framework.py 125.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
55 56
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
57 58


L
lujun 已提交
59
def in_dygraph_mode():
L
lujun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
73
    return _dygraph_tracer_ is not None
74 75


L
lujun 已提交
76 77
def _dygraph_tracer():
    return _dygraph_tracer_
78

W
Wu Yi 已提交
79

M
minqiyang 已提交
80
def _current_expected_place():
L
lujun 已提交
81
    return _dygraph_current_expected_place_
M
minqiyang 已提交
82 83


S
sneaxiy 已提交
84
def _cpu_num():
85
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
86 87 88 89
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
90
            '!!! The default number of CPUPlaces is 1.\n\n')
C
chengduo 已提交
91
        os.environ['CPU_NUM'] = str(1)
92
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
93 94 95 96 97 98 99 100 101 102
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
103 104 105


def cuda_places(device_ids=None):
L
lujun 已提交
106
    """
S
add doc  
sneaxiy 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
126 127 128 129 130 131 132

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
133 134 135
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
136
        device_ids = _cuda_ids()
S
sneaxiy 已提交
137 138 139 140 141 142
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
143
    """
S
add doc  
sneaxiy 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
156 157 158 159 160 161 162

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
163 164 165 166 167 168
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
169
    """
S
add doc  
sneaxiy 已提交
170 171 172 173 174 175 176 177 178 179 180 181
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
182 183 184 185 186 187 188 189 190

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
191 192 193 194 195 196 197
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
224
@signature_safe_contextmanager
225 226 227 228 229 230 231 232 233 234 235 236
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
237

238 239 240 241 242 243 244 245 246 247 248
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
268 269 270
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
271 272 273 274


def grad_var_name(var_name):
    """
275 276
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
277 278 279
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
280

281
def convert_np_dtype_to_dtype_(np_dtype):
282 283
    """
    Convert the data type in numpy to the data type in Paddle
284

285
    Args:
286
        np_dtype(np.dtype): the data type in numpy.
287

288 289
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
290 291

    """
292 293
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
294
        return core.VarDesc.VarType.FP32
295
    elif dtype == np.float64:
296
        return core.VarDesc.VarType.FP64
297
    elif dtype == np.float16:
298
        return core.VarDesc.VarType.FP16
299
    elif dtype == np.int32:
300
        return core.VarDesc.VarType.INT32
301
    elif dtype == np.int16:
302
        return core.VarDesc.VarType.INT16
303
    elif dtype == np.int64:
304
        return core.VarDesc.VarType.INT64
305
    elif dtype == np.bool:
306
        return core.VarDesc.VarType.BOOL
307 308
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
309 310
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
311 312
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
313
    else:
M
minqiyang 已提交
314
        raise ValueError("Not supported numpy dtype %s" % dtype)
315 316 317


def dtype_is_floating(dtype):
318 319 320
    """
    Check the data type is floating or not.
    Args:
321
        dtype(np.dtype|core.VarDesc.VarType): data type.
322 323 324 325 326
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
327
    if not isinstance(dtype, core.VarDesc.VarType):
328 329
        dtype = convert_np_dtype_to_dtype_(dtype)

330 331 332 333
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
334 335


Y
Yang Yang(Tony) 已提交
336
def _debug_string_(proto, throw_on_error=True):
337 338 339 340 341 342 343 344 345 346 347
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
348
    error_fields = list()
Y
Yang Yang(Tony) 已提交
349
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
350 351
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
352 353 354
    return proto.__str__()


X
Xin Pan 已提交
355
class Variable(object):
356
    """
357 358 359
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
360
    two variables in different blocks could have the same name.
361

362 363
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
364

365
    Most of a Variable's member variables can be setted to be None. It mean
366
    it is not available or will be specified later.
367 368

    Args:
369
        block(Block): The block that the variable belongs to.
370 371
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
372 373
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
374
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
375
            Some kinds of variable do not contain shape, just set it to None.
376 377 378
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
379
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
380
            series data.
381
            Default: None
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
404 405
    """

Y
Yu Yang 已提交
406 407
    def __init__(self,
                 block,
Y
Yu Yang 已提交
408
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
409 410 411 412
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
413
                 capacity=None,
Q
QI JUN 已提交
414
                 persistable=None,
F
fengjiayi 已提交
415
                 error_clip=None,
Y
Yu Yang 已提交
416
                 stop_gradient=False,
F
fengjiayi 已提交
417
                 is_data=False,
Y
Yu Yang 已提交
418
                 **kwargs):
Y
Yu Yang 已提交
419 420
        self.block = block
        if name is None:
Y
Yu Yang 已提交
421
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
422

Y
Yu Yang 已提交
423
        if dtype is not None:
424
            if not isinstance(dtype, core.VarDesc.VarType):
425
                dtype = convert_np_dtype_to_dtype_(dtype)
426

L
lujun 已提交
427
        if in_dygraph_mode():
M
minqiyang 已提交
428
            # record vars in tracer rather than blocks
M
minqiyang 已提交
429 430
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
431 432 433
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
434 435
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
436
            if persistable:
L
lujun 已提交
437
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
438
            self.op = None
M
minqiyang 已提交
439
        else:
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
512
            self.block.vars[name] = self
513
            self.op = None
514
            self._stop_gradient = stop_gradient
515
            self.is_data = is_data
Y
Yu Yang 已提交
516

517
    def numpy(self):
M
minqiyang 已提交
518
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
519
        return np.array(new_ivar.value().get_tensor())
520

521 522
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
523
        if backward_strategy is None:
524 525
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
526 527 528

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
529

530
    def gradient(self):
531 532
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
533

534
    def clear_gradient(self):
X
Xin Pan 已提交
535
        self._ivar._clear_gradient()
X
Xin Pan 已提交
536

537
    def __str__(self):
Y
Yang Yang(Tony) 已提交
538 539
        return self.to_string(True)

F
update  
fengjiayi 已提交
540
    def to_string(self, throw_on_error, with_details=False):
541 542 543 544
        """
        Get debug string.

