distribute_transpiler.py 97.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17 18 19 20
"""
Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
Q
Qiyang Min 已提交
21
4. append send_op to send splited variables to server and
22 23
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
24 25 26 27 28 29 30 31

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
32

T
tangwei12 已提交
33
import sys
T
typhoonzero 已提交
34
import math
T
tangwei12 已提交
35 36
from functools import reduce

37
import collections
T
tangwei12 已提交
38
import six
Q
Qiao Longfei 已提交
39
import logging
40

T
tangwei12 已提交
41 42
import numpy as np

43
from .ps_dispatcher import RoundRobin, PSDispatcher
W
Wu Yi 已提交
44
from .. import core, framework, unique_name
T
typhoonzero 已提交
45
from ..framework import Program, default_main_program, \
T
tangwei12 已提交
46 47 48
    default_startup_program, Block, Parameter, grad_var_name
from .details import wait_server_ready, UnionFind, VarStruct, VarsDistributed
from .details import delete_ops, find_op_by_output_arg
Q
Qiao Longfei 已提交
49
from ..distribute_lookup_table import find_distributed_lookup_table
50
from . import collective
51 52 53

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
54
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
X
fix  
Xin Pan 已提交
57
OPT_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Optimize
Y
Yancey1989 已提交
58
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
59 60 61 62 63 64 65 66 67
DIST_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.Dist
LR_SCHED_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.LRSched

PRINT_LOG = False


def log(*args):
    if PRINT_LOG:
        print(args)
T
done  
typhoonzero 已提交
68 69


T
typhoonzero 已提交
70 71 72 73 74 75
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
76

T
typhoonzero 已提交
77 78
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
79 80


81 82 83 84
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


G
gongweibao 已提交
85
def slice_variable(var_list, slice_count, min_block_size):
T
typhoonzero 已提交
86
    """
87 88 89 90 91 92
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
93
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
94 95 96

    Args:
        var_list (list): List of variables.
97 98
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
99 100
        min_block_size (int): Minimum splitted block size.
    Returns:
101
        blocks (list[(varname, block_id, current_block_size)]): A list
102
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
103 104 105
    """
    blocks = []
    for var in var_list:
106
        split_count = slice_count
T
typhoonzero 已提交
107 108 109 110
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
111
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
112 113 114 115 116 117 118 119 120
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
121
        # update split_count after aligning
T
typhoonzero 已提交
122
        split_count = int(math.ceil(var_numel / float(block_size)))
123
        for block_id in range(split_count):
T
typhoonzero 已提交
124 125 126 127 128 129 130
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


G
gongweibao 已提交
131 132
class DistributeTranspilerConfig(object):
    """
H
haowang101779990 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    .. py:attribute:: slice_var_up (bool)

          Do Tensor slice for pservers, default is True.

    .. py:attribute:: split_method (PSDispatcher)

          RoundRobin or HashName can be used.
          Try to choose the best method to balance loads for pservers.

    .. py:attribute:: min_block_size (int)

          Minimum number of splitted elements in block.

          According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
T
Tink_Y 已提交
147
          We can use bandwidth effiently when data size is larger than 2MB.If you
H
haowang101779990 已提交
148 149
          want to change it, please be sure you have read the slice_variable function.

150 151 152 153 154
    Examples:
        .. code-block:: python

            config = fluid.DistributeTranspilerConfig()
            config.slice_var_up = True
G
gongweibao 已提交
155 156 157 158 159
    """

    slice_var_up = True
    split_method = None
    min_block_size = 8192
W
Wu Yi 已提交
160
    enable_dc_asgd = False
161
    # supported modes: pserver, nccl2, collective
W
Wu Yi 已提交
162
    mode = "pserver"
163
    print_log = False
W
Wu Yi 已提交
164
    wait_port = True
Q
Qiao Longfei 已提交
165
    # split the send recv var in runtime
166 167
    _runtime_split_send_recv = False
    _sync_mode = True
G
gongweibao 已提交
168

169 170 171 172 173 174 175
    nccl_comm_num = 1
    #The picture here illustrates the principle:
    #https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
    use_hierarchical_allreduce = False
    #Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu cards' number in most cases.
    hierarchical_allreduce_inter_nranks = 0

176
    # if mode is collective
177
    # supported modes: grad_allreduce, local_sgd
178 179
    collective_mode = None

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def __init__(self):
        pass

    @property
    def runtime_split_send_recv(self):
        return self._runtime_split_send_recv

    @runtime_split_send_recv.setter
    def runtime_split_send_recv(self, value):
        if value is None:
            raise ValueError("runtime_split_send_recv can't be None")
        if value and self._sync_mode:
            raise ValueError(
                "if you want to set runtime_split_send_recv to be true, make ensure config.sync_mode is false at first"
            )
        self._runtime_split_send_recv = value

    @property
    def sync_mode(self):
        return self._sync_mode

    @sync_mode.setter
    def sync_mode(self, value):
        if value is None:
            raise ValueError("sync_mode can't be None")
        if value and self._runtime_split_send_recv:
            raise ValueError(
                "if you want to set sync_mode to be true, make ensure config.runtime_split_send_recv is false at first"
            )
        self._sync_mode = value

G
gongweibao 已提交
211

Y
gen rst  
yi.wu 已提交
212
class DistributeTranspiler(object):
Y
yi.wu 已提交
213 214 215 216
    """
    **DistributeTranspiler**

    Convert the fluid program to distributed data-parallelism programs.
W
Wu Yi 已提交
217
    Supports two modes: pserver mode and nccl2 mode.
Y
yi.wu 已提交
218

W
Wu Yi 已提交
219 220 221 222 223 224 225 226 227
    In pserver mode, the main_program will be transformed to use a remote
    parameter server to do parameter optimization. And the optimization
    graph will be put into a parameter server program.

    In nccl2 mode, the transpiler will append a NCCL_ID broadcasting
    op in startup_program to share the NCCL_ID across the job nodes.
    After transpile_nccl2 called, you ***must*** pass trainer_id and
    num_trainers argument to ParallelExecutor to enable NCCL2 distributed
    mode.
Y
yi.wu 已提交
228 229 230 231

    Examples:
        .. code-block:: python

232 233 234 235 236 237 238 239 240 241
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
            y_predict = fluid.layers.fc(input=x, size=1, act=None)

            cost = fluid.layers.square_error_cost(input=y_predict, label=y)
            avg_loss = fluid.layers.mean(cost)

            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            sgd_optimizer.minimize(avg_loss)

T
Tink_Y 已提交
242 243 244 245 246 247
            # for pserver mode
            pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
            current_endpoint = "192.168.0.1:6174"
            trainer_id = 0
            trainers = 4
248
            role = "PSERVER"
T
Tink_Y 已提交
249 250 251 252 253 254
            t = fluid.DistributeTranspiler()
            t.transpile(
                 trainer_id, pservers=pserver_endpoints, trainers=trainers)
            if role == "PSERVER":
                 pserver_program = t.get_pserver_program(current_endpoint)
                 pserver_startup_program = t.get_startup_program(current_endpoint,
Y
yi.wu 已提交
255
                                                                pserver_program)
T
Tink_Y 已提交
256 257 258 259
            elif role == "TRAINER":
                 trainer_program = t.get_trainer_program()

            # for nccl2 mode
260 261
            trainer_num = 2
            trainer_id = 0
T
Tink_Y 已提交
262 263
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
264
            trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
T
Tink_Y 已提交
265
            t = fluid.DistributeTranspiler(config=config)
266
            t.transpile(trainer_id=trainer_id, trainers=trainer_endpoints, current_endpoint="192.168.0.1:6174")
T
Tink_Y 已提交
267
            exe = fluid.ParallelExecutor(
268 269 270
                use_cuda=True,
                loss_name=avg_loss.name,
                num_trainers=trainer_num,
T
Tink_Y 已提交
271 272
                trainer_id=trainer_id
            )
Y
yi.wu 已提交
273
    """
Y
Yancey1989 已提交
274

G
gongweibao 已提交
275 276 277 278 279 280 281 282 283
    def __init__(self, config=None):
        if config is not None:
            self.config = config
        else:
            self.config = DistributeTranspilerConfig()

        if self.config.split_method is None:
            self.config.split_method = RoundRobin

284 285 286
        global PRINT_LOG
        if self.config.print_log:
            PRINT_LOG = True
G
gongweibao 已提交
287 288 289
        assert (self.config.min_block_size >= 8192)
        assert (self.config.split_method.__bases__[0] == PSDispatcher)

W
Wu Yi 已提交
290 291 292 293
    def _transpile_nccl2(self,
                         trainer_id,
                         trainers,
                         current_endpoint,
294 295
                         startup_program=None,
                         wait_port=True):
W
Wu Yi 已提交
296 297 298 299 300 301
        if not startup_program:
            startup_program = default_startup_program()
        if trainer_id >= 0:
            worker_endpoints = trainers.split(",")
            # send NCCL_ID to others or recv from trainer 0
            worker_endpoints.remove(current_endpoint)
302 303
            if trainer_id == 0 and wait_port:
                wait_server_ready(worker_endpoints)
W
Wu Yi 已提交
304 305 306

            nccl_id_var = startup_program.global_block().create_var(
                name="NCCLID", persistable=True, type=core.VarDesc.VarType.RAW)
307 308 309 310 311 312 313 314 315

            for i in range(1, self.config.nccl_comm_num):
                startup_program.global_block().create_var(
                    name="NCCLID_{}".format(i),
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)

            if self.config.use_hierarchical_allreduce:
                for i in range(0, self.config.nccl_comm_num):
G
gongweibao 已提交
316 317 318 319
                    startup_program.global_block().create_var(
                        name="Hierarchical_inter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
320 321 322 323 324
                    startup_program.global_block().create_var(
                        name="Hierarchical_exter_NCCLID_{}".format(i),
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)

W
Wu Yi 已提交
325 326 327 328 329
            startup_program.global_block().append_op(
                type="gen_nccl_id",
                inputs={},
                outputs={"NCCLID": nccl_id_var},
                attrs={
330 331 332 333 334 335 336
                    "trainers": trainers.split(","),
                    "trainer_id": trainer_id,
                    "nccl_comm_num": self.config.nccl_comm_num,
                    "use_hierarchical_allreduce":
                    self.config.use_hierarchical_allreduce,
                    "hierarchical_allreduce_inter_nranks":
                    self.config.hierarchical_allreduce_inter_nranks
W
Wu Yi 已提交
337 338 339 340 341
                })
            return nccl_id_var
        else:
            raise ValueError("must set trainer_id > 0")

