 3322 3323

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3324 3325 3326
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3327 3328
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3329 3330 3331 3332 3333
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3334
            'dim': dim if dim != None else [0],
3335 3336 3337 3338 3339 3340
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3341
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3342
    """
C
caoying03 已提交
3343
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3344 3345 3346

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3347 3348 3349 3350 3351
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3352
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3353
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3354
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3355 3356
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3357 3358

    Returns:
D
dzhwinter 已提交
3359
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3369 3370
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3409
    .. math::
3410 3411

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3412 3413 3414 3415 3416

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3417
        x(Variable|list): The input tensor to l2_normalize layer.
3418
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3419 3420
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3421
        epsilon(float): The epsilon value is used to avoid division by zero, \
3422
            the defalut value is 1e-10.
3423
        name(str|None): A name for this layer(optional). If set None, the layer \
3424
            will be named automatically.
C
caoying03 已提交
3425 3426

    Returns:
3427
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3428 3429

    Examples:
3430

C
caoying03 已提交
3431 3432
        .. code-block:: python

3433 3434 3435 3436
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3437 3438
    """

F
fengjiayi 已提交
3439 3440
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3441 3442
    helper = LayerHelper("l2_normalize", **locals())

3443 3444
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3445
    helper.append_op(
3446 3447 3448 3449
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3450
        attrs={
3451 3452
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3453 3454
        })
    return out
3455 3456


S
sneaxiy 已提交
3457
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3458
    """
Y
ying 已提交
3459 3460 3461 3462
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3463

C
chengduoZH 已提交
3464
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3465
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3466

3467 3468 3469 3470 3471
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3472
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3473

C
chengduoZH 已提交
3474
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3475
      performs in the following way.
G
guosheng 已提交
3476

3477
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3478
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3479
        last two dimensions and a batched matrix multiply supporting broadcast
3480
        applies on the two tensors.
G
guosheng 已提交
3481

Y
ying 已提交
3482 3483
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3484
    removed after matrix multiplication.
G
guosheng 已提交
3485 3486 3487

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3488 3489 3490
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3491
        alpha (float): The scale of output. Default 1.0.
3492
        name(str|None): A name for this layer(optional). If set None, the layer
3493
            will be named automatically.
G
guosheng 已提交
3494 3495

    Returns:
3496
        Variable: The product Tensor variable.
G
guosheng 已提交
3497

G
guosheng 已提交
3498 3499 3500
    Examples:
        .. code-block:: python

3501
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3502 3503
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3504

3505 3506
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3507

3508 3509
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3510

3511 3512
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3513 3514 3515 3516

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3517 3518
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3519

Y
ying 已提交
3520
            # x: [M], y: [N]
3521
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3522
    """
Y
ying 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3535
            y_shape = y_shape + [1]
Y
ying 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3552
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3553
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3554
    helper.append_op(
3555 3556 3557 3558
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3559 3560 3561
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3562
            'alpha': alpha,
S
sneaxiy 已提交
3563
        })
3564
    return out
3565 3566


3567
def topk(input, k, name=None):
Q
qingqing01 已提交
3568 3569 3570 3571
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3572
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3573 3574 3575 3576 3577 3578
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3600 3601 3602
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3603
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3604
                 of input.
3605
        name(str|None): A name for this layer(optional). If set None, the layer
3606
                       will be named automatically.
F
fengjiayi 已提交
3607
                       Default: None
Q
qingqing01 已提交
3608 3609

    Returns:
3610 3611 3612
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3613
        within the last dimension of input.
Q
qingqing01 已提交
3614

F
fengjiayi 已提交
3615 3616
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3637
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3638
    """
Y
ying 已提交
3639 3640 3641 3642 3643 3644 3645 3646 3647
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3648

Y
ying 已提交
3649
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3650

3651
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3652 3653
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3654
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3655

3656
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3657 3658
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3659

