distribute_transpiler.py 87.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
56
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
57
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
58 59 60 61 62 63 64 65 66
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
67 68


T
typhoonzero 已提交
69 70 71 72 73 74
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
75

T
typhoonzero 已提交
76 77
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
78 79


80 81 82 83
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
84
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
85
    """
86 87 88 89 90 91
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
92
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
93 94 95

    Args:
        var_list (list): List of variables.
96 97
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
98 99
        min_block_size (int): Minimum splitted block size.
    Returns:
100
        blocks (list[(varname, block_id, current_block_size)]): A list
101
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
102 103 104
    """
    blocks = []
    for var in var_list:
105
        split_count = slice_count
T
typhoonzero 已提交
106 107 108 109
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
110
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
120
        # update split_count after aligning
T
typhoonzero 已提交
121
        split_count = int(math.ceil(var_numel / float(block_size)))
122
        for block_id in range(split_count):
T
typhoonzero 已提交
123 124 125 126 127 128 129
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
130 131
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
146
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
147 148
          want to change it, please be sure you have read the slice_variable function.

G
gongweibao 已提交
149 150 151 152 153
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
154
    enable_dc_asgd = False
W
Wu Yi 已提交
155 156
    # supported modes: pserver, nccl2
    mode = "pserver"
157
    print_log = False
W
Wu Yi 已提交
158
    wait_port = True
Q
Qiao Longfei 已提交
159 160
    # split the send recv var in runtime
    runtime_split_send_recv = False
G
gongweibao 已提交
161 162


Y
gen rst  
yi.wu 已提交
163
class DistributeTranspiler(object):
Y
yi.wu 已提交
164 165 166 167
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
168
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
169

W
Wu Yi 已提交
170 171 172 173 174 175 176 177 178
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
179 180 181 182

    Examples:
        .. code-block:: python

T
Tink_Y 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
            role = os.getenv("PADDLE_TRAINING_ROLE")
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
196
                                                                pserver_program)
T
Tink_Y 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
            t = fluid.DistributeTranspiler(config=config)
            t.transpile(trainer_id, workers=workers, current_endpoint=curr_ep)
            exe = fluid.ParallelExecutor(
                use_cuda,
                loss_name=loss_var.name,
                num_trainers=len(trainers.split(",)),
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
211
    """
Y
Yancey1989 已提交
212

G
gongweibao 已提交
213 214 215 216 217 218 219 220 221
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

222 223 224
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
225 226 227
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
228 229 230 231
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
232 233
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
234 235 236 237 238 239
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
240 241
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
                    "endpoint": current_endpoint,
                    "endpoint_list": worker_endpoints,
                    "trainer_id": trainer_id
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

Q
Qiao Longfei 已提交
258
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
259
        sparse_update_ops = []
260
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
261 262
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
263
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
264 265 266
                sparse_update_ops.append(op)
        return sparse_update_ops

Q
Qiao Longfei 已提交
267
    def _update_remote_sparse_update_op(self, param_varname, height_sections,
Q
Qiao Longfei 已提交
268
                                        endpint_map, table_names):
Q
Qiao Longfei 已提交
269 270 271
        for op in self.sparse_update_ops:
            if param_varname in op.input_arg_names:
                op._set_attr('epmap', endpint_map)
Q
Qiao Longfei 已提交
272
                op._set_attr('table_names', table_names)
Q
Qiao Longfei 已提交
273
                op._set_attr('height_sections', height_sections)
Q
Qiao Longfei 已提交
274 275 276 277 278 279 280
                op._set_attr('trainer_id', self.trainer_id)

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
281

282 283 284 285 286
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
287
                  sync_mode=True,
W
Wu Yi 已提交
288 289
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
290
        """
Y
yi.wu 已提交
291 292 293 294 295 296 297
        Run the transpiler.