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    def _transpile_collective(self,
                              collective_mode,
                              trainer_id,
                              trainers,
                              current_endpoint,
                              startup_program=None,
                              main_program=None,
                              wait_port=True):
        if isinstance(trainers, str):
            endpoints = trainers.split(",")
        elif isinstance(trainers, list):
            endpoints = trainers
        else:
            raise ValueError('invalid trainers config: ' + str(trainers))

        if len(endpoints) == 1:
            raise ValueError('invalid trainer number in distributed: 1')

        if startup_program is None:
            startup_program = default_startup_program()

        if main_program is None:
            main_program = default_main_program()

        transpiler = None
        if collective_mode == 'grad_allreduce':
368
            transpiler = collective.GradAllReduce(self.config.nccl_comm_num)
369
        elif collective_mode == 'local_sgd':
370
            transpiler = collective.LocalSGD(self.config.nccl_comm_num)
371 372 373 374 375 376 377 378 379 380 381
        else:
            raise ValueError('invalid collective_mode: %s' % collective_mode)

        transpiler.transpile(
            startup_program=startup_program,
            main_program=main_program,
            rank=trainer_id,
            endpoints=endpoints,
            current_endpoint=current_endpoint,
            wait_port=wait_port)

Q
Qiao Longfei 已提交
382
    def _get_all_remote_sparse_update_op(self, main_program):
Q
Qiao Longfei 已提交
383
        sparse_update_ops = []
384
        sparse_update_op_types = ["lookup_table", "nce", "hierarchical_sigmoid"]
Q
Qiao Longfei 已提交
385 386
        for op in main_program.global_block().ops:
            if op.type in sparse_update_op_types and op.attr(
387
                    'remote_prefetch') is True:
Q
Qiao Longfei 已提交
388 389 390
                sparse_update_ops.append(op)
        return sparse_update_ops

391 392 393 394 395 396 397
    def _update_remote_sparse_update_op(self, program, param_varname,
                                        height_sections, endpoints,
                                        table_names):

        ops = []
        op_type = ""

Q
Qiao Longfei 已提交
398
        for op in self.sparse_update_ops:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
            if param_varname in op.input_arg_names and op_type == "":
                op_type = op.type
                ops.append(op)

            elif param_varname in op.input_arg_names and op_type == op.type:
                ops.append(op)

        if op_type == "lookup_table":
            all_ops = program.global_block().ops
            op_idxs = [all_ops.index(op) for op in ops]
            inputs = [
                program.global_block().vars[op.input("Ids")[0]] for op in ops
            ]
            w = program.global_block().vars[ops[0].input("W")[0]]
            padding_idx = ops[0].attr("padding_idx")
            outputs = [
                program.global_block().vars[op.output("Out")[0]] for op in ops
            ]

            for idx in op_idxs[::-1]:
                program.global_block()._remove_op(idx)

            program.global_block()._insert_op(
                index=op_idxs[0],
                type="distributed_lookup_table",
                inputs={"Ids": inputs,
                        'W': w},
                outputs={"Outputs": outputs},
                attrs={
                    "table_names": table_names,
                    "height_sections": height_sections,
                    "endpoints": endpoints,
                    "padding_idx": padding_idx,
                    "trainer_id": self.trainer_id
                })
Q
Qiao Longfei 已提交
434 435 436 437 438 439

    def _is_input_of_remote_sparse_update_op(self, param_name):
        for op in self.sparse_update_ops:
            if param_name in op.input_arg_names:
                return True
        return False
Q
Qiao Longfei 已提交
440

441 442 443 444 445
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
W
Wu Yi 已提交
446
                  sync_mode=True,
W
Wu Yi 已提交
447 448
                  startup_program=None,
                  current_endpoint="127.0.0.1:6174"):
449
        """
450
        Run the transpiler. Transpile the input program.
Y
yi.wu 已提交
451 452 453 454 455 456

        Args:
            trainer_id (int): id for current trainer worker, if you have
                n workers, the id may range from 0 ~ n-1
            program (Program|None): program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
457 458
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_startup_program().
Y
yi.wu 已提交
459 460
            pservers (str): comma separated ip:port string for the pserver
                list.
W
Wu Yi 已提交
461 462 463
            trainers (int|str): in pserver mode this is the number of
                trainers, in nccl2 mode this is a string of trainer
                endpoints.
Y
yi.wu 已提交
464
            sync_mode (bool): Do sync training or not, default is True.
W
Wu Yi 已提交
465 466
            startup_program (Program|None): startup_program to transpile,
                default is fluid.default_main_program().
W
Wu Yi 已提交
467 468 469
            current_endpoint (str): need pass current endpoint when
                transpile as nccl2 distributed mode. In pserver mode
                this argument is not used.
470 471 472 473 474 475 476 477 478 479 480

        Examples:
            .. code-block:: python

                transpiler = fluid.DistributeTranspiler()
                t.transpile(
                    trainer_id=0,
                    pservers="127.0.0.1:7000,127.0.0.1:7001",
                    trainers=2,
                    sync_mode=False,
                    current_endpoint="127.0.0.1:7000")
481 482 483
        """
        if program is None:
            program = default_main_program()
W
Wu Yi 已提交
484 485
        if startup_program is None:
            startup_program = default_startup_program()
486
        self.origin_program = program
W
Wu Yi 已提交
487 488
        self.startup_program = startup_program
        self.origin_startup_program = self.startup_program.clone()
G
gongweibao 已提交
489

W
Wu Yi 已提交
490 491
        if self.config.mode == "nccl2":
            assert (isinstance(trainers, str))
492
            self.origin_program._trainers_endpoints = trainers.split(",")
493 494
            self.origin_program._nccl_comm_num = self.config.nccl_comm_num
            self.origin_program._use_hierarchical_allreduce = self.config.use_hierarchical_allreduce
495 496 497 498 499
            # check use_hierarchical_allreduce options
            if self.config.use_hierarchical_allreduce:
                trainers_num = len(self.origin_program._trainers_endpoints)
                # selected automaticly
                if self.config.hierarchical_allreduce_inter_nranks <= 1:
500
                    self.config.hierarchical_allreduce_inter_nranks = core.get_cuda_device_count(
501 502 503 504 505 506 507 508 509 510 511
                    )

                assert trainers_num > self.config.hierarchical_allreduce_inter_nranks, \
                    "trainers_num:{} < hierarchical_allreduce_inter_nranks:{}".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                assert trainers_num % self.config.hierarchical_allreduce_inter_nranks == 0, \
                    "trainers_num:{} mod hierarchical_allreduce_inter_nranks:{} != 0".format(trainers_num, self.config.hierarchical_allreduce_inter_nranks)

                self.origin_program._hierarchical_allreduce_inter_nranks = \
                    int(self.config.hierarchical_allreduce_inter_nranks)

W
Wu Yi 已提交
512 513 514 515
            self._transpile_nccl2(
                trainer_id,
                trainers,
                current_endpoint,
516 517
                startup_program=startup_program,
                wait_port=self.config.wait_port)
W
Wu Yi 已提交
518 519
            return

520 521 522 523 524 525 526 527 528 529 530
        if self.config.mode == "collective":
            self._transpile_collective(
                collective_mode=self.config.collective_mode,
                trainer_id=trainer_id,
                trainers=trainers,
                current_endpoint=current_endpoint,
                startup_program=startup_program,
                main_program=program,
                wait_port=self.config.wait_port)
            return

531
        self.trainer_num = trainers
532
        self.sync_mode = sync_mode
533 534 535
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
536
        self.vars_overview = VarsDistributed()
537 538
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

G
gongweibao 已提交
539
        ps_dispatcher = self.config.split_method(self.pserver_endpoints)
540 541
        self.table_name = find_distributed_lookup_table(self.origin_program)
        self.has_distributed_lookup_table = self.table_name != None
542
        self.param_name_to_grad_name = dict()
W
Wu Yi 已提交
543
        self.grad_name_to_param_name = dict()
544 545
        for param_var, grad_var in self.params_grads:
            self.param_name_to_grad_name[param_var.name] = grad_var.name
W
Wu Yi 已提交
546
            self.grad_name_to_param_name[grad_var.name] = param_var.name
547

Q
Qiao Longfei 已提交
548
        # get all sparse update ops
Q
Qiao Longfei 已提交
549
        self.sparse_update_ops = self._get_all_remote_sparse_update_op(
Q
Qiao Longfei 已提交
550
            self.origin_program)
Q
Qiao Longfei 已提交
551
        # use_sparse_update_param_name -> split_height_section
Q
Qiao Longfei 已提交
552 553
        self.sparse_param_to_height_sections = dict()

T
tangwei12 已提交
554 555 556
        # add distributed attrs to program
        self.origin_program._is_distributed = True
        self.origin_program._endpoints = self.pserver_endpoints
557
        self.origin_program._ps_endpoint = current_endpoint
T
tangwei12 已提交
558 559 560
        self.origin_program._is_chief = self.trainer_id == 0
        self.origin_program._distributed_lookup_table = self.table_name if self.table_name else None

561
        # split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
562
        # step 1: split and create vars, then put splited vars in dicts for later use.
G
gongweibao 已提交
563
        self._init_splited_vars()
564

G
gongweibao 已提交
565
        # step 2: insert send op to send gradient vars to parameter servers
Y
Yancey1989 已提交
566
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
567
        send_vars = []
568 569 570 571 572 573

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
M
minqiyang 已提交
574
        grad_var_mapping_items = list(six.iteritems(self.grad_var_mapping))
575

G
gongweibao 已提交
576
        if not self.config.slice_var_up:
577 578
            np.random.seed(self.origin_program.random_seed)
            np.random.shuffle(grad_var_mapping_items)
579

580
        self.grad_name_to_send_dummy_out = dict()
581
        for grad_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
582
            eplist = ps_dispatcher.dispatch(splited_vars)
583

G
gongweibao 已提交
584
            if not self.config.slice_var_up:
585 586
                assert (len(splited_vars) == 1)