3660 3661 3662
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3663
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3664
                          the length of reference string.
3665
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3666
                                     calculating edit distance.
3667
        name (str): The name of this layer. It is optional.
3668

W
wanghaoshuang 已提交
3669
    Returns:
W
wanghaoshuang 已提交
3670
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3671 3672 3673 3674 3675

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3676
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3677
            cost = fluid.layers.edit_distance(input=x,label=y)
3678
    """
3679
    helper = LayerHelper("edit_distance", **locals())
3680

3681
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3682
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3683 3684 3685 3686 3687 3688 3689
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3690
            attrs={"tokens": ignored_tokens})
3691 3692 3693 3694 3695
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3696
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3697
            attrs={"tokens": ignored_tokens})
3698 3699
        label = erased_label

3700 3701
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3702
    sequence_num = helper.create_tmp_variable(dtype="int64")
3703 3704 3705 3706
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3707 3708
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3709 3710
        attrs={"normalized": normalized})

3711
    return edit_distance_out, sequence_num
3712 3713 3714 3715 3716


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3717

Y
ying 已提交
3718 3719 3720 3721
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3739
        input.lod = [[4, 4]]
3740 3741 3742 3743 3744 3745 3746

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3747
        output.lod = [[2, 1]]
3748 3749 3750

    Args:

Y
ying 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3760
        name (str): The name of this layer. It is optional.
3761 3762

    Returns:
3763
        Variable: CTC greedy decode result. If all the sequences in result were
3764
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3765 3766 3767 3768 3769

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3770

3771
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3772
    """
3773
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3774
    _, topk_indices = topk(input, k=1)
3775 3776 3777 3778 3779 3780

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3781
        outputs={"Output": [ctc_out]},
3782 3783
        attrs={"merge_repeated": True,
               "blank": blank})
3784
    return ctc_out
3785 3786


F
fengjiayi 已提交
3787
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3788
    """
3789 3790
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3791
    to compute Connectionist Temporal Classification (CTC) loss.
3792 3793
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3794 3795 3796
    input tensor.

    Args:
3797
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3798 3799 3800 3801
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3802
       label (Variable): The ground truth of variable-length sequence,
3803 3804 3805
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3806 3807
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3808 3809 3810
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3811
         follewed by a mean_op.
W
wanghaoshuang 已提交
3812 3813

    Returns:
3814 3815
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3816 3817

    Examples:
3818

W
wanghaoshuang 已提交
3819
        .. code-block:: python
3820

3821 3822 3823
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3824 3825

    """
F
fengjiayi 已提交
3826
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3853 3854 3855
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3856 3857 3858 3859 3860
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3861

3862
            out.lod  = [[0, 1, 3]]
3863 3864 3865 3866

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3867 3868 3869 3870 3871 3872 3873
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3874 3875 3876

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3877 3878

    Returns:
3879

3880 3881 3882 3883 3884
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3885
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3886
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3887 3888 3889 3890 3891 3892 3893 3894 3895
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3896 3897


3898 3899 3900 3901
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3902 3903 3904 3905 3906 3907 3908
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3909 3910 3911 3912 3913 3914 3915
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3916 3917
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3918
            sample is 1.0.
3919 3920 3921
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3922

3923
    Returns:
Y
Yibing Liu 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3951
    """
Y
Yang Yu 已提交
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3996
    return cost / (num_neg_samples + 1)
3997 3998


G
guosheng 已提交
3999
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4000 4001
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4002
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4012

W
weixing02 已提交
4013
    Args:
M
minqiyang 已提交
4014
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4015 4016 4017 4018 4019
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4020 4021
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4022
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4023 4024
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4025 4026 4027 4028 4029 4030 4031 4032

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4033 4034 4035
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4036 4037 4038 4039 4040 4041 4042 4043
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4044
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4045 4046 4047 4048 4049
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4050 4051 4052 4053 4054 4055 4056 4057
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4058 4059
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4060
        inputs=inputs,
W
weixing02 已提交
4061 4062 4063 4064 4065 4066
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4067
def transpose(x, perm, name=None):
Y
ying 已提交
4068 4069 4070 4071 4072 4073 4074
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4075 4076 4077
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4078 4079 4080 4081 4082 4083 4084 4085