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
298 299
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
300 301
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
302 303 304
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
305
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
306 307
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
308 309 310
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
311 312 313
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
314 315
        if startup_program is None:
            startup_program = default_startup_program()
316
        self.origin_program = program
W
Wu Yi 已提交
317 318
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
319

W
Wu Yi 已提交
320 321
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
322
            self.origin_program._trainers_endpoints = trainers.split(",")
W
Wu Yi 已提交
323 324 325 326
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
327 328
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
329 330
            return

331 332 333 334 335
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
336
        self.vars_overview = VarsDistributed()
337 338
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
339
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
340 341
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
342
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
343
        self.grad_name_to_param_name = dict()
344 345
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
346
            self.grad_name_to_param_name[grad_var.name] = param_var.name
347

Q
Qiao Longfei 已提交
348
        # get all sparse update ops
Q
Qiao Longfei 已提交
349
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
350
            self.origin_program)
Q
Qiao Longfei 已提交
351
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
352 353
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
354 355 356
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
357
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
358 359 360
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

361
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
362
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
363
        self._init_splited_vars()
364

G
gongweibao 已提交
365
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
366
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
367
        send_vars = []
368 369 370 371 372 373

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
374
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
375

G
gongweibao 已提交
376
        if not self.config.slice_var_up:
377 378
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
379

380
        self.grad_name_to_send_dummy_out = dict()
381
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
382
            eplist = ps_dispatcher.dispatch(splited_vars)
383

G
gongweibao 已提交
384
            if not self.config.slice_var_up:
385 386
                assert (len(splited_vars) == 1)

387
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
388
            if len(splited_vars) == 1:
389
                splited_grad_varname = splited_vars[0].name
390 391
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
392 393
                if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                    sparse_param_name = self.grad_name_to_param_name[
Q
Qiao Longfei 已提交
394
                        grad_varname]
Q
Qiao Longfei 已提交
395 396 397 398
                    if self._is_input_of_remote_sparse_update_op(
                            sparse_param_name):
                        self.sparse_param_to_height_sections[
                            sparse_param_name] = [splited_vars[0].shape[0]]
Y
Yancey1989 已提交
399
            elif len(splited_vars) > 1:
400
                orig_var = program.global_block().vars[splited_grad_varname]
401 402
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
Q
Qiao Longfei 已提交
403 404 405 406
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
407 408
            else:
                AssertionError("Can not insert the send op by original "
409
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
410

W
Wu Yi 已提交
411 412
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
413
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
414

Q
Qiao Longfei 已提交
415 416 417 418 419 420 421 422 423 424 425
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
426 427 428 429
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
430
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
431
                index=index + 1,
432
                type="send",
Q
Qiao Longfei 已提交
433
                inputs={"X": send_input_vars},
434
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
435 436
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
437 438
                    "sections": sections,
                    "send_varnames": send_varnames,
439
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
440 441 442 443
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
                    ],
444
                    "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
445
                })
Y
update  
Yancey1989 已提交
446 447
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
448 449

        if self.sync_mode:
W
Wu Yi 已提交
450 451
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
452 453 454 455
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
456
            input_deps = list(self.grad_name_to_send_dummy_out.values())
457

Y
Yancey1989 已提交
458 459
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
460
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
461
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
462 463
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
464 465
                    "sync_mode": self.sync_mode,
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
466
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
467
                })
Y
Yancey1989 已提交
468

G
gongweibao 已提交
469
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
470
        recv_vars = []
Y
update  
Yancey1989 已提交
471
        for _, var in enumerate(send_vars):
472
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
473
        ps_dispatcher.reset()
Y
Yancey1989 已提交
474 475
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
476
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
477 478
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
479

480 481 482 483
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
484
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
485
        all_recv_outputs = []
486
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
487
            eps = []
Q
Qiao Longfei 已提交
488
            table_names = []
Y
Yancey1989 已提交
489 490 491
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
492
                table_names.append(var.name)
W
Wu Yi 已提交
493 494 495 496
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
497
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
498
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
499

W
Wu Yi 已提交
500 501 502 503 504 505 506 507 508
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
509
            if param_varname in self.sparse_param_to_height_sections:
510 511 512 513 514 515

                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
516 517
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
518 519
                self._update_remote_sparse_update_op(
                    param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
520
            else:
Q
Qiao Longfei 已提交
521 522 523
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
524
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
525
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
526
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
527