        Args:
545 546
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
547
            with_details(bool): more details about variables and parameters
548 549
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
550

551 552
        Returns:
            str: The debug string.
553
        """
L
lujun 已提交
554
        if in_dygraph_mode():
L
lujun 已提交
555
            # TODO(panyx0718): add more dygraph debug info.
556 557 558
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
559

F
update  
fengjiayi 已提交
560 561
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
562
        protostr = self.desc.serialize_to_string()
563
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
564 565 566 567
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
568 569
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
570
        return res_str
571 572 573

    __repr__ = __str__

574
    def set_desc(self, input):
575 576 577 578 579 580 581 582 583
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
584 585
        self.desc = input

586
    @property
587
    def stop_gradient(self):
L
lujun 已提交
588
        if in_dygraph_mode():
M
minqiyang 已提交
589 590
            return self._ivar.stop_gradient
        else:
591
            return self._stop_gradient
592

593 594
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
595
        if in_dygraph_mode():
M
minqiyang 已提交
596
            self._ivar.stop_gradient = s
597
        else:
598
            self._stop_gradient = s
599

600 601
    @property
    def persistable(self):
L
lujun 已提交
602
        if in_dygraph_mode():
603 604 605
            return self._ivar.persistable
        else:
            return self.desc.persistable()
606

Y
Yu Yang 已提交
607 608
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
609
        if in_dygraph_mode():
610 611 612
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
613

Y
Yu Yang 已提交
614 615
    @property
    def name(self):
L
lujun 已提交
616
        if in_dygraph_mode():
617 618 619
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
620

T
typhoonzero 已提交
621 622
    @name.setter
    def name(self, new_name):
L
lujun 已提交
623
        if in_dygraph_mode():
624 625 626
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
627

Y
Yu Yang 已提交
628 629 630
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
631
        if in_dygraph_mode():
632 633 634
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
635 636

    @property
F
fengjiayi 已提交
637
    def dtype(self):
L
lujun 已提交
638
        if in_dygraph_mode():
639 640 641
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
642 643 644

    @property
    def lod_level(self):
L
lujun 已提交
645
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
646 647
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
648
        return self.desc.lod_level()
Y
Yu Yang 已提交
649

Y
Yu Yang 已提交
650 651
    @property
    def type(self):
L
lujun 已提交
652
        if in_dygraph_mode():
653 654 655
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
656

W
Wu Yi 已提交
657
    def _set_error_clip(self, error_clip):
658 659 660 661 662 663 664 665 666
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
667 668
        self.error_clip = error_clip

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
756
    def _cloneVar(self, copy=False):
757 758
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
759 760
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
761 762 763 764
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
765
        new_var = self._cloneVar()
766 767 768 769 770 771 772 773 774 775
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
776
        new_var = self._cloneVar()
777 778 779 780 781 782 783 784 785 786
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
787
                return self._cloneVar(True)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
806
                return self._cloneVar(True)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
859
            else:
H
Hongyu Liu 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
903

Y
Yu Yang 已提交
904

F
fengjiayi 已提交
905 906 907
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
908

909 910
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
911 912 913 914
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
915
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
916 917 918 919 920
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
921 922 923 924
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
925 926 927 928 929 930 931 932 933
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
934
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
935 936 937 938 939 940
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
941 942 943 944 945 946 947 948
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
949 950
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
951 952
        return self.op_proto_map[type]

953 954 955 956
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
957
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
958 959
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
960 961
        }

F
fengjiayi 已提交
962

X
Xin Pan 已提交
963
class Operator(object):
964
    """
965 966 967 968 969 970 971
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
972
        type(str): The type of operator. Default None.
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
993
        Block.append_op or Block._prepend_op instead.
994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1004
    """
1005
    OP_WITHOUT_KERNEL_SET = {
1006 1007
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1008 1009 1010
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id',
        'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
        'c_sync_comm_stream'
1011
    }
1012

Y
Yu Yang 已提交
1013 1014
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1015
                 desc,
Y
Yu Yang 已提交
1016 1017 1018
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1019
                 attrs=None):
L
lujun 已提交
1020
        if in_dygraph_mode():
1021 1022
            if type is None:
                raise ValueError(
1023
                    "`type` to initialized an Operator can not be None.")
1024
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1025
            self.previous_ops = []
M
minqiyang 已提交
1026

M
minqiyang 已提交
1027
            self.attrs = attrs if attrs else {}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1042
                )] = self.block.program._op_role
1043 1044 1045

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1046 1047
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1048 1049 1050 1051 1052 1053 1054 1055

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1056
                    "`type` to initialized an Operator can not be None.")
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1088
                        for index, arg in enumerate(in_args):
1089 1090 1091 1092
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1093
                            elif isinstance(arg, Variable):
1094
                                in_arg_names.append(cpt.to_text(arg.name))
1095 1096 1097 1098
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1125
                        if not in_dygraph_mode():
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1145
    def _has_kernel(self, op_type):
1146 1147
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1148
    def to_string(self, throw_on_error):
1149
        """
1150 1151
        Get debug string.