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4086
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4087 4088
    """

Y
fix ci.  
ying 已提交
4089
    if len(perm) != len(x.shape):
Y
ying 已提交
4090 4091 4092
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4093 4094 4095 4096 4097 4098
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4099 4100

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4101
    out = helper.create_tmp_variable(x.dtype)
4102
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4103
    helper.append_op(
4104
        type='transpose2',
Y
fix ci.  
ying 已提交
4105
        inputs={'X': [x]},
4106 4107
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4108 4109
        attrs={'axis': perm})
    return out
4110 4111


4112 4113 4114 4115 4116 4117 4118
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4119
    """
4120 4121 4122 4123 4124 4125 4126
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4127 4128 4129 4130 4131 4132 4133 4134 4135 4136

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4155 4156 4157 4158 4159 4160 4161 4162 4163
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4164 4165 4166
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4167 4168 4169 4170 4171
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4199 4200 4201
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4214
            output.dims = {8, 8}
4215

4216
            output.lod = [[4, 4]]
4217

D
dzhwinter 已提交
4218
     Examples:
4219 4220 4221

        .. code-block:: python

4222 4223
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4224 4225

    """
W
wanghaoshuang 已提交
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4236 4237 4238 4239 4240 4241 4242
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4243
    helper = LayerHelper('im2sequence', **locals())
4244 4245
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4246
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4247
    return out
4248 4249


Y
yuyang18 已提交
4250
@templatedoc()
4251
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4252 4253
    """
    ${comment}
4254 4255

    Args:
Y
yuyang18 已提交
4256
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4257 4258
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4259 4260 4261 4262 4263
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4264
        ${out_comment}.
4265 4266

    Examples:
Y
yuyang18 已提交
4267 4268 4269 4270
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4283
    return helper.append_activation(out)
4284 4285


Y
yuyang18 已提交
4286
@templatedoc()
4287 4288
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4289 4290 4291 4292 4293 4294 4295
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4296 4297

    Args:
Y
yuyang18 已提交
4298 4299
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4300 4301

    Returns:
Y
yuyang18 已提交
4302
        ${out_comment}.
4303 4304
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4305 4306 4307 4308 4309 4310

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4311 4312 4313 4314 4315 4316
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4317 4318


4319 4320 4321 4322
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4323 4324
    """
    **Softmax With Cross Entropy Operator.**
4325

4326 4327 4328 4329
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4330

4331 4332 4333
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4334

4335 4336 4337
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4338

4339
    The equation is as follows:
4340

4341
    1) Hard label (one-hot label, so every sample has exactly one class)
4342

4343 4344 4345 4346
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4347

4348 4349 4350
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4351

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4364 4365 4366 4367
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4368 4369 4370 4371 4372 4373 4374 4375 4376
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4377 4378
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4389 4390
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4391 4392 4393 4394 4395
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4396 4397
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4398
    For each instance, it computes the smooth L1 loss element by element first
4399
    and then sums all the losses. So the shape of ouput Variable is
4400
    [batch_size, 1].
4401

4402 4403
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4404
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4405
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4406
            L1 loss op with same shape as :attr:`x`.
4407
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4408 4409
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4410
            by this tensor element by element.
4411
        outside_weight (Variable|None): A tensor with rank at least 2. This
4412 4413
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4414
            element by element.
4415
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4416 4417
           scalar with default value 1.0.