587
            splited_grad_varname = grad_varname
Y
Yancey1989 已提交
588
            if len(splited_vars) == 1:
589
                splited_grad_varname = splited_vars[0].name
590 591
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
592

Y
Yancey1989 已提交
593
            elif len(splited_vars) > 1:
594
                orig_var = program.global_block().vars[splited_grad_varname]
595 596
                index = find_op_by_output_arg(
                    program.global_block(), splited_grad_varname, reverse=True)
597

Q
Qiao Longfei 已提交
598 599 600 601
                if not self.config.runtime_split_send_recv:
                    self._insert_split_op(program, orig_var, index,
                                          splited_vars)
                    index += 1
Y
Yancey1989 已提交
602 603
            else:
                AssertionError("Can not insert the send op by original "
604
                               "variable name :", splited_grad_varname)
Y
Yancey1989 已提交
605

606 607 608 609 610 611 612
            if splited_vars[0].type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_param_name = self.grad_name_to_param_name[grad_varname]
                if self._is_input_of_remote_sparse_update_op(sparse_param_name):
                    self.sparse_param_to_height_sections[sparse_param_name] = [
                        splited_var.shape[0] for splited_var in splited_vars
                    ]

W
Wu Yi 已提交
613 614
            dummy_output = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
615
            self.grad_name_to_send_dummy_out[grad_varname] = dummy_output
W
Wu Yi 已提交
616

Q
Qiao Longfei 已提交
617 618 619 620 621 622 623 624 625 626 627
            if self.config.runtime_split_send_recv:
                send_input_vars = [
                    program.global_block().vars[splited_grad_varname]
                ]
                sections = self._get_splited_var_sections(splited_vars)
                send_varnames = [var.name for var in splited_vars]
            else:
                send_input_vars = splited_vars
                sections = []
                send_varnames = []

W
Wu Yi 已提交
628 629 630 631
            # get send op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name (split_by_ref and send
            # will be on the same place). ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
W
Wu Yi 已提交
632
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
633
                index=index + 1,
634
                type="send",
Q
Qiao Longfei 已提交
635
                inputs={"X": send_input_vars},
636
                outputs={"Out": dummy_output},
Y
Yancey1989 已提交
637 638
                attrs={
                    "epmap": eplist,
Q
Qiao Longfei 已提交
639 640
                    "sections": sections,
                    "send_varnames": send_varnames,
641
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
W
Wu Yi 已提交
642 643 644
                    OP_ROLE_VAR_ATTR_NAME: [
                        self.grad_name_to_param_name[grad_varname],
                        splited_grad_varname
645
                    ]
Y
Yancey1989 已提交
646
                })
Y
update  
Yancey1989 已提交
647 648
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
649 650

        if self.sync_mode:
W
Wu Yi 已提交
651 652
            send_barrier_out = program.global_block().create_var(
                name=framework.generate_control_dev_var_name())
653 654 655 656
            if self.has_distributed_lookup_table:
                self.grad_name_to_send_dummy_out[
                    self.table_name] = program.global_block().create_var(
                        name=framework.generate_control_dev_var_name())
657
            input_deps = list(self.grad_name_to_send_dummy_out.values())
658

Y
Yancey1989 已提交
659 660
            program.global_block().append_op(
                type="send_barrier",
M
minqiyang 已提交
661
                inputs={"X": list(input_deps)},
W
Wu Yi 已提交
662
                outputs={"Out": send_barrier_out},
Y
Yancey1989 已提交
663 664
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
665
                    "trainer_id": self.trainer_id,
Y
Yancey1989 已提交
666
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
667
                })
Y
Yancey1989 已提交
668

G
gongweibao 已提交
669
        # step 3: insert recv op to receive parameters from parameter server
Y
Yancey1989 已提交
670
        recv_vars = []
Y
update  
Yancey1989 已提交
671
        for _, var in enumerate(send_vars):
672
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
673
        ps_dispatcher.reset()
Y
Yancey1989 已提交
674 675
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
676
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
677 678
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
679

680 681 682 683
            distributed_var = self.vars_overview.get_distributed_var_by_slice(
                recv_vars[i].name)
            distributed_var.endpoint = ep

Y
Yancey1989 已提交
684
        # step4: Concat the parameters splits together after recv.
W
Wu Yi 已提交
685
        all_recv_outputs = []
686
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
Y
Yancey1989 已提交
687
            eps = []
Q
Qiao Longfei 已提交
688
            table_names = []
Y
Yancey1989 已提交
689 690 691
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])
Q
Qiao Longfei 已提交
692
                table_names.append(var.name)
W
Wu Yi 已提交
693 694 695 696
            if self.sync_mode:
                recv_dep_in = send_barrier_out
            else:
                # connect deps to send op in async mode
697
                recv_dep_in = self.grad_name_to_send_dummy_out[
W
Wu Yi 已提交
698
                    self.param_name_to_grad_name[param_varname]]
Q
Qiao Longfei 已提交
699

W
Wu Yi 已提交
700 701 702 703 704 705 706 707 708
            # get recv op_role_var, if not splited, the grad should have .trainer suffix
            # if splited, grad should be the original grad var name. ParallelExecutor
            # will use op_role_var to get expected device place to run this op.
            orig_grad_name = self.param_name_to_grad_name[param_varname]
            recv_op_role_var_name = orig_grad_name
            splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
            if len(splited_trainer_grad) == 1:
                recv_op_role_var_name = splited_trainer_grad[0].name

Q
Qiao Longfei 已提交
709
            if param_varname in self.sparse_param_to_height_sections:
710 711 712 713 714
                for table_name in table_names:
                    distributed_var = self.vars_overview.get_distributed_var_by_slice(
                        table_name)
                    distributed_var.vtype = "RemotePrefetch"

Q
Qiao Longfei 已提交
715 716
                height_sections = self.sparse_param_to_height_sections[
                    param_varname]
Q
Qiao Longfei 已提交
717
                self._update_remote_sparse_update_op(
718
                    program, param_varname, height_sections, eps, table_names)
Q
Qiao Longfei 已提交
719
            else:
Q
Qiao Longfei 已提交
720 721 722
                recv_varnames = []
                if self.config.runtime_split_send_recv:
                    orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
723
                    recv_varnames = [var.name for var in splited_var]
Q
Qiao Longfei 已提交
724
                    splited_var = [orig_param]
Q
Qiao Longfei 已提交
725
                all_recv_outputs.extend(splited_var)
Q
Qiao Longfei 已提交
726

Q
Qiao Longfei 已提交
727 728 729 730 731 732
                program.global_block().append_op(
                    type="recv",
                    inputs={"X": [recv_dep_in]},
                    outputs={"Out": splited_var},
                    attrs={
                        "epmap": eps,
Q
Qiao Longfei 已提交
733
                        "recv_varnames": recv_varnames,
Q
Qiao Longfei 已提交
734 735 736
                        "trainer_id": self.trainer_id,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME:
737
                        [param_varname, recv_op_role_var_name]
Q
Qiao Longfei 已提交
738
                    })
T
typhoonzero 已提交
739

Q
qiaolongfei 已提交
740
        if self.sync_mode:
W
Wu Yi 已提交
741
            # form a WAW dependency
Q
qiaolongfei 已提交
742 743 744
            program.global_block().append_op(
                type="fetch_barrier",
                inputs={},
W
Wu Yi 已提交
745
                outputs={"Out": all_recv_outputs},
Q
qiaolongfei 已提交
746 747
                attrs={
                    "endpoints": pserver_endpoints,
W
Wu Yi 已提交
748
                    "trainer_id": self.trainer_id,
Q
qiaolongfei 已提交
749 750
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
Yancey1989 已提交
751

752
        for param_varname, splited_var in six.iteritems(self.param_var_mapping):
T
typhoonzero 已提交
753 754
            if len(splited_var) <= 1:
                continue
755
            orig_param = program.global_block().vars[param_varname]
Q
Qiao Longfei 已提交
756
            if param_varname not in self.sparse_param_to_height_sections:
Q
Qiao Longfei 已提交
757 758 759 760 761 762 763 764 765
                if not self.config.runtime_split_send_recv:
                    program.global_block().append_op(
                        type="concat",
                        inputs={"X": splited_var},
                        outputs={"Out": [orig_param]},
                        attrs={
                            "axis": 0,
                            RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                        })
T
typhoonzero 已提交
766

G
gongweibao 已提交
767 768
        self._get_trainer_startup_program(recv_vars=recv_vars, eplist=eplist)

769
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
770 771
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
772
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
773

774 775 776
        self._get_distributed_optimizer_vars()
        self.origin_program._parameters_on_pservers = self.vars_overview

W
Wu Yi 已提交
777
    def get_trainer_program(self, wait_port=True):
Y
yi.wu 已提交
778 779 780 781 782
        """
        Get transpiled trainer side program.

        Returns:
            Program: trainer side program.
783 784 785 786 787 788 789 790 791 792 793 794

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(trainer_id, trainers=trainers, pservers=pserver_endpoints)
              trainer_program = t.get_trainer_program()
Y
yi.wu 已提交
795
        """
T
typhoonzero 已提交
796
        # remove optimize ops and add a send op to main_program
X
Xin Pan 已提交
797
        # FIXME(typhoonzero): Also ops like clip_gradient, lrn_decay?
798

T
typhoonzero 已提交
799
        lr_ops = self._get_lr_ops()
800
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
T
typhoonzero 已提交
801 802
        delete_ops(self.origin_program.global_block(), lr_ops)

803 804
        # delete table init op
        if self.has_distributed_lookup_table:
805 806 807
            table_var = self.startup_program.global_block().vars[
                self.table_name]
            table_param_init_op = []
808 809
            for op in self.startup_program.global_block().ops:
                if self.table_name in op.output_arg_names:
810 811 812 813 814
                    table_param_init_op.append(op)
            init_op_num = len(table_param_init_op)
            if init_op_num != 1:
                raise ValueError("table init op num should be 1, now is " + str(
                    init_op_num))
Q
Qiao Longfei 已提交
815
            table_init_op = table_param_init_op[0]
816 817 818 819 820 821
            self.startup_program.global_block().append_op(
                type="fake_init",
                inputs={},
                outputs={"Out": table_var},
                attrs={"shape": table_init_op.attr('shape')})
            delete_ops(self.startup_program.global_block(), table_param_init_op)
822

823
        self.origin_program.__str__()
G
gongweibao 已提交
824

W
Wu Yi 已提交
825 826 827
        if wait_port:
            wait_server_ready(self.pserver_endpoints)

828
        return self.origin_program
T
typhoonzero 已提交
829

W
Wu Yi 已提交
830
    def _get_trainer_startup_program(self, recv_vars, eplist):
G
gongweibao 已提交
831 832 833 834
        """
        Get transpiled trainer side startup program.