1152
        Args:
1153 1154
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1155

1156 1157
        Returns:
            str: The debug string.
1158 1159

        """
1160
        protostr = self.desc.serialize_to_string()
1161
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1162 1163 1164 1165
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1166 1167 1168

    __repr__ = __str__

F
fengjiayi 已提交
1169 1170
    @property
    def type(self):
L
lujun 已提交
1171
        if in_dygraph_mode():
1172 1173 1174
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1175 1176

    def input(self, name):
1177
        """
1178
        Get the input arguments according to the input parameter name.
1179

1180 1181
        Args:
            name(str): The input parameter name.
1182

1183 1184 1185
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1186
        """
F
fengjiayi 已提交
1187 1188
        return self.desc.input(name)

W
Wu Yi 已提交
1189
    def _rename_input(self, old_name, new_name):
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1200
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1201

W
Wu Yi 已提交
1202
    def _rename_output(self, old_name, new_name):
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1213
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1214

F
fengjiayi 已提交
1215 1216 1217 1218
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1219 1220 1221 1222 1223 1224 1225 1226
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1227
    def output(self, name):
1228
        """
1229
        Get output arguments by the output parameter name.
1230

1231 1232
        Args:
            name(str): The output parameter name.
1233

1234 1235 1236
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1237
        """
F
fengjiayi 已提交
1238 1239 1240 1241 1242 1243
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1244 1245 1246 1247 1248 1249 1250 1251
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1252
    def has_attr(self, name):
1253
        """
1254 1255
        Whether this Operator has the attribute with name or not.

1256
        Args:
1257
            name(str): the attribute name.
1258

1259 1260
        Returns:
            bool: True if has this attribute.
1261 1262

        """
F
fengjiayi 已提交
1263 1264 1265
        return self.desc.has_attr(name)

    def attr_type(self, name):
1266
        """
1267
        Get the type of attribute by attribute's name.
1268

1269 1270
        Args:
            name(str): the attribute name.
1271

1272 1273
        Returns:
            core.AttrType: the attribute type.
1274
        """
F
fengjiayi 已提交
1275 1276
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1277
    def _set_attr(self, name, val):
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1288 1289
        self._update_desc_attr(name, val)

1290 1291 1292
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1304 1305
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1306 1307
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1308
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1309 1310 1311 1312
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1313
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1314

F
fengjiayi 已提交
1315 1316 1317 1318 1319
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1320
        """
1321 1322
        Get the attribute by name.

1323
        Args:
1324
            name(str): the attribute name.
1325

1326 1327
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1328 1329
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1330
        return self.desc.attr(name)
Y
Yu Yang 已提交
1331

W
Wu Yi 已提交
1332
    def _block_attr_id(self, name):
1333
        """
G
gongweibao 已提交
1334
        Get the block attribute's id by name.
1335

1336 1337
        Args:
            name(str): the attribute name.
1338

1339 1340
        Returns:
            int: the block index.
1341
        """
W
Wu Yi 已提交
1342
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1343

W
Wu Yi 已提交
1344
    def _block_attr(self, name):
G
gongweibao 已提交
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1355
        id = self._block_attr_id(name)
G
gongweibao 已提交
1356 1357 1358
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1359
    def _blocks_attr(self, name):
G
gongweibao 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1370
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1371 1372 1373 1374 1375
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1376
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1387
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1388

J
JiayiFeng 已提交
1389
    def all_attrs(self):
F
fengjiayi 已提交
1390
        """
1391 1392 1393
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1394
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1395 1396 1397 1398
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1399 1400
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1401
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1402 1403 1404
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1405
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1406 1407 1408 1409
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1410 1411
        return attr_map

Y
Yu Yang 已提交
1412

Y
Yu Yang 已提交
1413
class Block(object):
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1428
        use `Program._create_block()` to create a block.
1429 1430 1431 1432

    Examples:
        .. code-block:: python

1433 1434 1435
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1436 1437 1438 1439 1440 1441 1442 1443 1444
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1445
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1446
        self.desc = program.desc.block(idx)
1447
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1448
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1449
        self.program = program
1450
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1451

1452
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1453 1454
        return self.to_string(True)

F
fengjiayi 已提交
1455 1456
    def to_string(self, throw_on_error, with_details=False):
        """
1457 1458
        Get debug string.