4418
    Returns:
4419
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4420 4421 4422 4423 4424

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4425 4426
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4427
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4428
            out = fluid.layers.smooth_l1(x=fc, y=label)
4429
    """
4430

4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4446 4447 4448 4449


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4450
    This layer creates the one-hot representations for input indices.
4451 4452

    Args:
Y
Yibing Liu 已提交
4453 4454
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4455 4456

    Returns:
Y
Yibing Liu 已提交
4457
        Variable: The one-hot representations of input.
4458 4459

    Examples:
C
caoying03 已提交
4460
        .. code-block:: python
4461

Y
Yibing Liu 已提交
4462 4463
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4464 4465 4466 4467 4468 4469 4470 4471 4472
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4473 4474


Y
Yu Yang 已提交
4475
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4476
    """
Y
yi.wu 已提交
4477 4478 4479
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4480 4481 4482 4483 4484 4485

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4486 4487
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4488 4489 4490 4491 4492 4493

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4494 4495
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4496 4497
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4498 4499 4500 4501 4502
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4503
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4504
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4505 4506
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4507 4508
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4509 4510 4511
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4512 4513


4514
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4515
    """
C
caoying03 已提交
4516 4517
    Gives a new shape to the input Tensor without changing its data.

4518 4519 4520 4521 4522
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4523

4524
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4525

4526 4527 4528 4529
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4530
    2. 0 means the actual dimension value is going to be copied from the
4531 4532 4533 4534
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4535 4536

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4537
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4538
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4539

4540
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4541 4542
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4543 4544
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4545
    dimensions.
C
caoying03 已提交
4546

4547
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4548 4549 4550 4551
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4552 4553

    Args:
4554
        x(variable): The input tensor.
C
caoying03 已提交
4555 4556
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4557 4558 4559 4560 4561
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4562
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4563 4564 4565 4566
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4567
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4568

4569 4570
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4571

X
Xin Pan 已提交
4572 4573 4574
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4575 4576
    Examples:
        .. code-block:: python
G
guosheng 已提交
4577

4578
            data = fluid.layers.data(
4579
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4580
            reshaped = fluid.layers.reshape(
4581
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4582 4583 4584
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4585
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4586 4587 4588 4589 4590
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4607
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4608
    out = helper.create_tmp_variable(dtype=x.dtype)
4609
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4610
    helper.append_op(
4611
        type="reshape2",
X
Xin Pan 已提交
4612
        inputs=inputs,
D
dzhwinter 已提交
4613
        attrs={"shape": shape},
4614 4615
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4616

D
dzhwinter 已提交
4617
    return helper.append_activation(out)
4618

4619

4620
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4644
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4645
        axes (list): List of integers, indicating the dimensions to be squeezed.
4646
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4647 4648 4649 4650 4651 4652 4653 4654

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4655
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4656 4657
    """
    helper = LayerHelper("squeeze", **locals())
4658
    out = helper.create_tmp_variable(dtype=input.dtype)
4659
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4660
    helper.append_op(
4661
        type="squeeze2",
4662
        inputs={"X": input},
Y
Yibing Liu 已提交
4663
        attrs={"axes": axes},
4664 4665
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4666

4667
    return out
C
caoying03 已提交
4668

4669

4670
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4681
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4682
        axes (list): List of integers, indicating the dimensions to be inserted.
4683
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4684 4685 4686 4687 4688 4689 4690 4691

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4692
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4693 4694
    """
    helper = LayerHelper("unsqueeze", **locals())
4695
    out = helper.create_tmp_variable(dtype=input.dtype)
4696
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4697
    helper.append_op(
4698
        type="unsqueeze2",
4699
        inputs={"X": input},
Y
Yibing Liu 已提交
4700
        attrs={"axes": axes},
4701 4702
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4703

4704
    return out
4705 4706


Y
yangyaming 已提交
4707
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4708
    """
Y
Yibing Liu 已提交
4709
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4710 4711 4712 4713
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4714
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4715 4716 4717 4718 4719 4720