Q
Qiao Longfei 已提交
528 529 530 531 532 533
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
534
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
535 536 537 538 539 540
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
                        [param_varname, recv_op_role_var_name],
                        "sync_mode": not self.sync_mode
                    })
T
typhoonzero 已提交
541

Q
qiaolongfei 已提交
542
        if self.sync_mode:
W
Wu Yi 已提交
543
            # form a WAW dependency
Q
qiaolongfei 已提交
544 545 546
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
547
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
548 549
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
550
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
551 552
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
553

554
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
555 556
            if len(splited_var) <= 1:
                continue
557
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
558
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
559 560 561 562 563 564 565 566 567
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
568

G
gongweibao 已提交
569 570
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

571
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
572 573
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
574
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
575

576 577 578
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
579
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
580 581 582 583 584 585
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
        """
T
typhoonzero 已提交
586
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
587
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
588

T
typhoonzero 已提交
589
        lr_ops = self._get_lr_ops()
590
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
591 592
        delete_ops(self.origin_program.global_block(), lr_ops)

593 594
        # delete table init op
        if self.has_distributed_lookup_table:
595 596 597
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
598 599
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
600 601 602 603 604
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
605
            table_init_op = table_param_init_op[0]
606 607 608 609 610 611
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
612

613
        self.origin_program.__str__()
G
gongweibao 已提交
614

W
Wu Yi 已提交
615 616 617
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

618
        return self.origin_program
T
typhoonzero 已提交
619

W
Wu Yi 已提交
620
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
621 622 623 624
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
625
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
626
            eplist (list): A list of strings indicating
G
gongweibao 已提交
627 628 629 630

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
631
        startup_program = self.startup_program
G
gongweibao 已提交
632 633 634 635

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
636
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
657
                inputs={"X": []},
G
gongweibao 已提交
658 659 660 661 662 663
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
664 665
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
666 667 668
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
669
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
670 671 672 673 674
            attrs={
                "endpoints": self.pserver_endpoints,
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
675
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
676
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
677 678
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
679
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
680
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
681 682 683 684 685 686 687 688 689 690
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
691 692 693 694 695 696 697 698
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
699 700
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
701
        Get parameter server side program.
702

Y
yi.wu 已提交
703 704
        Args:
            endpoint (str): current parameter server endpoint.
705

Y
yi.wu 已提交
706 707
        Returns:
            Program: the program for current parameter server to run.
T
typhoonzero 已提交
708
        """
Y
yi.wu 已提交
709 710 711 712
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
713 714 715
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
716 717
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
718
        pserver_program.random_seed = self.origin_program.random_seed
719 720
        pserver_program._copy_dist_param_info_from(self.origin_program)

721
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
722 723 724 725 726 727 728 729
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
730 731 732 733 734
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
735 736 737 738 739 740 741 742 743
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
744
            if self.sync_mode and self.trainer_num > 1:
745
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
746 747 748 749 750 751 752 753 754
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
755

Q
qiaolongfei 已提交
756
        # step 3
757
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
758 759 760
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
761
        # step 3.2
T
typhoonzero 已提交
762 763 764 765
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
766 767
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
768
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
769
        # step 3.3
W
Wu Yi 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
788
        # Iterate through the ops, and if an op and the optimize ops
789
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
790
        # append it into the sub program.
T
typhoonzero 已提交
791 792 793

        global_ops = []

Y
wip  
yi.wu 已提交
794 795
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
796
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
797
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
798
                                         self.origin_program, merged_var)
Y
wip  
yi.wu 已提交
799
            elif op not in lr_ops:
Q
Qiyang Min 已提交
800
                self._append_pserver_non_opt_ops(block, op)
801

Y
Yancey1989 已提交
802
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
803 804 805 806 807 808 809 810
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
811
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
812 813 814

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
815
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
816 817

            # clone ops
Y
Yancey1989 已提交
818 819
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
820
                # clone sub_block of op
Y
Yancey1989 已提交
821
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
822 823

            # reset the block of op
W
Wu Yi 已提交
824
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
825

826
        # append lr decay ops to the child block if exists
827
        lr_ops = self._get_lr_ops()
828 829
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
830
        if len(lr_ops) > 0:
W
Wu Yi 已提交
831
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
832
                pserver_program.num_blocks - 1)
833
            optimize_blocks.append(lr_decay_block)
834
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
835
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
836
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
837 838
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
839