F
fengjiayi 已提交
1459 1460
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1461
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1462
            with_details(bool): more details about variables and parameters
1463 1464
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1465

1466 1467
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1468 1469 1470 1471
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1472
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1473 1474
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1475
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1476
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1477
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1478
            for op in self.ops:
F
fengjiayi 已提交
1479 1480
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1481 1482 1483
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1484 1485
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1486 1487
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1488 1489 1490

    __repr__ = __str__

Y
Yu Yang 已提交
1491 1492
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1493
        return self.desc.parent
Y
Yu Yang 已提交
1494

Y
Yu Yang 已提交
1495 1496 1497 1498
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1499
    def _set_forward_block_idx(self, idx):
1500 1501 1502 1503 1504 1505 1506 1507 1508
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1509
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1510

Y
Yu Yang 已提交
1511 1512
    @property
    def idx(self):
Y
Yu Yang 已提交
1513
        return self.desc.id
Y
Yu Yang 已提交
1514

Q
Qiao Longfei 已提交
1515
    def var(self, name):
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1529
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1530 1531 1532
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1533 1534
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1535
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1536
        return v
Q
Qiao Longfei 已提交
1537

X
Xin Pan 已提交
1538
    def _find_var_recursive(self, name):
1539 1540 1541 1542 1543 1544 1545
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1546
            Variable: the Variable with the giving name. Or None if not found.
1547
        """
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1572
        return None
Y
Yu Yang 已提交
1573

X
Xin Pan 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1593

Q
Qiao Longfei 已提交
1594
    def all_parameters(self):
1595
        return list(self.iter_parameters())
1596

1597
    def iter_parameters(self):
M
minqiyang 已提交
1598
        return (item[1] for item in six.iteritems(self.vars)
1599
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1600

Y
Yu Yang 已提交
1601
    def create_var(self, *args, **kwargs):
1602
        var = Variable(block=self, *args, **kwargs)
1603 1604
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1605
        return var
Y
Yu Yang 已提交
1606

Q
Qiao Longfei 已提交
1607 1608 1609
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1610
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1611 1612
        """
        Rename variable in vars and ops' inputs and outputs
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1625
        """
M
minqiyang 已提交
1626 1627
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1628

T
typhoonzero 已提交
1629
        if not self.has_var(name):
1630
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1631 1632
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1633
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1634 1635 1636 1637 1638 1639 1640
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1641
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1642 1643 1644 1645
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1646
        orig_var_type = v.type
M
minqiyang 已提交
1647
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1648
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1649
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1650
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1651 1652 1653 1654
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1655
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1656 1657 1658 1659 1660 1661 1662
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1663
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1664 1665
            var = Variable(
                self,
T
typhoonzero 已提交
1666
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1667 1668 1669 1670
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1671
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1672 1673 1674
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1675
        self._sync_with_cpp()
1676
        return var
T
typhoonzero 已提交
1677

W
Wu Yi 已提交
1678 1679
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1680
        self.desc._remove_var(cpt.to_bytes(name))
1681 1682
        del self.vars[name]

Y
Yu Yang 已提交
1683 1684
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1685
        param = Parameter(global_block, *args, **kwargs)
1686
        if 'initializer' in kwargs:
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1707
        return param
Y
Yu Yang 已提交
1708

Y
Yu Yang 已提交
1709
    def append_op(self, *args, **kwargs):
1710 1711 1712 1713 1714 1715
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1716
        if in_dygraph_mode():
1717 1718 1719
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1720 1721 1722 1723 1724
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1725

1726 1727 1728 1729
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1730 1731
                inputs=None,
                outputs=None,
1732
                attrs=attrs)
1733

M
minqiyang 已提交
1734 1735 1736
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1737
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1738 1739 1740 1741
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1742
        else:
1743 1744 1745 1746 1747 1748 1749 1750 1751
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1752
            self.ops.append(op)
M
minqiyang 已提交
1753

1754 1755
        return op

W
Wu Yi 已提交
1756
    def _insert_op(self, index, *args, **kwargs):
1757 1758 1759 1760 1761 1762 1763 1764 1765
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1766 1767
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1768 1769 1770 1771
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1772
    def _remove_op(self, index):
1773 1774 1775 1776 1777 1778 1779 1780 1781
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1782 1783
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1784 1785
        del self.ops[index]

W
Wu Yi 已提交
1786
    def _slice_ops(self, start, end):
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1797
        return self.ops[start:end]
Y
Yancey1989 已提交
1798

W
Wu Yi 已提交
1799
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1800
        if in_dygraph_mode():
1801 1802 1803 1804
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1805 1806 1807 1808 1809 1810 1811 1812
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1813
        else:
1814 1815 1816 1817 1818 1819 1820 1821
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1822
            self.ops.insert(0, op)
1823

Y
Yu Yang 已提交
1824 1825
        return op

W
Wu Yi 已提交
1826
    def _sync_with_cpp(self):
1827
        """
1828 1829
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1830
        """
Q
Qiao Longfei 已提交
1831 1832 1833 1834 1835
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1836
        # sync variables removed from c++ end
1837
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1838
            if not self.desc.find_var(cpt.to_bytes(var)):
1839 1840
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1841
        # sync operators from cpp
1842 1843 1844 1845
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1862 1863 1864 1865 1866

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1867
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1868 1869 1870 1871 1872 1873 1874

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1888 1889 1890 1891
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1892
    def _copy_param_info_from(self, other):
1893
        """
1894 1895
        Copy the information of parameters from the other block.