        Args:
W
Wu Yi 已提交
835
            recv_vars (list): Variable list to recv for current trainer_id
M
minqiyang 已提交
836
            eplist (list): A list of strings indicating
G
gongweibao 已提交
837 838 839 840

        Returns:
            Program: trainer side startup program.
        """
W
Wu Yi 已提交
841
        startup_program = self.startup_program
G
gongweibao 已提交
842 843 844 845

        # FIXME(gongwb): delete not need ops.
        # note that: some parameter is not trainable and those ops can't be deleted.

M
minqiyang 已提交
846
        for varname, splited_var in six.iteritems(self.param_var_mapping):
G
gongweibao 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
            # Get the eplist of recv vars
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            for var in splited_var:
                if startup_program.global_block().has_var(var.name):
                    continue

                startup_program.global_block().create_var(
                    name=var.name,
                    persistable=False,
                    type=var.type,
                    dtype=var.dtype,
                    shape=var.shape,
                    lod_level=var.lod_level)

            op = startup_program.global_block().append_op(
                type="recv",
867
                inputs={"X": []},
G
gongweibao 已提交
868 869 870
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
Q
Qiao Longfei 已提交
871
                    "trainer_id": self.trainer_id,
G
gongweibao 已提交
872 873 874
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })

W
Wu Yi 已提交
875 876
        fetch_barrier_out = startup_program.global_block().create_var(
            name=framework.generate_control_dev_var_name())
G
gongweibao 已提交
877 878 879
        startup_program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
W
Wu Yi 已提交
880
            outputs={"Out": fetch_barrier_out},
G
gongweibao 已提交
881 882
            attrs={
                "endpoints": self.pserver_endpoints,
Q
Qiao Longfei 已提交
883
                "trainer_id": self.trainer_id,
G
gongweibao 已提交
884 885 886
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

M
minqiyang 已提交
887
        for varname, splited_var in six.iteritems(self.param_var_mapping):
T
tangwei12 已提交
888
            # add concat ops to merge splited parameters received from parameter servers.
G
gongweibao 已提交
889 890
            if len(splited_var) <= 1:
                continue
W
Wu Yi 已提交
891
            # NOTE: if enable memory optimization, origin vars maybe removed.
M
minqiyang 已提交
892
            if varname in startup_program.global_block().vars:
W
Wu Yi 已提交
893 894 895 896 897 898 899 900 901 902
                orig_param = startup_program.global_block().vars[varname]
            else:
                origin_param_var = self.origin_program.global_block().vars[
                    varname]
                orig_param = startup_program.global_block().create_var(
                    name=varname,
                    persistable=origin_param_var.persistable,
                    type=origin_param_var.type,
                    dtype=origin_param_var.dtype,
                    shape=origin_param_var.shape)
G
gongweibao 已提交
903 904 905 906 907 908 909 910
            startup_program.global_block().append_op(
                type="concat",
                inputs={"X": splited_var},
                outputs={"Out": [orig_param]},
                attrs={"axis": 0})

        return startup_program

T
typhoonzero 已提交
911 912
    def get_pserver_program(self, endpoint):
        """
Y
yi.wu 已提交
913
        Get parameter server side program.
914

Y
yi.wu 已提交
915 916
        Args:
            endpoint (str): current parameter server endpoint.
917

Y
yi.wu 已提交
918 919
        Returns:
            Program: the program for current parameter server to run.
920 921 922 923 924 925 926 927 928 929 930 931 932 933

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program = t.get_pserver_program(current_endpoint)
T
typhoonzero 已提交
934
        """
Y
yi.wu 已提交
935 936 937 938
        # TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
        # NOTE: assume blocks of the same variable is not distributed
        # on the same pserver, only change param/grad varnames for
        # trainers to fetch.
939 940 941
        sys.stderr.write(
            "get_pserver_program() is deprecated, call get_pserver_programs() to get pserver main and startup in a single call.\n"
        )
T
typhoonzero 已提交
942 943
        # step1
        pserver_program = Program()
X
Xin Pan 已提交
944
        pserver_program.random_seed = self.origin_program.random_seed
945 946
        pserver_program._copy_dist_param_info_from(self.origin_program)

947
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
948 949 950 951 952 953 954 955
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
956 957 958 959 960
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
961 962 963 964 965 966 967 968 969
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
970
            if self.sync_mode and self.trainer_num > 1:
971
                for trainer_id in range(self.trainer_num):
T
typhoonzero 已提交
972 973 974 975 976 977 978 979 980
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
981

Q
qiaolongfei 已提交
982
        # step 3
983
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
984 985 986
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
987
        # step 3.2
T
typhoonzero 已提交
988 989 990 991
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
992 993
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
994
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
995
        # step 3.3
W
Wu Yi 已提交
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        # prepare if dc asgd is enabled
        if self.config.enable_dc_asgd == True:
            assert (self.sync_mode == False)
            self.param_bak_list = []
            # add param_bak for each trainer
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                # each parameter should have w_bak for each trainer id
                for i in range(self.trainer_num):
                    param_bak_name = "%s.trainer_%d_bak" % (p.name, i)
                    tmpvar = pserver_program.global_block().create_var(
                        # NOTE: this var name format is used in `request_get_handler`
                        name=param_bak_name,
                        type=p.type,
                        shape=p.shape,
                        dtype=p.dtype)
                    self.param_bak_list.append((p, tmpvar))

        # step 3.4
T
typhoonzero 已提交
1014
        # Iterate through the ops, and if an op and the optimize ops
1015
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
1016
        # append it into the sub program.
T
typhoonzero 已提交
1017 1018 1019

        global_ops = []

1020 1021 1022
        # sparse grad name to param name
        sparse_grad_to_param = []

Y
wip  
yi.wu 已提交
1023 1024
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var,
                                   lr_ops):
1025
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
1026
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
1027 1028
                                         self.origin_program, merged_var,
                                         sparse_grad_to_param)
Y
wip  
yi.wu 已提交
1029
            elif op not in lr_ops:
Q
Qiyang Min 已提交
1030
                self._append_pserver_non_opt_ops(block, op)
1031

Y
Yancey1989 已提交
1032
        def __clone_lr_op_sub_block__(op, program, lr_block):
Q
Qiyang Min 已提交
1033 1034 1035 1036 1037 1038 1039 1040
            if not op.has_attr('sub_block'):
                return

            origin_block_desc = op.attr('sub_block')
            origin_block = self.origin_program.block(origin_block_desc.id)
            assert isinstance(origin_block, Block)
            # we put the new sub block to new block to follow the block
            # hierarchy of the original blocks
W
Wu Yi 已提交
1041
            new_sub_block = program._create_block(lr_block.idx)
Q
Qiyang Min 已提交
1042 1043 1044

            # clone vars
            for var in origin_block.vars:
W
Wu Yi 已提交
1045
                new_sub_block._clone_variable(var)
Q
Qiyang Min 已提交
1046 1047

            # clone ops
Y
Yancey1989 已提交
1048 1049
            for origin_op in origin_block.ops:
                cloned_op = self._clone_lr_op(program, new_sub_block, origin_op)
Q
Qiyang Min 已提交
1050
                # clone sub_block of op
Y
Yancey1989 已提交
1051
                __clone_lr_op_sub_block__(cloned_op, program, new_sub_block)
Q
Qiyang Min 已提交
1052 1053

            # reset the block of op
W
Wu Yi 已提交
1054
            op._set_attr('sub_block', new_sub_block)
Q
Qiyang Min 已提交
1055

1056
        # append lr decay ops to the child block if exists
1057
        lr_ops = self._get_lr_ops()
1058 1059
        # record optimize blocks and we can run them on pserver parallel
        optimize_blocks = []
1060
        if len(lr_ops) > 0:
W
Wu Yi 已提交
1061
            lr_decay_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1062
                pserver_program.num_blocks - 1)
1063
            optimize_blocks.append(lr_decay_block)
1064
            for _, op in enumerate(lr_ops):
Y
Yancey1989 已提交
1065
                cloned_op = self._append_pserver_non_opt_ops(lr_decay_block, op)
Q
Qiyang Min 已提交
1066
                # append sub blocks to pserver_program in lr_decay_op
Y
Yancey1989 已提交
1067 1068
                __clone_lr_op_sub_block__(cloned_op, pserver_program,
                                          lr_decay_block)
1069

T
typhoonzero 已提交
1070
        # append op to the current block
Q
qiaolongfei 已提交
1071
        grad_to_block_id = []
Q
qiaolongfei 已提交
1072
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
1073
        for idx, opt_op in enumerate(opt_op_on_pserver):
W
Wu Yi 已提交
1074
            per_opt_block = pserver_program._create_block(pre_block_idx)
1075
            optimize_blocks.append(per_opt_block)
1076
            optimize_target_param_name = opt_op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
1077
            # append grad merging ops before clip and weight decay
1078 1079
            # e.g. merge grad -> L2Decay op -> clip op -> optimize
            merged_var = None
1080
            for _, op in enumerate(self.optimize_ops):
1081
                # find the origin grad var before clipping/L2Decay,
Q
Qiao Longfei 已提交
1082
                # merged_var should be the input var name of L2Decay
1083 1084 1085
                grad_varname_for_block = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                if op.attr(OP_ROLE_VAR_ATTR_NAME)[
                        0] == optimize_target_param_name:
1086 1087 1088
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
1089 1090 1091 1092 1093 1094
                    if merged_var:
                        break  # append optimize op once then append other ops.
            if merged_var:
                for _, op in enumerate(self.optimize_ops):
                    # optimizer is connected to itself
                    if op.attr(OP_ROLE_VAR_ATTR_NAME)[0] == optimize_target_param_name and \
S
seiriosPlus 已提交
1095
                            op not in global_ops:
1096 1097 1098 1099 1100
                        log("append opt op: ", op.type, op.input_arg_names,
                            merged_var)
                        __append_optimize_op__(op, per_opt_block,
                                               grad_to_block_id, merged_var,
                                               lr_ops)
T
typhoonzero 已提交
1101