T
typhoonzero 已提交
840
        # append op to the current block
Q
qiaolongfei 已提交
841
        grad_to_block_id = []
Q
qiaolongfei 已提交
842
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
843
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
844
            per_opt_block = pserver_program._create_block(pre_block_idx)
845
            optimize_blocks.append(per_opt_block)
846
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
847
            # append grad merging ops before clip and weight decay
848 849
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
850
            for _, op in enumerate(self.optimize_ops):
851
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
852
                # merged_var should be the input var name of L2Decay
853 854 855
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
856 857 858
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
859 860 861 862 863 864
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
865
                            op not in global_ops:
866 867 868 869 870
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
871

872
        # dedup grad to ids list
W
Wu Yi 已提交
873
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
874
        # append global ops
875
        if global_ops:
W
Wu Yi 已提交
876
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
877
                pserver_program.num_blocks - 1)
878
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
879
            for glb_op in global_ops:
X
Xi Chen 已提交
880
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
881
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
882

883
        # process distributed lookup_table
Q
qiaolongfei 已提交
884
        prefetch_var_name_to_block_id = []
885 886
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
887
            table_opt_block = self._create_table_optimize_block(
888
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
889
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
890
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
891
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
892 893
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
894

T
tangwei12 已提交
895
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
896 897
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
898

899
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
900 901
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
902 903 904 905 906 907
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
908
        attrs = {
909
            "optimize_blocks": optimize_blocks,
910 911 912
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
913
            "grad_to_block_id": grad_to_block_id,
914
        }
T
tangwei12 已提交
915 916

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
917
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
918 919
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
920

T
tangwei12 已提交
921 922 923 924
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
925 926 927 928 929
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
930
            attrs=attrs)
931

W
Wu Yi 已提交
932
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
933 934
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
935 936
        return pserver_program

W
Wu Yi 已提交
937 938 939 940 941 942
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
943

W
Wu Yi 已提交
944 945 946 947
        Returns:
            tuple: (main_program, startup_program), of type "Program"
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
948 949
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
950 951
        return pserver_prog, pserver_startup

952 953
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
954
                            pserver_program=None,
955
                            startup_program=None):
T
typhoonzero 已提交
956
        """
W
Wu Yi 已提交
957 958
        **Deprecated**

T
typhoonzero 已提交
959 960 961
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
962 963 964

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
965 966
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
967
                when initalizing
968

Y
yi.wu 已提交
969 970
        Returns:
            Program: parameter server side startup program.
T
typhoonzero 已提交
971 972
        """
        s_prog = Program()
W
Wu Yi 已提交
973
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
974
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
975 976 977 978 979 980 981 982 983 984 985
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
986
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
987
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
988
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
989 990 991 992
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
993
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
994 995
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1006 1007

            if op_on_pserver:
1008 1009 1010
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1011 1012 1013
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
W
Wu Yi 已提交
1014
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1015 1016 1017 1018
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1019
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1029

T
typhoonzero 已提交
1030 1031
        return s_prog

1032 1033
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1034
        block_suffix = "block"
1035 1036 1037
        block_idx = 0
        offset = 0
        is_slice = False
1038

1039
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1040

1041 1042
        if not block_name:
            return is_slice, block_idx, offset
1043

1044 1045 1046 1047
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1048 1049 1050 1051 1052
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1116

Y
yi.wu 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1156
    def _init_splited_vars(self):
Y
yi.wu 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1180
        if self.config.slice_var_up:
Y
yi.wu 已提交
1181 1182
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1183 1184 1185
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1186
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1187 1188
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1189 1190 1191
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1192 1193 1194 1195
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1196 1197
        assert (len(grad_blocks) == len(param_blocks))

1198
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1199 1200
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1217
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1218 1219 1220 1221
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1222
        # dict(grad_splited_var -> param_splited_var)
1223
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1224 1225 1226
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1227
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1228
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1229 1230