1896
        Args:
1897 1898 1899 1900 1901
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1902 1903 1904 1905 1906

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1907 1908
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1909
        for p in other.iter_parameters():
1910 1911 1912
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1913
                raise ValueError("_copy_param_info_from should be invoked with "
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1926
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1927
                error_clip=p.error_clip,
1928 1929 1930
                name=v.name)
            self.vars[new_p.name] = new_p

1931
    def _clone_variable(self, var, force_persistable=True):
1932 1933
        """
        Clone a variable into current block.
1934

1935 1936
        Args:
            var: the variable to be cloned.
1937 1938 1939
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1940 1941

        Returns:
1942
            Variable: the new  variable cloned from 'var' in current block.
1943 1944
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1945 1946 1947 1948 1949
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1950 1951
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1952
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1953 1954 1955 1956 1957 1958
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1959
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1960
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1961 1962 1963 1964 1965 1966 1967
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1968
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1969
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1970
        return ret_var
1971

Y
Yu Yang 已提交
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2068
    def remove_input_by_id(self, node_id):
2069 2070 2071 2072 2073 2074
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2075
        self.node.remove_input(node_id)
2076

2077
    def remove_input(self, node):
2078 2079 2080 2081
        """
        Remove a node from inputs.

        Args:
2082
            node(IrNode): the node being removed.
2083
        """
2084
        self.node.remove_input(node.node)
2085

2086
    def append_input(self, node):
2087 2088 2089 2090
        """
        Append a node in inputs.

        Args:
2091
            node(IrNode): the node being appended.
2092
        """
2093
        self.node.append_input(node.node)
2094 2095 2096 2097 2098 2099 2100 2101

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2102
    def remove_output_by_id(self, node_id):
2103 2104 2105 2106 2107 2108
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2109
        self.node.remove_output(node_id)
2110

2111
    def remove_output(self, node):
2112 2113 2114 2115
        """
        Remove a node from outputs.

        Args:
2116
            node(IrNode): the node being removed.
2117
        """
2118
        self.node.remove_output(node.node)
2119

2120
    def append_output(self, node):
2121 2122 2123 2124
        """
        Append a node in outputs.

        Args:
2125
            node(IrNode): the node being appended.
2126
        """
2127
        self.node.append_output(node.node)
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2382 2383
class IrGraph(object):
    """
2384
    Python IrGraph. Beneath it is a core.Graph, which is used for
2385
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2386 2387
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2388 2389 2390 2391
    """

    def __init__(self, graph, for_test=False):
        """
2392 2393
        Construct an IrGraph using core.Graph.

2394 2395 2396 2397 2398 2399 2400 2401 2402
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2403 2404 2405 2406
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2407 2408 2409
        Warns:
            The method only clones the graph structure, not its attributes.

2410 2411 2412
        Returns:
            IrGraph: A new and duplicated graph.
        """
2413
        g = self.graph.clone()
2414 2415
        return IrGraph(g, self._for_test)

2416
    def is_test(self):
2417 2418 2419
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2420 2421
        return self._for_test

W
WangZhen 已提交
2422
    def all_nodes(self):
2423 2424 2425
        """
        Return all nodes included in the graph as a set.
        """
2426
        return {IrNode(node) for node in self.graph.nodes()}
2427

2428
    def all_var_nodes(self):
2429 2430 2431
        """
        Return all variable nodes included in the graph as a set.
        """
2432
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2433

2434
    def all_persistable_nodes(self):
2435 2436 2437
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2438 2439 2440 2441 2442
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2443
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2444

2445
    def all_op_nodes(self):
2446 2447 2448
        """
        Return all operator nodes included in the graph as a set.
        """
2449
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2450

2451
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2463
            IrVarNode: the created persistable variable node.
2464
        """
2465 2466 2467 2468 2469
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2470
        return IrVarNode(self.graph.create_var_node(var_desc))
2471 2472

    def create_var_node(self, name, var_type, shape, var_dtype):
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2484
            IrVarNode: the created variable node.
2485 2486
        """

2487 2488 2489 2490
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2491
        return IrVarNode(self.graph.create_var_node(var_desc))
2492 2493

    def create_var_node_from_desc(self, var_desc):
2494 2495 2496 2497 2498 2499 2500 2501
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2502
            IrVarNode: the created variable node.
2503
        """
2504
        return IrVarNode(self.graph.create_var_node(var_desc))
2505 2506

    def create_op_node(self, op_type, attrs, inputs, outputs):
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2517
            IrOpNode: the created operator node.
2518
        """
2519 2520
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2521
        for attr, value in six.iteritems(attrs):
2522
            self._update_desc_attr(op_desc, attr, value)
2523
        for input_name, var_nodes in six.iteritems(inputs):
2524 2525 2526 2527
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2528
        for output_name, var_nodes in six.iteritems(outputs):
2529 2530 2531 2532
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2533
        return IrOpNode(self.graph.create_op_node(op_desc))
2534 2535

    def create_op_node_from_desc(self, op_desc):
2536 2537 2538 2539 2540 2541 2542
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2543
            IrOpNode: the created operator node.
2544
        """
2545
        return IrOpNode(self.graph.create_op_node(op_desc))
2546 2547

    def update_input_link(self, old_input_node, new_input_node, op_node):
2548 2549 2550 2551
        """
        Update the input's link of a operator node.

        Args:
2552 2553 2554
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2555
        """
2556 2557
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2558
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2559 2560 2561 2562
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2563
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2564 2565

    def link_to(self, node_in, node_out):
2566 2567 2568 2569
        """
        Connect two nodes.