1102
        # dedup grad to ids list
W
Wu Yi 已提交
1103
        grad_to_block_id = list(set(grad_to_block_id))
T
typhoonzero 已提交
1104
        # append global ops
1105
        if global_ops:
W
Wu Yi 已提交
1106
            opt_state_block = pserver_program._create_block(
Q
qiaolongfei 已提交
1107
                pserver_program.num_blocks - 1)
1108
            optimize_blocks.append(opt_state_block)
Q
qiaolongfei 已提交
1109
            for glb_op in global_ops:
X
Xi Chen 已提交
1110
                __append_optimize_op__(glb_op, opt_state_block,
Y
wip  
yi.wu 已提交
1111
                                       grad_to_block_id, None, lr_ops)
T
typhoonzero 已提交
1112

1113
        # process distributed lookup_table
Q
qiaolongfei 已提交
1114
        prefetch_var_name_to_block_id = []
1115 1116
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
1117
            table_opt_block = self._create_table_optimize_block(
1118
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
1119
            optimize_blocks.append(table_opt_block)
T
tangwei12 已提交
1120
            lookup_table_var_name_to_block_id = self._create_prefetch_block(
1121
                pserver_index, pserver_program, table_opt_block)
T
tangwei12 已提交
1122 1123
            checkpoint_block_id = self._create_checkpoint_save_block(
                pserver_program, table_opt_block.idx)
1124

T
tangwei12 已提交
1125
            pserver_program._distributed_lookup_table = self.table_name
T
tangwei12 已提交
1126 1127
            prefetch_var_name_to_block_id.extend(
                lookup_table_var_name_to_block_id)
1128

1129
        if len(optimize_blocks) == 0:
Q
Qiao Longfei 已提交
1130 1131
            logging.warn("pserver [" + str(endpoint) +
                         "] has no optimize block!!")
1132 1133 1134 1135 1136 1137
            pre_block_idx = pserver_program.num_blocks - 1
            empty_block = pserver_program._create_block(pre_block_idx)
            optimize_blocks.append(empty_block)

        # In some case, some parameter server will have no parameter to optimize
        # So we give an empty optimize block to parameter server.
1138
        attrs = {
1139
            "optimize_blocks": optimize_blocks,
1140 1141 1142
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
Y
Yancey1989 已提交
1143
            "grad_to_block_id": grad_to_block_id,
1144
            "sparse_grad_to_param": sparse_grad_to_param,
1145
        }
T
tangwei12 已提交
1146 1147

        if self.has_distributed_lookup_table:
T
tangwei12 已提交
1148
            attrs['checkpint_block_id'] = checkpoint_block_id
W
Wu Yi 已提交
1149 1150
        if self.config.enable_dc_asgd:
            attrs['dc_asgd'] = True
1151

T
tangwei12 已提交
1152 1153 1154 1155
        if len(prefetch_var_name_to_block_id) > 0:
            attrs[
                'prefetch_var_name_to_block_id'] = prefetch_var_name_to_block_id

T
typhoonzero 已提交
1156 1157 1158 1159 1160
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
1161
            attrs=attrs)
1162

W
Wu Yi 已提交
1163
        pserver_program._sync_with_cpp()
W
Wu Yi 已提交
1164 1165
        # save pserver program to generate pserver side startup relatively.
        self.pserver_program = pserver_program
T
typhoonzero 已提交
1166 1167
        return pserver_program

W
Wu Yi 已提交
1168 1169 1170 1171 1172 1173
    def get_pserver_programs(self, endpoint):
        """
        Get pserver side main program and startup program for distributed training.

        Args:
            endpoint (str): current pserver endpoint.
M
minqiyang 已提交
1174

W
Wu Yi 已提交
1175 1176
        Returns:
            tuple: (main_program, startup_program), of type "Program"
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              #this is an example, find available endpoints in your case
              pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
              current_endpoint = "192.168.0.1:6174"
              trainer_id = 0
              trainers = 4
              t = fluid.DistributeTranspiler()
              t.transpile(
                   trainer_id, pservers=pserver_endpoints, trainers=trainers)
              pserver_program, pserver_startup_program = t.get_pserver_programs(current_endpoint)
W
Wu Yi 已提交
1191 1192
        """
        pserver_prog = self.get_pserver_program(endpoint)
W
Wu Yi 已提交
1193 1194
        pserver_startup = self.get_startup_program(
            endpoint, pserver_program=pserver_prog)
W
Wu Yi 已提交
1195 1196
        return pserver_prog, pserver_startup

1197 1198
    def get_startup_program(self,
                            endpoint,
W
Wu Yi 已提交
1199
                            pserver_program=None,
1200
                            startup_program=None):
T
typhoonzero 已提交
1201
        """
W
Wu Yi 已提交
1202 1203
        **Deprecated**

T
typhoonzero 已提交
1204 1205 1206
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
Y
yi.wu 已提交
1207 1208 1209

        Args:
            endpoint (str): current pserver endpoint.
W
Wu Yi 已提交
1210 1211
            pserver_program (Program): deprecated, call get_pserver_program first.
            startup_program (Program): deprecated, should pass startup_program
M
minqiyang 已提交
1212
                when initalizing
1213

Y
yi.wu 已提交
1214 1215
        Returns:
            Program: parameter server side startup program.
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

        Examples:
	    .. code-block:: python
            
                pserver_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                trainer_endpoints = "192.168.0.1:6174,192.168.0.2:6174"
                current_endpoint = "192.168.0.1:6174"
                trainer_id = 0
                trainers = 4

                t = fluid.DistributeTranspiler()
                t.transpile(trainer_id, pservers=pserver_endpoints, trainers=trainers)
                pserver_program = t.get_pserver_program(current_endpoint)
                pserver_startup_program = t.get_startup_program(current_endpoint,
                                                                pserver_program)
T
typhoonzero 已提交
1231 1232
        """
        s_prog = Program()
W
Wu Yi 已提交
1233
        orig_s_prog = self.startup_program
X
Xin Pan 已提交
1234
        s_prog.random_seed = orig_s_prog.random_seed
T
typhoonzero 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
1246
        created_var_map = collections.OrderedDict()
M
minqiyang 已提交
1247
        for _, var in six.iteritems(pserver_vars):
W
Wu Yi 已提交
1248
            tmpvar = s_prog.global_block()._clone_variable(var)
T
typhoonzero 已提交
1249 1250 1251 1252
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
1253
            new_outputs = collections.OrderedDict()
T
typhoonzero 已提交
1254 1255
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
G
gongweibao 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
            # TODO(gongwb): remove this line.
            if op.type not in ["recv", "fetch_barrier", "concat"]:
                for key in op.output_names:
                    newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                    if newname:
                        op_on_pserver = True
                        new_outputs[key] = created_var_map[newname]
                    elif op.output(key)[0] in pserver_vars:
                        op_on_pserver = True
                        new_outputs[key] = pserver_vars[op.output(key)[0]]
T
typhoonzero 已提交
1266 1267

            if op_on_pserver:
1268 1269 1270
                # most startup program ops have no inputs
                new_inputs = self._get_input_map_from_op(pserver_vars, op)

T
typhoonzero 已提交
1271
                if op.type in [
1272 1273
                        "gaussian_random", "fill_constant", "uniform_random",
                        "truncated_gaussian_random"
T
typhoonzero 已提交
1274
                ]:
W
Wu Yi 已提交
1275
                    op._set_attr("shape", list(new_outputs["Out"].shape))
T
typhoonzero 已提交
1276 1277 1278 1279
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
G
gongweibao 已提交
1280
                    attrs=op.all_attrs())
W
Wu Yi 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289
        if self.config.enable_dc_asgd:
            for p, p_bak in self.param_bak_list:
                startup_param_var = s_prog.global_block().vars[p.name]
                startup_tmpvar = s_prog.global_block().vars[p_bak.name]
                # copy init random value to param_bak
                s_prog.global_block().append_op(
                    type="assign",
                    inputs={"X": startup_param_var},
                    outputs={"Out": startup_tmpvar})
1290

T
typhoonzero 已提交
1291 1292
        return s_prog

1293 1294
    # ====================== private transpiler functions =====================
    def _get_slice_var_info(self, slice_var):
T
tangwei12 已提交
1295
        block_suffix = "block"
1296 1297 1298
        block_idx = 0
        offset = 0
        is_slice = False
1299

1300
        orig_var_name, block_name, _ = self._get_varname_parts(slice_var.name)
1301

1302 1303
        if not block_name:
            return is_slice, block_idx, offset
1304

1305 1306 1307 1308
        block_idx = int(block_name.split(block_suffix)[1])
        skip_dim0 = 0
        slice_vars = self.param_var_mapping[orig_var_name]

T
tangwei12 已提交
1309 1310 1311 1312 1313
        orig_dim1_flatten = 1

        if len(slice_vars[0].shape) >= 2:
            orig_dim1_flatten = reduce(lambda x, y: x * y,
                                       slice_vars[0].shape[1:])
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

        for slice_var in slice_vars[:block_idx]:
            skip_dim0 += slice_var.shape[0]

        offset = skip_dim0 * orig_dim1_flatten
        is_slice = True
        return is_slice, block_idx, offset

    def _get_distributed_optimizer_vars(self):
        def _get_distributed_optimizer_var(endpoint):
            opt_op_on_pserver = []
            for _, op in enumerate(self.optimize_ops):
                if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                        endpoint, op):
                    opt_op_on_pserver.append(op)

            for opt_op in opt_op_on_pserver:
                dist_var = None
                for key in opt_op.input_names:
                    if key == "Param":
                        param_name = opt_op.input(key)[0]
                        dist_var = self.vars_overview.get_distributed_var_by_origin_and_ep(
                            param_name, endpoint)
                        break
                for key in opt_op.input_names:
                    if key in ["Param", "Grad", "LearningRate"]:
                        continue
                    origin_var = self.origin_program.global_block().vars[
                        opt_op.input(key)[0]]
                    # update accumulator variable shape
                    new_shape = self._get_optimizer_input_shape(
                        opt_op.type, key, origin_var.shape,
                        dist_var.slice.shape)

                    if new_shape == dist_var.slice.shape:
                        splited_var = VarStruct(
                            name=origin_var.name,
                            shape=new_shape,
                            dtype=origin_var.dtype,
                            type=origin_var.type,
                            lod_level=origin_var.lod_level,
                            persistable=origin_var.persistable)