        # create mapping of endpoint -> split var to create pserver side program
1231
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1241
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1242 1243
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1244
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1245
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1246 1247
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1248 1249
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1250 1251 1252 1253 1254 1255

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1256 1257
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1258
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1259 1260 1261
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1262 1263
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1264 1265
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1266 1267 1268
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1269
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1270
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1271 1272

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1273
                    self.all_out_emb_vars.append(out_var)
1274 1275

                    # delete lookup_table_op
1276
                    delete_ops(program.global_block(), [op])
1277 1278 1279
                    # break for loop
                    break

S
seiriosPlus 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1326
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1327
        # 2. add split_ids_op and send_op to send gradient to pservers
1328

1329 1330
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1331
        table_grad_name = grad_var_name(self.table_name)
1332 1333 1334 1335
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1336
                program.global_block()._insert_op(
1337 1338 1339 1340 1341
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1342 1343
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1344
                program.global_block()._insert_op(
1345
                    index=op_index + 2,
1346
                    type="send",
1347
                    inputs={'X': self.trainer_side_table_grad_list},
1348 1349 1350 1351 1352
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1353
                    attrs={
1354
                        "sync_mode": not self.sync_mode,
Y
Yancey1989 已提交
1355
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1356
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1357 1358 1359 1360 1361
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1362
                    })
1363 1364 1365 1366 1367 1368
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1369
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1395
        return prefetch_var_name_to_block_id
1396 1397

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1398
                                     pre_block_idx, grad_to_block_id):
1399
        # STEP: create table optimize block
1400
        table_opt_block = pserver_program._create_block(pre_block_idx)
1401
        # create table param and grad var in pserver program
1402 1403
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1404 1405 1406
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1407 1408
        ][0]

Y
Yancey1989 已提交
1409 1410
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1411

T
tangwei12 已提交
1412
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1413 1414
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1415 1416 1417
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1418 1419
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1420
            shape=table_shape,
Y
Yancey1989 已提交
1421 1422 1423
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1424

1425 1426
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1427
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1428
            self.origin_program.global_block().vars[grad_var_name(
1429
                self.table_name)])
1430

1431 1432 1433
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1434

1435 1436 1437
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1438
            pserver_side_table_grad_list = [
1439 1440 1441 1442 1443 1444 1445 1446 1447
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1448
            # append sum op for pserver_side_table_grad_list
1449 1450
            table_opt_block.append_op(
                type="sum",
1451
                inputs={"X": pserver_side_table_grad_list},
1452 1453
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1454 1455
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1456
            origin_grad_name = grad_var.name
1457 1458
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1459 1460
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1461
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1462
            grad_var = pserver_program.global_block()._rename_var(
1463
                origin_grad_name, splited_grad_name)
1464 1465 1466 1467 1468 1469 1470

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1471
        # only support sgd now
1472 1473 1474
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1475
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1476

1477 1478 1479
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1480 1481
        return table_opt_block

T
tangwei12 已提交
1482 1483 1484 1485 1486
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1487
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1488
            name="kLookupTablePath",
T
tangwei12 已提交
1489 1490
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1491

W
Wu Yi 已提交
1492
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1493
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1494 1495 1496 1497
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1498
            attrs={'file_path': "none"})
T
tangwei12 已提交
1499 1500 1501

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1502 1503 1504 1505 1506
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1507
        Create vars for each split.
T
typhoonzero 已提交
1508 1509
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1510 1511 1512 1513
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1514
        Returns:
1515
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1516
                from original var name to each var split.
T
typhoonzero 已提交
1517
        """
1518 1519

        # varname->[(block_id, current_block_size)]
1520
        block_map = collections.OrderedDict()
1521

1522
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1523 1524
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1525
            if varname not in block_map:
T
typhoonzero 已提交
1526
                block_map[varname] = []
1527
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1528

M
minqiyang 已提交
1529
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1530
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1531
            if len(splited) == 1:
1532
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1533
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1534
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1535
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1536 1537 1538 1539 1540
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1541
                continue
T
typhoonzero 已提交
1542
            var_mapping[varname] = []
T
typhoonzero 已提交
1543 1544 1545 1546
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1547