        Args:
2570 2571
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2572
        """
2573
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2574
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2575 2576
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2577 2578

    def safe_remove_nodes(self, remove_nodes):
2579 2580 2581 2582 2583 2584 2585
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2586
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2587 2588 2589 2590
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2591 2592
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2593

Z
Zhen Wang 已提交
2594 2595 2596 2597 2598 2599 2600 2601
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2602
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2603 2604 2605 2606
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2607
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2608 2609 2610
                        ]
                    else:
                        var_nodes[each_var_name].append(
2611 2612
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2613 2614
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2615
    def has_circle(self):
2616 2617 2618 2619 2620 2621
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2622 2623 2624
        return core.has_circle(self.graph)

    def graph_num(self):
2625 2626 2627 2628 2629 2630
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2631 2632 2633
        return core.graph_num(self.graph)

    def topology_sort(self):
2634 2635 2636 2637 2638 2639
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2640
            list(IrNode): nodes in topology order.
2641
        """
2642
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2643
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2644 2645

    def build_adjacency_list(self):
2646 2647 2648 2649
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2650
            dict{IrNode: set(IrNode)}: the adjacency list.
2651
        """
2652 2653 2654 2655 2656
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2657

2658 2659 2660 2661 2662 2663 2664 2665
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2666
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2667 2668 2669 2670 2671
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2672 2673 2674 2675 2676 2677 2678 2679 2680
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2681
        remove_ctr_vars = set()
2682
        if remove_ctr_var:
2683
            for node in self.all_var_nodes():
2684 2685 2686
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2687 2688
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2689 2690
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2691 2692 2693 2694 2695 2696
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2708 2709 2710
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2711
        WARN: When the graph includes backward operator nodes, the
2712 2713 2714 2715 2716 2717
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2718
        convert_pass = core.get_pass('graph_to_program_pass')
2719 2720
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2721 2722 2723 2724
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2752
class Program(object):
D
dzhwinter 已提交
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2764
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2765 2766

    Returns:
Y
yuyang18 已提交
2767
        A empty program.
D
dzhwinter 已提交
2768 2769

    Examples:
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2783 2784 2785

    """

2786 2787
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2788 2789
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2790
        self._seed = 0
Y
yuyang18 已提交
2791
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2792
        self.__op_role_var = []
T
tangwei12 已提交
2793

2794 2795
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2796
        self._is_distributed = False
2797
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2798
        self._is_chief = False
2799 2800 2801
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2802
        self._endpoints = []
2803 2804 2805
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2806
        self._trainers_endpoints = []
2807
        # the distributed lookup table names
T
tangwei12 已提交
2808
        self._distributed_lookup_table = None
2809 2810 2811

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2812 2813 2814 2815
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2816

D
dzhwinter 已提交
2817
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2818
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2819
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2820

2821 2822 2823
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2824
        self._program_config = None
2825

H
hutuxian 已提交
2826 2827 2828
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2829 2830 2831
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2832
    @property
D
dzhwinter 已提交
2833
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2834 2835
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2836
        return self.__is_mem_optimized
D
dzhwinter 已提交
2837

D
dzhwinter 已提交
2838 2839 2840
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2841 2842

    @property
2843
    def _op_role(self):
Y
yuyang18 已提交
2844 2845 2846 2847 2848 2849 2850 2851
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2852
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2853 2854 2855 2856
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2857 2858
        return self._current_role

2859 2860
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2861 2862 2863
        self._current_role = role

    @property
2864
    def _op_role_var(self):
Y
yuyang18 已提交
2865
        """
2866
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2867

2868
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2869 2870 2871

        Notes: This is a very low-level API. Users should not use it directly.
        """
2872
        return self.__op_role_var
Y
yuyang18 已提交
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2883
    @signature_safe_contextmanager
W
Wu Yi 已提交
2884
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2885 2886 2887 2888 2889 2890 2891
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2892
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2893 2894 2895 2896

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2897
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2898 2899
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2900
        tmp_role = self._current_role
2901
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2902

Y
yuyang18 已提交
2903 2904
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2905
        self.__op_role_var = [
2906 2907 2908
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2909
        yield
2910
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2911
        self._current_role = tmp_role
Y
Yu Yang 已提交
2912

S
rename  
sneaxiy 已提交
2913
    @signature_safe_contextmanager
X
Xin Pan 已提交
2914
    def _lr_schedule_guard(self, is_with_opt=False):
2915 2916 2917 2918 2919 2920 2921
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2922 2923 2924 2925
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2926 2927 2928 2929 2930 2931 2932

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2933 2934

        tmp_role = self._current_role
2935
        tmp_var = self.__op_role_var
2936

2937 2938
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2939 2940
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2941
        # TODO(typhoonzero): how to set target learning rate var
2942
        self.__op_role_var = []
2943
        yield
2944
        self.__op_role_var = tmp_var
2945
        self._current_role = tmp_role
2946

2947
    def __str__(self):
Y
yuyang18 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2957 2958
        return self.to_string(True)

F
fengjiayi 已提交
2959 2960 2961
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2962

F
fengjiayi 已提交
2963
        Args:
Y
yuyang18 已提交
2964 2965
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2966

Y
yuyang18 已提交
2967 2968 2969 2970
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2971 2972
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2973 2974 2975 2976

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2996 2997
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2998 2999
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3000

W
Wu Yi 已提交
3001
    def _get_desc(self):
Y
yuyang18 已提交
3002 3003 3004 3005 3006 3007 3008
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3009 3010
        return self.desc

X
version  
Xin Pan 已提交
3011 3012 3013
    def _version(self):
        return self.desc._version()

3014
    def clone(self, for_test=False):
Y
yuyang18 已提交
3015 3016 3017
        """
        Create a new, duplicated program.