                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=splited_var,
                            is_slice=dist_var.is_slice,
                            block_id=dist_var.block_id,
                            offset=dist_var.offset,
                            vtype="Optimizer",
                            endpoint=endpoint)
                    else:
                        self.vars_overview.add_distributed_var(
                            origin_var=origin_var,
                            slice_var=origin_var,
                            is_slice=False,
                            block_id=0,
                            offset=0,
                            vtype="Optimizer",
                            endpoint=endpoint)

        for ep in self.pserver_endpoints:
            _get_distributed_optimizer_var(ep)
1377

Y
yi.wu 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
                if grad.name != grad_var_name(self.table_name)
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            if self.sync_mode:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
                        (table_grad_var.name, self.trainer_id, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
                self.trainer_side_table_grad_list = [
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
        return param_list, grad_list

G
gongweibao 已提交
1417
    def _init_splited_vars(self):
Y
yi.wu 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        param_grad_set = set()
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)

        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)

G
gongweibao 已提交
1441
        if self.config.slice_var_up:
Y
yi.wu 已提交
1442 1443
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
G
gongweibao 已提交
1444 1445 1446
            grad_blocks = slice_variable(grad_list,
                                         len(self.pserver_endpoints),
                                         self.config.min_block_size)
Y
yi.wu 已提交
1447
            param_blocks = slice_variable(param_list,
G
gongweibao 已提交
1448 1449
                                          len(self.pserver_endpoints),
                                          self.config.min_block_size)
Y
yi.wu 已提交
1450 1451 1452
        else:
            # when we do NOT slice var up into blocks, we will always slice params
            # grads into one block.
G
gongweibao 已提交
1453 1454 1455 1456
            grad_blocks = slice_variable(grad_list, 1,
                                         self.config.min_block_size)
            param_blocks = slice_variable(param_list, 1,
                                          self.config.min_block_size)
Y
yi.wu 已提交
1457 1458
        assert (len(grad_blocks) == len(param_blocks))

1459
        # origin_param_name -> [splited_param_vars]
Y
yi.wu 已提交
1460 1461
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

        for orig_name, splited_vars in self.param_var_mapping.items():
            orig_var = self.origin_program.global_block().var(orig_name)

            for splited_var in splited_vars:
                is_slice, block_id, offset = self._get_slice_var_info(
                    splited_var)

                self.vars_overview.add_distributed_var(
                    origin_var=orig_var,
                    slice_var=splited_var,
                    block_id=block_id,
                    offset=offset,
                    is_slice=is_slice,
                    vtype="Param")

1478
        # origin_grad_name -> [splited_grad_vars]
Y
yi.wu 已提交
1479 1480 1481 1482
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
1483
        # dict(grad_splited_var -> param_splited_var)
1484
        self.grad_param_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1485 1486 1487
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
T
tangwei12 已提交
1488
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] = \
1489
                self.param_var_mapping[p_name][int(p_bid)]
Y
yi.wu 已提交
1490 1491

        # create mapping of endpoint -> split var to create pserver side program
1492
        self.param_grad_ep_mapping = collections.OrderedDict()
Y
yi.wu 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

1502
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
1503 1504
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
1505
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
S
seiriosPlus 已提交
1506
        self.all_in_ids_vars = []
Q
qiaolongfei 已提交
1507 1508
        self.all_prefetch_input_vars = []
        self.all_prefetch_output_vars = []
S
seiriosPlus 已提交
1509 1510
        self.all_out_emb_vars = []
        lookup_table_op_index = -1
1511 1512 1513 1514 1515 1516

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
Q
Qiao Longfei 已提交
1517 1518
                if op.type == LOOKUP_TABLE_TYPE and self.table_name == op.input(
                        "W")[0]:
1519
                    if not op.attr('is_distributed'):
Q
Qiao Longfei 已提交
1520 1521 1522
                        raise RuntimeError(
                            "lookup_table_op that lookup an distributed embedding table"
                            "should set is_distributed to true")
1523 1524
                    continue_search_lookup_table_op = True

S
seiriosPlus 已提交
1525 1526
                    lookup_table_op_index = lookup_table_op_index if lookup_table_op_index != -1 else list(
                        all_ops).index(op)
1527 1528 1529
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
1530
                    ids_var = program.global_block().vars[ids_name[0]]
S
seiriosPlus 已提交
1531
                    self.all_in_ids_vars.append(ids_var)
Q
qiaolongfei 已提交
1532 1533

                    out_var = program.global_block().vars[out_name[0]]
S
seiriosPlus 已提交
1534
                    self.all_out_emb_vars.append(out_var)
1535 1536

                    # delete lookup_table_op
1537
                    delete_ops(program.global_block(), [op])
1538 1539 1540
                    # break for loop
                    break

S
seiriosPlus 已提交
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
        for index in range(len(self.pserver_endpoints)):
            in_var = program.global_block().create_var(
                name=str("prefetch_compress_in_tmp_" + str(index)),
                type=self.all_in_ids_vars[0].type,
                shape=self.all_in_ids_vars[0].shape,
                dtype=self.all_in_ids_vars[0].dtype)
            self.all_prefetch_input_vars.append(in_var)

            out_var = program.global_block().create_var(
                name=str("prefetch_compress_out_tmp_" + str(index)),
                type=self.all_out_emb_vars[0].type,
                shape=self.all_out_emb_vars[0].shape,
                dtype=self.all_out_emb_vars[0].dtype)
            self.all_prefetch_output_vars.append(out_var)

        # insert split_ids_op
        program.global_block()._insert_op(
            index=lookup_table_op_index,
            type="split_ids",
            inputs={'Ids': self.all_in_ids_vars},
            outputs={"Out": self.all_prefetch_input_vars})

        # insert prefetch_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 1,
            type="prefetch",
            inputs={'X': self.all_prefetch_input_vars},
            outputs={"Out": self.all_prefetch_output_vars},
            attrs={
                "epmap": pserver_endpoints,
                # FIXME(qiao) temporarily disable this config because prefetch
                # is not act as other rpc op, it's more like a forward op
                # RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
            })

        # insert concat_op
        program.global_block()._insert_op(
            index=lookup_table_op_index + 2,
            type="merge_ids",
            inputs={
                'Ids': self.all_in_ids_vars,
                'Rows': self.all_prefetch_input_vars,
                'X': self.all_prefetch_output_vars
            },
            outputs={"Out": self.all_out_emb_vars})

Y
Yancey1989 已提交
1587
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
1588
        # 2. add split_ids_op and send_op to send gradient to pservers
1589

1590 1591
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
1592
        table_grad_name = grad_var_name(self.table_name)
1593 1594 1595 1596
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
W
Wu Yi 已提交
1597
                program.global_block()._insert_op(
1598 1599 1600 1601 1602
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
T
tangwei12 已提交
1603 1604
                    outputs={"Out": self.trainer_side_table_grad_list},
                    attrs={RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE})
W
Wu Yi 已提交
1605
                program.global_block()._insert_op(
1606
                    index=op_index + 2,
1607
                    type="send",
1608
                    inputs={'X': self.trainer_side_table_grad_list},
1609 1610 1611 1612 1613
                    outputs={
                        'Out':
                        [self.grad_name_to_send_dummy_out[self.table_name]]
                        if self.sync_mode else []
                    },
Y
Yancey1989 已提交
1614 1615
                    attrs={
                        "epmap": pserver_endpoints,
W
Wu Yi 已提交
1616
                        "trainer_id": self.trainer_id,
W
Wu Yi 已提交
1617 1618 1619 1620 1621
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
                        OP_ROLE_VAR_ATTR_NAME: [
                            self.grad_name_to_param_name[table_grad_name],
                            table_grad_name
                        ]
Y
Yancey1989 已提交
1622
                    })
1623 1624 1625 1626 1627 1628
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
1629
        prefetch_var_name_to_block_id = []
S
seiriosPlus 已提交
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        prefetch_block = pserver_program._create_block(optimize_block.idx)
        trainer_ids = self.all_prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.all_prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
            type="lookup_sparse_table",
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
            prefetch_block.idx))
Q
qiaolongfei 已提交
1655
        return prefetch_var_name_to_block_id
1656 1657

    def _create_table_optimize_block(self, pserver_index, pserver_program,
1658
                                     pre_block_idx, grad_to_block_id):
1659
        # STEP: create table optimize block
1660
        table_opt_block = pserver_program._create_block(pre_block_idx)
1661
        # create table param and grad var in pserver program
1662 1663
        # create table optimize block in pserver program
        table_opt_op = [
Q
Qiao Longfei 已提交
1664 1665 1666
            op for op in self.optimize_ops
            if 'Param' in op.input_names and op.input("Param")[0] ==
            self.table_name
1667 1668
        ][0]

Y
Yancey1989 已提交
1669 1670
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
T
tangwei12 已提交
1671

T
tangwei12 已提交
1672
        zero_dim = int(
T
bug fix  
tangwei12 已提交
1673 1674
            math.ceil(origin_param_var.shape[0] / float(
                len(self.pserver_endpoints))))
T
tangwei12 已提交
1675 1676 1677
        table_shape = list(origin_param_var.shape)
        table_shape[0] = zero_dim

Y
Yancey1989 已提交
1678 1679
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
T
tangwei12 已提交
1680
            shape=table_shape,
Y
Yancey1989 已提交
1681 1682 1683
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
1684

1685 1686
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
W
Wu Yi 已提交
1687
        grad_var = pserver_program.global_block()._clone_variable(
T
typhoonzero 已提交
1688
            self.origin_program.global_block().vars[grad_var_name(
1689
                self.table_name)])
1690

1691 1692 1693
        lr_var = pserver_program.global_block()._clone_variable(
            self.origin_program.global_block().vars[table_opt_op.input(
                "LearningRate")[0]])
1694

1695 1696 1697
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
1698
            pserver_side_table_grad_list = [
1699 1700 1701 1702 1703 1704 1705 1706 1707
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