T
typhoonzero 已提交
1548
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1549
                size = block[1]
M
minqiyang 已提交
1550
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1551 1552 1553
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1554
                new_var_name = ""
1555
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1556
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1557
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1558 1559
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1560
                                   (varname, i)
T
typhoonzero 已提交
1561
                var = program.global_block().create_var(
T
typhoonzero 已提交
1562 1563
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1564
                    dtype=orig_var.dtype,
1565
                    type=orig_var.type,
T
typhoonzero 已提交
1566
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1567
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1568
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1569
        return var_mapping
T
done  
typhoonzero 已提交
1570

1571
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1572 1573 1574 1575 1576 1577
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1578
            persistable=persistable)
T
done  
typhoonzero 已提交
1579

Q
Qiao Longfei 已提交
1580 1581 1582 1583 1584 1585 1586
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1587
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1588 1589
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1590
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1591
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1592
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1593 1594
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1595
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1596 1597 1598 1599
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1600 1601 1602 1603
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1604
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1605
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1606 1607 1608 1609
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1610
                attrs={
Q
Qiao Longfei 已提交
1611
                    "sections": height_sections,
1612 1613
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1614 1615 1616
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1617

T
typhoonzero 已提交
1618 1619 1620 1621
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1622
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1635
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1636 1637
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1638 1639
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1640
                return param_shape
1641 1642 1643
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1644 1645 1646
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1647 1648
        elif op_type == "sgd":
            pass
1649 1650 1651 1652
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1653 1654
        return orig_shape

1655 1656
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1657
        orig_var_name = ""
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1668
        else:
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1691
            return None
1692 1693 1694 1695
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1696
        else:
1697
            merged_var_name = orig_varname
1698 1699

        merged_var = pserver_block.vars[merged_var_name]
1700 1701 1702
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1703
            for i in range(self.trainer_num):
1704
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1705
                                   (merged_var_name, i)
1706 1707 1708 1709
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1710 1711
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1712 1713 1714 1715 1716
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1717
        return merged_var
T
typhoonzero 已提交
1718

W
Wu Yi 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

1781
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1782
                            grad_to_block_id, origin_program, merged_var):
1783
        program = optimize_block.program
T
typhoonzero 已提交
1784
        pserver_block = program.global_block()
1785
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
1796 1797 1798 1799
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
1800
        for key in opt_op.input_names:
T
typhoonzero 已提交
1801
            if key == "Grad":
W
Wu Yi 已提交
1802 1803 1804
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
1815
            elif key == "Param":
W
Wu Yi 已提交
1816
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
1817 1818
                if not param_block:
                    return
T
typhoonzero 已提交
1819
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1820
                    name=param_block.name,
T
typhoonzero 已提交
1821
                    persistable=True,
T
typhoonzero 已提交
1822 1823 1824
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1825
            elif key == "LearningRate":
1826
                # learning rate variable has already be created by non-optimize op,
1827
                # don't create it once again.
1828
                lr_varname = opt_op.input(key)[0]
1829
                if lr_varname in pserver_block.vars:
1830 1831 1832 1833 1834 1835 1836 1837 1838
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1839

T
typhoonzero 已提交
1840
        for key in opt_op.input_names:
1841
            new_shape = None
W
Wu Yi 已提交
1842
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1843
                continue
1844
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
1845
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
1846
            # update accumulator variable shape
1847 1848
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
1849
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1850 1851 1852 1853 1854
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1855

1856
        # change output's ParamOut variable
1857 1858
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1859
        outputs["ParamOut"] = new_inputs["Param"]
1860
        optimize_block.append_op(
T
typhoonzero 已提交
1861 1862
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1863
            outputs=outputs,
G
gongweibao 已提交
1864
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1865

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
1877
        grad_block = None
M
minqiyang 已提交
1878
        for _, g in six.iteritems(var_dict):
1879
            if self._orig_varname(g.name) == self._orig_varname(var.name):
1880
                # skip per trainer vars
1881
                if g.name.find(".trainer_") == -1:
1882
                    # only param or grads have splited blocks
1883 1884
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
1885 1886
                        grad_block = g
                        break
1887 1888
        return grad_block