3018

Y
yuyang18 已提交
3019 3020 3021 3022
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3023

Y
yuyang18 已提交
3024
        * Set for_test to False when we want to clone the program for training.
3025 3026 3027 3028
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3029

3030 3031 3032 3033
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3034

3035 3036 3037 3038 3039
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3040 3041

        Args:
Y
yuyang18 已提交
3042 3043
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3044

D
dzhwinter 已提交
3045
        Returns:
Y
yuyang18 已提交
3046 3047 3048 3049
            Program: The new, duplicated Program object.

        Examples:

3050 3051 3052 3053 3054 3055
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3151 3152
        """
        if for_test:
X
Xin Pan 已提交
3153
            p = self._inference_optimize(prune_read_op=False)
3154
        else:
3155
            p = Program()
G
gongweibao 已提交
3156 3157
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3158
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3159 3160 3161
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3162 3163

            p._current_role = self._current_role
3164
            p.__op_role_var = self.__op_role_var
3165
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3166

W
Wu Yi 已提交
3167
            p._sync_with_cpp()
3168

W
Wu Yi 已提交
3169
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3170
        p._copy_data_info_from(self)
3171
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3172
        return p
3173

W
Wu Yi 已提交
3174
    def _prune(self, targets):
Y
yuyang18 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3190 3191 3192 3193 3194 3195
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3196 3197
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3198
                    # and we need to find the current op that generate this
3199 3200 3201 3202 3203 3204 3205 3206
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3207
                    t = t.op
3208 3209 3210 3211
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3212
                else:
3213 3214
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3215 3216 3217 3218

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3219 3220 3221
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3222
        res._sync_with_cpp()
3223 3224
        return res

X
Xin Pan 已提交
3225
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3226
        """
F
fengjiayi 已提交
3227 3228 3229 3230 3231
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3232
        3. change the :code:`is_test`
Y
yuyang18 已提交
3233 3234 3235
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3236
        Args:
X
Xin Pan 已提交
3237 3238
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3239

Y
yuyang18 已提交
3240 3241 3242 3243 3244 3245
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3246
        res = Program()
3247
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3248 3249 3250 3251

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3252
        if prune_read_op:
3253 3254 3255 3256 3257 3258 3259 3260 3261
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3262
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3263 3264

        # change all `is_test` attributes to True
M
minqiyang 已提交
3265
        for i in six.moves.range(res.desc.num_blocks()):
3266
            block = res.desc.block(i)
M
minqiyang 已提交
3267
            for j in six.moves.range(block.op_size()):
3268 3269
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3270
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3271 3272 3273
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3274
        res._sync_with_cpp()
3275 3276
        return res

3277 3278
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3279 3280 3281 3282 3283 3284 3285
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3286
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3287 3288 3289 3290

        Returns:
            Program: A deserialized program desc.
        """
3291 3292
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3293
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3294
        p._sync_with_cpp()
3295
        return p
Y
Yu Yang 已提交
3296

3297
    @staticmethod
3298
    def _construct_from_desc(desc):
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3314 3315
    @property
    def random_seed(self):
Y
yuyang18 已提交
3316 3317 3318 3319 3320
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3332
        """
D
dzhwinter 已提交
3333 3334
        return self._seed

Q
qiaolongfei 已提交
3335 3336
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3337 3338
        """
        The number of blocks in this program.
3339 3340 3341 3342 3343 3344 3345 3346 3347

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3348
        """
Q
qiaolongfei 已提交
3349 3350
        return self.desc.num_blocks()

D
dzhwinter 已提交
3351 3352 3353 3354 3355 3356
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3357
    def __repr__(self):
3358
        return self.__str__()
3359

Y
Yu Yang 已提交
3360
    def global_block(self):
Y
yuyang18 已提交
3361 3362
        """
        Get the first block of this program.
3363 3364 3365 3366 3367 3368 3369 3370 3371

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3372
        """
Y
Yu Yang 已提交
3373 3374
        return self.blocks[0]

Q
Qiao Longfei 已提交
3375
    def block(self, index):
Y
yuyang18 已提交
3376 3377 3378 3379 3380 3381 3382
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3383 3384 3385 3386 3387 3388 3389 3390 3391

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3392
        """
Q
Qiao Longfei 已提交
3393 3394
        return self.blocks[index]

Y
Yu Yang 已提交
3395
    def current_block(self):
Y
yuyang18 已提交
3396 3397 3398
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3399 3400 3401 3402 3403 3404 3405 3406 3407

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3408
        """
Y
Yu Yang 已提交
3409 3410
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3411
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3422
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3423 3424 3425
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3426 3427 3428 3429
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3430
    def _rollback(self):
Y
yuyang18 已提交
3431 3432 3433 3434 3435
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3436 3437
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3438
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3449 3450 3451
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3452
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3453

W
Wu Yi 已提交
3454
    def _copy_param_info_from(self, other):
3455
        """
3456
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3457

Y
yuyang18 已提交
3458 3459 3460
        Notes: This is a very low level API. Users should not invoke it
        directly.