1708
            # append sum op for pserver_side_table_grad_list
1709 1710
            table_opt_block.append_op(
                type="sum",
1711
                inputs={"X": pserver_side_table_grad_list},
1712 1713
                outputs={"Out": [grad_var]},
                attrs={"use_mkldnn": False})
1714 1715
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
1716
            origin_grad_name = grad_var.name
1717 1718
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
1719 1720
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
1721
                                 " grad_var:" + grad_var.name)
W
Wu Yi 已提交
1722
            grad_var = pserver_program.global_block()._rename_var(
1723
                origin_grad_name, splited_grad_name)
1724 1725 1726 1727 1728 1729 1730

        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
1731
        # only support sgd now
1732 1733 1734
        logging.warn(
            "distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
            + table_opt_op.type)
1735
        table_opt_block.append_op(type="sgd", inputs=inputs, outputs=outputs)
1736

1737 1738 1739
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

1740 1741
        return table_opt_block

T
tangwei12 已提交
1742 1743 1744 1745 1746
    def _create_checkpoint_save_block(self, pserver_program, pre_block_idx):
        """
        create a new block to handle save checkpoint.
        """

T
tangwei12 已提交
1747
        pserver_program.global_block().create_var(
T
tangwei12 已提交
1748
            name="kLookupTablePath",
T
tangwei12 已提交
1749 1750
            persistable=True,
            type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
1751

W
Wu Yi 已提交
1752
        checkpoint_save_block = pserver_program._create_block(pre_block_idx)
T
tangwei12 已提交
1753
        # this 'file_path' do not be used in save lookup table variable
T
tangwei12 已提交
1754 1755 1756 1757
        checkpoint_save_block.append_op(
            type='save',
            inputs={'X': [self.table_name]},
            outputs={},
T
tangwei12 已提交
1758
            attrs={'file_path': "none"})
T
tangwei12 已提交
1759 1760 1761

        return checkpoint_save_block.idx

T
typhoonzero 已提交
1762 1763 1764 1765 1766
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
1767
        Create vars for each split.
T
typhoonzero 已提交
1768 1769
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
1770 1771 1772 1773
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
1774
        Returns:
1775
            var_mapping (collections.OrderedDict(varname->[new_varname_variable])):A dict mapping
1776
                from original var name to each var split.
T
typhoonzero 已提交
1777
        """
1778 1779

        # varname->[(block_id, current_block_size)]
1780
        block_map = collections.OrderedDict()
1781

1782
        var_mapping = collections.OrderedDict()
T
typhoonzero 已提交
1783 1784
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
1785
            if varname not in block_map:
T
typhoonzero 已提交
1786
                block_map[varname] = []
1787
            block_map[varname].append((int(offset), int(size)))
Y
yi.wu 已提交
1788

M
minqiyang 已提交
1789
        for varname, splited in six.iteritems(block_map):
T
typhoonzero 已提交
1790
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
1791
            if len(splited) == 1:
1792
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1793
                    new_var_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1794
                                   (orig_var.name, self.trainer_id)
W
Wu Yi 已提交
1795
                    program.global_block()._rename_var(varname, new_var_name)
T
typhoonzero 已提交
1796 1797 1798 1799 1800
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
1801
                continue
T
typhoonzero 已提交
1802
            var_mapping[varname] = []
T
typhoonzero 已提交
1803 1804 1805 1806
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
1807

T
typhoonzero 已提交
1808
            for i, block in enumerate(splited):
T
typhoonzero 已提交
1809
                size = block[1]
M
minqiyang 已提交
1810
                rows = size // orig_dim1_flatten
T
typhoonzero 已提交
1811 1812 1813
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
1814
                new_var_name = ""
1815
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
1816
                    new_var_name = "%s.block%d.trainer_%d" % \
T
tangwei12 已提交
1817
                                   (varname, i, self.trainer_id)
T
typhoonzero 已提交
1818 1819
                else:
                    new_var_name = "%s.block%d" % \
T
tangwei12 已提交
1820
                                   (varname, i)
T
typhoonzero 已提交
1821
                var = program.global_block().create_var(
T
typhoonzero 已提交
1822 1823
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
1824
                    dtype=orig_var.dtype,
1825
                    type=orig_var.type,
T
typhoonzero 已提交
1826
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
1827
                var_mapping[varname].append(var)
W
Wu Yi 已提交
1828
            program.global_block()._sync_with_cpp()
T
typhoonzero 已提交
1829
        return var_mapping
T
done  
typhoonzero 已提交
1830

1831
    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
1832 1833 1834 1835 1836 1837
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
1838
            persistable=persistable)
T
done  
typhoonzero 已提交
1839

Q
Qiao Longfei 已提交
1840 1841 1842 1843 1844 1845 1846
    @staticmethod
    def _get_splited_var_sections(splited_vars):
        height_sections = []
        for v in splited_vars:
            height_sections.append(v.shape[0])
        return height_sections

Y
Yancey1989 已提交
1847
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Q
Qiao Longfei 已提交
1848 1849
        height_sections = self._get_splited_var_sections(splited_vars)

Y
update  
Yancey1989 已提交
1850
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
Q
Qiao Longfei 已提交
1851
            sparse_param_name = self.grad_name_to_param_name[orig_var.name]
Q
Qiao Longfei 已提交
1852
            if self._is_input_of_remote_sparse_update_op(sparse_param_name):
Q
Qiao Longfei 已提交
1853 1854
                self.sparse_param_to_height_sections[
                    sparse_param_name] = height_sections
W
Wu Yi 已提交
1855
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1856 1857 1858 1859
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1860 1861 1862 1863
                attrs={
                    "height_sections": height_sections,
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1864
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
W
Wu Yi 已提交
1865
            program.global_block()._insert_op(
Y
update  
Yancey1989 已提交
1866 1867 1868 1869
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
1870
                attrs={
Q
Qiao Longfei 已提交
1871
                    "sections": height_sections,
1872 1873
                    RPC_OP_ROLE_ATTR_NAME: DIST_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
1874 1875 1876
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
1877

T
typhoonzero 已提交
1878 1879 1880 1881
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
1882
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
1895
        elif op_type in ["momentum", "lars_momentum"]:
T
typhoonzero 已提交
1896 1897
            if varkey == "Velocity":
                return param_shape
W
Wu Yi 已提交
1898 1899
        elif op_type == "rmsprop":
            if varkey in ["Moment", "MeanSquare"]:
T
typhoonzero 已提交
1900
                return param_shape
1901 1902 1903
        elif op_type == "decayed_adagrad":
            if varkey == "Moment":
                return param_shape
1904 1905 1906
        elif op_type == "ftrl":
            if varkey in ["SquaredAccumulator", "LinearAccumulator"]:
                return param_shape
T
typhoonzero 已提交
1907 1908
        elif op_type == "sgd":
            pass
1909 1910 1911 1912
        else:
            raise ValueError(
                "Not supported optimizer for distributed training: %s" %
                op_type)
T
typhoonzero 已提交
1913 1914
        return orig_shape

1915 1916
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
1917
        orig_var_name = ""
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
1928
        else:
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
1951
            return None
1952 1953 1954 1955
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1956
        else:
1957
            merged_var_name = orig_varname
1958 1959

        merged_var = pserver_block.vars[merged_var_name]
1960 1961 1962
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
1963
            for i in range(self.trainer_num):
1964
                per_trainer_name = "%s.trainer_%d" % \
T
tangwei12 已提交
1965
                                   (merged_var_name, i)
1966 1967 1968 1969
                vars2merge.append(pserver_block.vars[per_trainer_name])
            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
1970 1971
                outputs={"Out": merged_var},
                attrs={"use_mkldnn": False})
Q
qiaolongfei 已提交
1972 1973 1974 1975 1976
            optimize_block.append_op(
                type="scale",
                inputs={"X": merged_var},
                outputs={"Out": merged_var},
                attrs={"scale": 1.0 / float(self.trainer_num)})
1977
        return merged_var
T
typhoonzero 已提交
1978

W
Wu Yi 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    def _append_dc_asgd_ops(self, block, param_var, grad_var):
        # NOTE: can not use grammar candy here, should put ops in specific block
        local_param_bak = block.create_var(
            name="%s.local_bak" % param_var.name,
            shape=param_var.shape,
            type=param_var.type,
            dtype=param_var.dtype,
            persistable=False)
        # trainer_id_var is block local
        trainer_id_var = block.create_var(
            name="@TRAINER_ID@",
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=core.VarDesc.VarType.INT64,
            shape=[1],
            persistable=False)

        # ref_inputs = [x[1] for x in self.param_bak_list]
        ref_inputs = []
        for p, p_bak in self.param_bak_list:
            if p.name == param_var.name:
                ref_inputs.append(p_bak)
        block.append_op(
            type="ref_by_trainer_id",
            inputs={"X": ref_inputs,
                    "TrainerId": trainer_id_var},
            outputs={"Out": local_param_bak})

        def __create_temp_var__():
            return block.create_var(
                name=unique_name.generate("tmp_dc_output"),
                shape=param_var.shape,
                type=param_var.type,
                dtype=param_var.dtype,
                persistable=False)

        o1 = __create_temp_var__()
        block.append_op(
            type="elementwise_sub",
            inputs={"X": param_var,
                    "Y": local_param_bak},
            outputs={"Out": o1})
        o2 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o1,
                    "Y": grad_var},
            outputs={"Out": o2})
        o3 = __create_temp_var__()
        block.append_op(
            type="elementwise_mul",
            inputs={"X": o2,
                    "Y": grad_var},
            outputs={"Out": o3})
        # TODO(typhoonzero): append scale
        o4 = __create_temp_var__()
        block.append_op(
            type="elementwise_add",
            inputs={"X": grad_var,
                    "Y": o3},
            outputs={"Out": o4})
        return o4

2041
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
2042 2043
                            grad_to_block_id, origin_program, merged_var,
                            sparse_grad_to_param):
2044
        program = optimize_block.program
T
typhoonzero 已提交
2045
        pserver_block = program.global_block()
2046
        new_inputs = collections.OrderedDict()
W
Wu Yi 已提交
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

        def _get_param_block(opt_op):
            # param is already created on global program
            param_block = None
            for p in self.param_grad_ep_mapping[endpoint]["params"]:
                if same_or_split_var(p.name, opt_op.input("Param")[0]):
                    param_block = p
                    break
            return param_block