Q
Qiyang Min 已提交
1889 1890 1891
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1892
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
1893 1894 1895 1896
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1897
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1898 1899 1900

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
1901
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
1902 1903 1904 1905
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
1906
                    block._clone_variable(var)
Q
Qiyang Min 已提交
1907

Y
Yancey1989 已提交
1908
        return block.append_op(
G
gongweibao 已提交
1909
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
1910 1911

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
1912
        program = optimize_block.program
1913
        # Append the ops for parameters that do not need to be optimized/updated
1914 1915
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1916
        for key, varlist in six.iteritems(inputs):
1917 1918
            if not isinstance(varlist, list):
                varlist = [varlist]
1919 1920 1921
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
1922
                # for inputs/outputs
1923
                grad_block = self._get_pserver_grad_param_var(
1924 1925
                    var, program.global_block().vars)
                if grad_block:
1926
                    varlist[i] = grad_block
1927
                elif var.name not in program.global_block().vars:
1928 1929 1930 1931 1932
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
1933

1934 1935
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
1936
        for key, varlist in six.iteritems(outputs):
1937 1938
            if not isinstance(varlist, list):
                varlist = [varlist]
1939 1940 1941
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
1942 1943
                    var, program.global_block().vars)
                if grad_block:
1944
                    varlist[i] = grad_block
1945
                elif var.name not in program.global_block().vars:
1946 1947 1948 1949 1950
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
1951

Y
Yancey1989 已提交
1952
        return optimize_block.append_op(
T
typhoonzero 已提交
1953
            type=opt_op.type,
T
typhoonzero 已提交
1954 1955
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
1956
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
1957

1958 1959 1960 1961
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
1962
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
1963
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
1964 1965 1966 1967 1968 1969
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
1970 1971
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
1972 1973 1974 1975 1976 1977
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1978
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1979
        if "Param" in op.input_names and \
T
tangwei12 已提交
1980
                "LearningRate" in op.input_names:
1981 1982 1983 1984 1985 1986 1987
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1988
        if op.input("Param")[0] in param_names:
1989 1990 1991
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1992
                param = op.input("Param")[0]
T
typhoonzero 已提交
1993
                if same_or_split_var(n, param) and n != param:
1994 1995 1996
                    return True
            return False

T
typhoonzero 已提交
1997
    def _get_input_map_from_op(self, varmap, op):
1998
        """Returns a dict from op input name to the vars in varmap."""
1999
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2011
        """Returns a dict from op output name to the vars in varmap."""
2012
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2013 2014 2015 2016 2017 2018 2019 2020 2021
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2022 2023

    def _get_lr_ops(self):
2024 2025 2026
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2027 2028 2029 2030
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2031 2032 2033 2034 2035
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2036 2037 2038 2039
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2040
            if self._is_optimizer_op(op):
2041 2042 2043 2044
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2045
        block = self.origin_program.global_block()
2046 2047 2048 2049 2050
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2051

2052 2053 2054 2055 2056
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2057
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2058 2059 2060 2061 2062 2063
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2064 2065
                    # we only need to append op for once
                    break
2066
        return lr_ops
Y
Yancey1989 已提交
2067

W
Wu Yi 已提交
2068 2069 2070 2071 2072
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2073 2074
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2075 2076 2077
            return True
        return False

Y
Yancey1989 已提交
2078
    def _get_optimize_pass(self):
2079
        """
2080
        Get optimizer operators, parameters and gradients from origin_program
2081 2082
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2083
            params_grads (dict): parameter->gradient.
2084
        """
Y
Yancey1989 已提交
2085 2086 2087
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2088 2089
        # tmp set to dedup
        optimize_params = set()
2090
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2091
        for op in block.ops:
W
Wu Yi 已提交
2092
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2093
                opt_ops.append(op)
2094 2095 2096 2097 2098 2099
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2100 2101
                        params_grads.append([
                            origin_var_dict[param_name],
2102
                            origin_var_dict[grad_name]
2103
                        ])
Y
Yancey1989 已提交
2104 2105 2106
            else:
                pass
        return opt_ops, params_grads