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4721
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4722 4723 4724
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4725
            target_lod: [4, 2]
Y
yangyaming 已提交
4726 4727

            then we get a 1-level LoDTensor:
4728
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4729 4730 4731 4732 4733 4734
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4735
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4736 4737 4738 4739
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4740
                y.data = [[2, 4]]
Y
yangyaming 已提交
4741 4742 4743
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4744
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4745 4746 4747 4748 4749 4750
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4751
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4752 4753 4754 4755
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4756
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4757 4758 4759 4760
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4761
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4762 4763 4764 4765 4766
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4767
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4768
                           from :attr:`y`.
Y
yangyaming 已提交
4769
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4770
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4771 4772

    Returns:
Y
Yibing Liu 已提交
4773
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4774 4775

    Raises:
Y
Yibing Liu 已提交
4776
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4812
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4841 4842
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4870 4871 4872 4873


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4874
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4875
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4876

G
guosheng 已提交
4877 4878 4879 4880
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4903
                         The length of :attr:paddings must be
G
guosheng 已提交
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4914

G
guosheng 已提交
4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4929 4930


C
chengduo 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5011 5012 5013 5014 5015 5016 5017
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5018 5019
    called label-smoothing regularization (LSR).

5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5043
                              be :math:`(1, class\_num)`.
5044 5045
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5046
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5074 5075


Y
yi.wu 已提交
5076
@templatedoc()
5077 5078
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5079
    ${comment}
5080 5081

    Args:
Y
yi.wu 已提交
5082 5083
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5084 5085 5086
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5087 5088

    Returns:
Y
update  
yi.wu 已提交
5089
        Variable: ${out_comment}.
5090 5091

    Examples:
5092 5093
        .. code-block:: python

5094
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5140 5141
        .. code-block:: python

W
whs 已提交
5142 5143 5144 5145
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5146
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5147 5148 5149 5150 5151 5152
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5153 5154


5155 5156 5157 5158 5159
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5160
    """
Q
qiaolongfei 已提交
5161
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5162

5163
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5164 5165 5166
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5167

5168
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5169

5170
    Args:
5171
        input (Variable): The input tensor of image resize layer,
5172 5173
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5174
        out_shape(list|tuple|Variable|None): Output shape of image resize
5175 5176
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5177
        scale(float|None): The multiplier for the input height or width.
5178 5179 5180
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5181 5182
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5183 5184
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5185 5186

    Returns:
Q
update  
qiaolongfei 已提交
5187 5188
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5189

5190 5191 5192
    Examples:
        .. code-block:: python

5193
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5194
    """
5195 5196 5197 5198
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5199 5200
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5201 5202
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5203 5204 5205 5206

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5207 5208 5209
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5210
    if out_shape is not None:
B
baiyf 已提交
5211 5212 5213
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5214 5215 5216 5217 5218 5219
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5220 5221 5222 5223
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5224 5225
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5226
        type=resample_methods[resample],
5227
        inputs=inputs,
5228 5229 5230 5231
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5232 5233


Y
yuyang18 已提交
5234
@templatedoc(op_type="bilinear_interp")
5235 5236
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5237 5238 5239 5240 5241 5242
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5243

Y
yuyang18 已提交
5244 5245 5246 5247 5248 5249 5250 5251
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5252 5253 5254 5255 5256 5257 5258
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5259 5260 5261
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5262 5263 5264 5265 5266 5267 5268
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5269
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5270

5271
    Returns:
Q
update  
qiaolongfei 已提交
5272
        Variable: The output is a 4-D tensor of the shape
5273
        (num_batches, channls, out_h, out_w).
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5284 5285 5286
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5287 5288 5289
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5290 5291
def gather(input, index):
    """
Q
qiaolongfei 已提交
5292 5293
    **Gather Layer**

5294
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5295 5296 5297 5298
    of X indexed by `index` and concatenate them together.