3461 3462 3463 3464 3465 3466 3467
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3468
            raise TypeError("_copy_param_info_from should be invoked with "
3469 3470 3471
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3472
            raise ValueError("_copy_param_info_from should be invoked with two "
3473
                             "program, with represent the same topology")
W
Wu Yi 已提交
3474
        self.global_block()._copy_param_info_from(other.global_block())
3475

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3491
        self._parameters_on_pservers = other._parameters_on_pservers
3492
        self._endpoints = other._endpoints
3493
        self._ps_endpoint = other._ps_endpoint
3494 3495
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3496
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3497 3498
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3499

Y
yuyang18 已提交
3500 3501 3502
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3503 3504 3505 3506 3507 3508 3509
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3510
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3511 3512 3513
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3514
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3515
                             "program, with represent the same topology")
3516
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3517 3518 3519
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3520
    def list_vars(self):
Y
yuyang18 已提交
3521 3522 3523 3524 3525
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3537
        """
3538
        for each_block in self.blocks:
3539
            for each_var in list(each_block.vars.values()):
3540 3541
                yield each_var

Y
Yu Yang 已提交
3542

Y
Yu Yang 已提交
3543
class Parameter(Variable):
3544
    """
3545
    Parameter is derived from Variable. A parameter is a persistable
3546
    Variable, and will be updated by optimizers after each iteration.
3547
    The training of a neural network is essentially the updating of
3548 3549
    its parameters.

3550
    Relative to a general Variable, a Parameter has several its own
3551 3552
    member variables:

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3565 3566
    """

Y
Yu Yang 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3577 3578 3579

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3580 3581 3582 3583
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3584 3585
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3586
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3587

W
wanghaoshuang 已提交
3588
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3589

F
fengjiayi 已提交
3590 3591 3592
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3593 3594 3595
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3596

F
update  
fengjiayi 已提交
3597 3598 3599 3600 3601 3602 3603 3604
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3605 3606 3607 3608 3609 3610 3611 3612 3613
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3614 3615 3616 3617 3618 3619
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3620
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3621
            for attr_name in additional_attr:
3622 3623
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3624 3625
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3626 3627 3628 3629
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3630

Y
Yu Yang 已提交
3631
# program is a global instance.
Y
Yu Yang 已提交
3632 3633
_main_program_ = Program()
_startup_program_ = Program()
3634

3635

3636
def default_startup_program():
Y
Yu Yang 已提交
3637
    """
Y
yuyang18 已提交
3638 3639 3640 3641 3642 3643 3644 3645 3646
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3647

Y
Yu Yang 已提交
3648 3649
    Returns:
        Program: startup program
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3665
    """
Y
Yu Yang 已提交
3666
    return _startup_program_
3667

3668

3669
def default_main_program():
Y
Yu Yang 已提交
3670
    """
Y
yuyang18 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3680

Y
Yu Yang 已提交
3681 3682
    Returns:
        Program: main program
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
3711 3712
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
3713
    """
Y
Yu Yang 已提交
3714
    return _main_program_
Y
Yu Yang 已提交
3715 3716 3717 3718 3719


def switch_main_program(program):
    """
    Switch the main program to a new program.
3720

Y
Yu Yang 已提交
3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3735
    Switch the startup program to a new program
Y
Yu Yang 已提交
3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3748
@signature_safe_contextmanager
Y
Yu Yang 已提交
3749 3750
def program_guard(main_program, startup_program=None):
    """
3751 3752
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3753
    variables to the new main programs.
3754

Y
Yu Yang 已提交
3755
    Examples:
3756 3757 3758
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3759

3760 3761 3762 3763 3764
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3765 3766 3767

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3768

Y
Yu Yang 已提交
3769
    Examples:
3770
       .. code-block:: python
Y
yuyang18 已提交
3771

3772 3773 3774 3775 3776 3777
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3778

Y
Yu Yang 已提交
3779
    Args:
3780 3781 3782
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3795 3796


W
Wu Yi 已提交
3797
def _get_var(name, program=None):
X
xuwei06 已提交
3798
    """
Y
yuyang18 已提交
3799
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3800

X
xuwei06 已提交
3801 3802 3803
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3804
        If None, default_global_program() will be used.
X
xuwei06 已提交
3805 3806 3807 3808 3809 3810 3811

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3812
    assert isinstance(program, Program)
X
xuwei06 已提交
3813 3814

    return program.global_block().var(name)
3815 3816


S
rename  
sneaxiy 已提交
3817
@signature_safe_contextmanager
L
lujun 已提交
3818 3819 3820 3821
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3822

3823
    yield
P
Paddle CI 已提交
3824

L
lujun 已提交
3825
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3826 3827


S
rename  
sneaxiy 已提交
3828
@signature_safe_contextmanager
L
lujun 已提交
3829 3830 3831 3832
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3833

3834
    yield
M
minqiyang 已提交
3835

L
lujun 已提交
3836
    _dygraph_current_expected_place_ = tmp_place