W
Wu Yi 已提交
2057 2058 2059 2060
        if self.config.enable_dc_asgd:
            param_var = _get_param_block(opt_op)
            dc = self._append_dc_asgd_ops(optimize_block, param_var, merged_var)

T
typhoonzero 已提交
2061
        for key in opt_op.input_names:
T
typhoonzero 已提交
2062
            if key == "Grad":
W
Wu Yi 已提交
2063 2064 2065
                if self.config.enable_dc_asgd:
                    new_inputs[key] = dc
                else:
Q
Qiao Longfei 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
                    # Note!! This is for l2decay on sparse gradient, because it will create a new tensor for
                    # decayed gradient but not inplace modify the origin one
                    origin_grad_name = opt_op.input(key)[0]
                    if core.kNewGradSuffix(
                    ) in origin_grad_name and pserver_block.has_var(
                            origin_grad_name):
                        new_grad = pserver_block.var(origin_grad_name)
                        new_inputs[key] = new_grad
                    else:
                        new_inputs[key] = merged_var
T
typhoonzero 已提交
2076
            elif key == "Param":
W
Wu Yi 已提交
2077
                param_block = _get_param_block(opt_op)
T
typhoonzero 已提交
2078 2079
                if not param_block:
                    return
T
typhoonzero 已提交
2080
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2081
                    name=param_block.name,
T
typhoonzero 已提交
2082
                    persistable=True,
T
typhoonzero 已提交
2083 2084 2085
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
2086
            elif key == "LearningRate":
2087
                # learning rate variable has already be created by non-optimize op,
2088
                # don't create it once again.
2089
                lr_varname = opt_op.input(key)[0]
2090
                if lr_varname in pserver_block.vars:
2091 2092 2093 2094 2095 2096 2097 2098 2099
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
2100

T
typhoonzero 已提交
2101
        for key in opt_op.input_names:
2102
            new_shape = None
W
Wu Yi 已提交
2103
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
2104
                continue
2105
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
2106
            param_var = new_inputs["Param"]
T
typhoonzero 已提交
2107
            # update accumulator variable shape
2108 2109
            new_shape = self._get_optimizer_input_shape(
                opt_op.type, key, var.shape, param_var.shape)
T
typhoonzero 已提交
2110
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
2111 2112 2113 2114 2115
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
2116

2117
        # change output's ParamOut variable
2118 2119
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
2120
        outputs["ParamOut"] = new_inputs["Param"]
2121
        optimize_block.append_op(
T
typhoonzero 已提交
2122 2123
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
2124
            outputs=outputs,
G
gongweibao 已提交
2125
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2126

2127 2128 2129 2130 2131 2132
        # record sparse grad to param name
        if new_inputs["Grad"].type == core.VarDesc.VarType.SELECTED_ROWS:
            sparse_grad_to_param.append(
                str(new_inputs["Grad"].name) + ":" + str(new_inputs["Param"]
                                                         .name))

2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    def _get_pserver_grad_param_var(self, var, var_dict):
        """
        Return pserver side grad/param variable, return None
        if the variable is not grad/param, e.g.

            a@GRAD -> a@GRAD.block0
            a@GRAD -> a@GRAD (a is not splited)
            fc_0.w_0 -> fc_0.w_0.block_0
            fc_0.w_0 -> fc_0.w_0 (weight is not splited)
            _generated_var_123 -> None
        """
2144
        grad_block = None
M
minqiyang 已提交
2145
        for _, g in six.iteritems(var_dict):
2146
            if self._orig_varname(g.name) == self._orig_varname(var.name):
2147
                # skip per trainer vars
2148
                if g.name.find(".trainer_") == -1:
2149
                    # only param or grads have splited blocks
2150 2151
                    if self._orig_varname(g.name) in self.grad_name_to_param_name or \
                            self._orig_varname(g.name) in self.param_name_to_grad_name:
2152 2153
                        grad_block = g
                        break
2154 2155
        return grad_block

Q
Qiyang Min 已提交
2156 2157 2158
    def _clone_lr_op(self, program, block, op):
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2159
        for key, varlist in six.iteritems(inputs):
Q
Qiyang Min 已提交
2160 2161 2162 2163
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2164
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2165 2166 2167

        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, op)
M
minqiyang 已提交
2168
        for key, varlist in six.iteritems(outputs):
Q
Qiyang Min 已提交
2169 2170 2171 2172
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
                if var not in program.global_block().vars:
W
Wu Yi 已提交
2173
                    block._clone_variable(var)
Q
Qiyang Min 已提交
2174

Y
Yancey1989 已提交
2175
        return block.append_op(
G
gongweibao 已提交
2176
            type=op.type, inputs=inputs, outputs=outputs, attrs=op.all_attrs())
Q
Qiyang Min 已提交
2177 2178

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
2179
        program = optimize_block.program
2180
        # Append the ops for parameters that do not need to be optimized/updated
2181 2182
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2183
        for key, varlist in six.iteritems(inputs):
2184 2185
            if not isinstance(varlist, list):
                varlist = [varlist]
2186 2187 2188
            for i in range(len(varlist)):
                var = varlist[i]
                # for ops like clipping and weight decay, get the splited var (xxx.block0)
2189
                # for inputs/outputs
2190
                grad_block = self._get_pserver_grad_param_var(
2191 2192
                    var, program.global_block().vars)
                if grad_block:
2193
                    varlist[i] = grad_block
2194
                elif var.name not in program.global_block().vars:
2195 2196 2197 2198 2199
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            inputs[key] = varlist
T
typhoonzero 已提交
2200

2201 2202
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
M
minqiyang 已提交
2203
        for key, varlist in six.iteritems(outputs):
2204 2205
            if not isinstance(varlist, list):
                varlist = [varlist]
2206 2207 2208
            for i in range(len(varlist)):
                var = varlist[i]
                grad_block = self._get_pserver_grad_param_var(
2209 2210
                    var, program.global_block().vars)
                if grad_block:
2211
                    varlist[i] = grad_block
2212
                elif var.name not in program.global_block().vars:
2213 2214 2215 2216 2217
                    tmpvar = program.global_block()._clone_variable(var)
                    varlist[i] = tmpvar
                else:
                    varlist[i] = program.global_block().vars[var.name]
            outputs[key] = varlist
2218

Y
Yancey1989 已提交
2219
        return optimize_block.append_op(
T
typhoonzero 已提交
2220
            type=opt_op.type,
T
typhoonzero 已提交
2221 2222
            inputs=inputs,
            outputs=outputs,
G
gongweibao 已提交
2223
            attrs=opt_op.all_attrs())
T
typhoonzero 已提交
2224

2225 2226 2227 2228
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
Q
qiaolongfei 已提交
2229
        if set(op1.desc.output_arg_names()) & set(op2.desc.input_arg_names()) or \
T
tangwei12 已提交
2230
                set(op1.desc.input_arg_names()) & set(op2.desc.output_arg_names()):
2231 2232 2233 2234 2235 2236
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
2237 2238
        for i in range(len(optimize_ops)):
            for j in range(i, len(optimize_ops)):
2239 2240 2241 2242 2243 2244
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

2245
    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
2246
        if "Param" in op.input_names and \
T
tangwei12 已提交
2247
                "LearningRate" in op.input_names:
2248 2249 2250 2251 2252 2253 2254
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
2255
        if op.input("Param")[0] in param_names:
2256 2257 2258
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
2259
                param = op.input("Param")[0]
T
typhoonzero 已提交
2260
                if same_or_split_var(n, param) and n != param:
2261 2262 2263
                    return True
            return False

T
typhoonzero 已提交
2264
    def _get_input_map_from_op(self, varmap, op):
2265
        """Returns a dict from op input name to the vars in varmap."""
2266
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
2278
        """Returns a dict from op output name to the vars in varmap."""
2279
        iomap = collections.OrderedDict()
T
typhoonzero 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
2289 2290

    def _get_lr_ops(self):
2291 2292 2293
        lr_ops = []
        block = self.origin_program.global_block()
        for op in block.ops:
X
fix  
Xin Pan 已提交
2294 2295 2296 2297
            role_id = int(op.attr(RPC_OP_ROLE_ATTR_NAME))
            if role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) or \
                role_id == int(LR_SCHED_OP_ROLE_ATTR_VALUE) | \
                    int(OPT_OP_ROLE_ATTR_VALUE):
2298 2299 2300 2301 2302
                lr_ops.append(op)
                log("append lr op: ", op.type)
        return lr_ops

    def _get_lr_ops_deprecated(self):
2303 2304 2305 2306
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
2307
            if self._is_optimizer_op(op):
2308 2309 2310 2311
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
2312
        block = self.origin_program.global_block()
2313 2314 2315 2316 2317
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
2318

2319 2320 2321 2322 2323
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
T
tangwei12 已提交
2324
                        not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
2325 2326 2327 2328 2329 2330
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
2331 2332
                    # we only need to append op for once
                    break
2333
        return lr_ops
Y
Yancey1989 已提交
2334

W
Wu Yi 已提交
2335 2336 2337 2338 2339
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
G
gongweibao 已提交
2340 2341
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
W
Wu Yi 已提交
2342 2343 2344
            return True
        return False

Y
Yancey1989 已提交
2345
    def _get_optimize_pass(self):
2346
        """
2347
        Get optimizer operators, parameters and gradients from origin_program
2348 2349
        Returns:
            opt_ops (list): optimize operators.
Q
Qiao Longfei 已提交
2350
            params_grads (dict): parameter->gradient.
2351
        """
Y
Yancey1989 已提交
2352 2353 2354
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
2355 2356
        # tmp set to dedup
        optimize_params = set()
2357
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
2358
        for op in block.ops:
W
Wu Yi 已提交
2359
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
2360
                opt_ops.append(op)
2361 2362 2363 2364 2365 2366
                if op.attr(OP_ROLE_VAR_ATTR_NAME):
                    param_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[0]
                    grad_name = op.attr(OP_ROLE_VAR_ATTR_NAME)[1]
                    if not param_name in optimize_params:
                        optimize_params.add(param_name)
                        log("adding param_grad pair: ", param_name, grad_name)
2367 2368
                        params_grads.append([
                            origin_var_dict[param_name],
2369
                            origin_var_dict[grad_name]
2370
                        ])
Y
Yancey1989 已提交
2371 2372 2373
            else:
                pass
        return opt_ops, params_grads