    .. math::

5299
        Out = X[Index]
W
whs 已提交
5300 5301 5302 5303 5304 5305 5306


    .. code-block:: text


                Given:

5307 5308
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5319
        input (Variable): The source input with rank>=1.
W
whs 已提交
5320 5321 5322 5323 5324 5325
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5326

W
whs 已提交
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5396

5397 5398 5399
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5400
    """
F
stash  
fengjiayi 已提交
5401
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5402
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5403
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5404
    if seed is None:
5405
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5406
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5407
    if isinstance(seed, int):
F
fengjiayi 已提交
5408 5409 5410 5411 5412
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5413 5414 5415 5416
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5417
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5418 5419
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5420 5421
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5422
    return out
W
whs 已提交
5423 5424


5425
def log(x, name=None):
W
wanghaoshuang 已提交
5426 5427 5428 5429 5430
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5431
        Out = \\ln(x)
W
wanghaoshuang 已提交
5432 5433

    Args:
5434
        x (Variable): Input tensor.
5435 5436
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5437 5438 5439 5440 5441 5442 5443 5444

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5445
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5446 5447
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5448
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5449
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5450
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5451 5452 5453
    return out


5454
def relu(x, name=None):
W
wanghaoshuang 已提交
5455 5456
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5457
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5458 5459 5460 5461
    the tensor elementwise.

    .. math::

5462
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5463 5464

    Args:
5465
        x (Variable): The input tensor.
5466 5467
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5468 5469 5470 5471 5472 5473 5474 5475

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5476
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5477 5478
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5479
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5480
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5481
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5482
    return out
5483 5484


W
whs 已提交
5485 5486 5487
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5488 5489 5490 5491
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5492
    .. math::
5493 5494

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5495

5496
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5497 5498 5499 5500 5501
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5502
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5503
                           Its shape should be the same as input.
5504
        num_classes (int): The possible number of labels.
W
whs 已提交
5505 5506 5507 5508

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5509
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5510 5511 5512 5513

    Examples:

        .. code-block:: python
5514

W
whs 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5524 5525
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5526
        outputs={
W
whs 已提交
5527 5528 5529
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5530 5531 5532
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5607
                    isinstance(shape, Variable)):
5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5641

5642 5643
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5644

5645 5646 5647 5648
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5649

5650 5651 5652 5653 5654
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5655 5656 5657

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5702 5703


W
whs 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5806 5807
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5858

5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5869 5870
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5886
        ValueError: If axis is not in range [0, rank(x)].
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5904
    x_shape = helper.create_tmp_variable(x.dtype)
5905
    helper.append_op(
5906
        type='flatten2',
5907
        inputs={"X": x},
5908 5909
        outputs={'Out': out,
                 'XShape': x_shape},
5910 5911
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5912 5913


C
chenweihang 已提交
5914
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5915
    """
C
chenweihang 已提交
5916
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5917 5918 5919
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5920 5921 5922 5923 5924
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5925
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5926 5927 5928 5929 5930 5931
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5932
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5933 5934 5935
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5936 5937 5938
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5950
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5951 5952 5953 5954 5955 5956
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5957

5958

S
sneaxiy 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5968

S
sneaxiy 已提交
5969
    .. math::
5970

S
sneaxiy 已提交
5971 5972 5973
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5974
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5975 5976 5977 5978
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
5979 5980 5981
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
5982 5983
    Returns:
        Variable: The output sequence mask.
5984

S
sneaxiy 已提交
5985 5986
    """

Q
qingqing01 已提交
5987
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5988 5989 5990 5991 5992
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5993 5994 5995
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5996 5997 5998 5999 6000 6001
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6002 6003


X
Xin Pan 已提交
6004
def stack(x, axis=0):
S
sneaxiy 已提交
6005 6006 6007 6008
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6009 6010 6011 6012 6013 6014 6015

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6016
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6017
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6018 6019

    Args:
6020
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6021
        axis (int|None): The axis along which all inputs are stacked.
6022

S
sneaxiy 已提交
6023 6024
    Returns:
        Variable: The stacked variable.
6025

S
sneaxiy 已提交
6026 6027
    """

X
Xin Pan 已提交
6028 6029 6030 6031 6032 6033 6034 6035
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6036 6037
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6038

X
Xin Pan 已提交
6039
    return out
D
dzhwinter 已提交
6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs