layers.py 254.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
15
import collections
Y
Yu Yang 已提交
16
import inspect
Z
zhangjinchao01 已提交
17

18
import paddle.trainer.config_parser as cp
Z
zhangjinchao01 已提交
19 20
from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
Z
zhangjinchao01 已提交
22
from .evaluators import *
X
xzl 已提交
23
from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \
24
    CudnnAvgPooling, CudnnMaxPooling
Z
zhangjinchao01 已提交
25 26
from .attrs import *
from .default_decorators import *
27

Z
zhangjinchao01 已提交
28 29 30 31 32 33
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

Q
qijun 已提交
34
__all__ = [
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
C
caoying03 已提交
54
    'l2_distance_layer',
55 56
    'hsigmoid',
    'conv_projection',
57
    'square_error_cost',
58
    'regression_cost',
Q
qijun 已提交
59
    'classification_cost',
60
    'LayerOutput',
Q
qijun 已提交
61 62 63 64 65 66
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
67
    'seq_concat_layer',
Q
qijun 已提交
68 69 70 71 72 73
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
74
    'scaling_projection',
Q
qijun 已提交
75 76 77 78
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
79
    'rotate_layer',
Q
qijun 已提交
80
    'sum_to_one_norm_layer',
G
guosheng 已提交
81
    'row_l2_norm_layer',
Q
qijun 已提交
82 83 84 85 86 87 88 89
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
Y
Yu Yang 已提交
90
    'gru_step_naive_layer',
Q
qijun 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
103
    'warp_ctc_layer',
Q
qijun 已提交
104 105 106 107 108
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
C
caoying03 已提交
109
    'BeamInput',
C
caoying03 已提交
110
    'cross_entropy_over_beam',
Q
qijun 已提交
111 112 113 114
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
L
Luo Tao 已提交
115
    'huber_regression_cost',
116
    'huber_classification_cost',
Q
qijun 已提交
117 118
    'block_expand_layer',
    'maxout_layer',
R
ranqiu 已提交
119
    'dot_prod_layer',
Q
qijun 已提交
120
    'out_prod_layer',
X
xuwei06 已提交
121
    'printer_layer',
Q
qijun 已提交
122
    'print_layer',
Y
yuan 已提交
123
    'priorbox_layer',
124
    'cross_channel_norm_layer',
125 126
    'multibox_loss_layer',
    'detection_output_layer',
G
guosheng 已提交
127
    'roi_pool_layer',
Q
qijun 已提交
128
    'spp_layer',
D
dangqingqing 已提交
129
    'pad_layer',
L
Luo Tao 已提交
130
    'eos_layer',
131
    'smooth_l1_cost',
132
    'layer_support',
W
wwhu 已提交
133
    'multiplex_layer',
D
dangqingqing 已提交
134
    'row_conv_layer',
135
    'dropout_layer',
136
    'prelu_layer',
137
    'switch_order_layer',
138
    'gated_unit_layer',
139
    'crop_layer',
140
    'sub_nested_seq_layer',
141
    'clip_layer',
142
    'slice_projection',
143
    'seq_slice_layer',
144
    'kmax_seq_score_layer',
C
chengduoZH 已提交
145
    'img_pool3d_layer',
G
guosheng 已提交
146
    'scale_shift_layer',
C
chengduoZH 已提交
147
    'img_conv3d_layer',
148
    'resize_layer',
Y
yangyaming 已提交
149
    'sub_seq_layer',
Y
yangyaming 已提交
150
    'scale_sub_region_layer',
151
    'factorization_machine',
Q
qijun 已提交
152
]
Z
zhangjinchao01 已提交
153 154 155 156 157 158 159


class LayerType(object):
    """
    Layer type enumerations.
    """

160 161 162 163 164 165 166 167
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
Z
zhangjinchao01 已提交
168
    POOLING_AVG = 'average'
169
    FC_LAYER = 'fc'
Z
zhangjinchao01 已提交
170
    COST = 'cost'
171 172
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
C
caoying03 已提交
173
    L2_DISTANCE = 'l2_distance'
Z
zhangjinchao01 已提交
174
    HSIGMOID = 'hsigmoid'
175 176 177 178 179
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
C
chengduoZH 已提交
180
    CUDNNCONVTRANS_LAYER = 'cudnn_convt'
181
    POOL_LAYER = 'pool'
C
chengduoZH 已提交
182
    POOL3D_LAYER = 'pool3d'
Z
zhangjinchao01 已提交
183 184 185
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
G
guosheng 已提交
186
    ROW_L2_NORM_LAYER = 'row_l2_norm'
Z
zhangjinchao01 已提交
187 188 189 190
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
191
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
Z
zhangjinchao01 已提交
192 193 194 195 196 197 198

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
L
liaogang 已提交
199
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
Z
zhangjinchao01 已提交
200 201 202
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
203
    ROTATE_LAYER = 'rotate'
R
ranqiu 已提交
204
    DOT_PROD_LAYER = 'dot_prod'
H
Haonan 已提交
205
    OUT_PROD_LAYER = 'out_prod'
X
xuwei06 已提交
206
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
Z
zhangjinchao01 已提交
207 208 209 210 211 212 213 214 215 216 217

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
218
    LINEAR_COMBINATION_LAYER = "convex_comb"
Z
zhangjinchao01 已提交
219
    BLOCK_EXPAND = "blockexpand"
220
    MAXOUT = "maxout"
Q
qijun 已提交
221
    SPP_LAYER = "spp"
D
dangqingqing 已提交
222
    PAD_LAYER = "pad"
W
wwhu 已提交
223
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
224
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
225 226 227

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'
228 229
    MULTIBOX_LOSS_LAYER = 'multibox_loss'
    DETECTION_OUTPUT_LAYER = 'detection_output'
G
guosheng 已提交
230
    ROI_POOL_LAYER = 'roi_pool'
D
dangqingqing 已提交
231 232 233 234 235

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
236
    NCE_LAYER = 'nce'
Z
zhangjinchao01 已提交
237

238 239 240
    CONV3D_LAYER = 'conv3d'
    DECONV3D_LAYER = 'deconv3d'

241 242
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
L
Luo Tao 已提交
243
    HUBER_REGRESSION = 'huber_regression'
244
    HUBER_CLASSIFICATION = 'huber_classification'
245 246
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
C
caoying03 已提交
247
    CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam'
248 249 250 251 252 253
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
254
    SWITCH_ORDER_LAYER = 'switch_order'
255
    CROP_LAYER = 'crop'
C
caoying03 已提交
256
    SUB_NESTED_SEQ = 'sub_nested_seq'
G
guosheng 已提交
257
    CLIP_LAYER = 'clip'
258
    SEQ_SLICE = 'seq_slice'
Z
zhangjinchao01 已提交
259

260
    KMAX_SEQ_SCORE = 'kmax_seq_score'
G
guosheng 已提交
261
    SCALE_SHIFT_LAYER = 'scale_shift'
Z
zhangjinchao01 已提交
262

263
    RESIZE = 'resize'
Y
yangyaming 已提交
264
    SUB_SEQ_LAYER = 'subseq'
265

Y
yangyaming 已提交
266
    SCALE_SUB_REGION_LAYER = 'scale_sub_region'
267

268 269
    FACTORIZATION_MACHINE = 'factorization_machine'

Z
zhangjinchao01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
290
    """
L
Luo Tao 已提交
291
    PaddlePaddle supports three sequence types:
292 293 294

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
295 296
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
297

L
Luo Tao 已提交
298
    Accordingly, AggregateLevel supports two modes:
299

L
Luo Tao 已提交
300
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
301
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
302 303
      be aggregated to :code:`NO_SEQUENCE`.

L
Luo Tao 已提交
304
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
305 306 307
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
L
Luo Tao 已提交
308 309
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
310 311 312
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
R
ranqiu 已提交
335
    :type parents: list | tuple | collections.Sequence
Z
zhangjinchao01 已提交
336 337
    """

Q
qijun 已提交
338 339 340 341 342 343 344 345 346
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
347
                 reverse=None):
Z
zhangjinchao01 已提交
348 349
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
X
xuwei06 已提交
350
        assert size is not None
Z
zhangjinchao01 已提交
351 352
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
353
        self.full_name = MakeLayerNameInSubmodel(name)
Z
zhangjinchao01 已提交
354
        self.layer_type = layer_type
355 356
        if parents is not None and type(parents) != list:
            parents = [parents]
Z
zhangjinchao01 已提交
357 358 359 360 361 362 363 364
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
365
        self.reverse = reverse
Z
zhangjinchao01 已提交
366

367 368 369 370 371 372 373 374
    @property
    def width(self):
        return cp.g_layer_map[self.full_name].width

    @property
    def height(self):
        return cp.g_layer_map[self.full_name].height

375 376 377 378
    @property
    def depth(self):
        return cp.g_layer_map[self.full_name].depth

379 380 381 382 383 384 385 386
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

Z
zhangjinchao01 已提交
387 388 389

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
390
DEVICE = 'device'
Z
zhangjinchao01 已提交
391 392 393


def layer_support(*attrs):
394
    attrs_list = list(attrs)
395
    attrs_list.append(DEVICE)
Q
qijun 已提交
396

Z
zhangjinchao01 已提交
397 398 399
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
400
            for attr in attrs_list:
Z
zhangjinchao01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
417 418 419 420 421
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

Z
zhangjinchao01 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

R
ranqiu 已提交
452
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
453 454 455 456 457 458 459 460
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
Q
qijun 已提交
461 462
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
463 464 465 466
    proj.origin = input
    return proj


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

R
ranqiu 已提交
488
    :param input: The input of this layer.
489 490 491 492 493 494 495 496
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
Q
qijun 已提交
497 498
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
499 500 501 502
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


R
ranqiu 已提交
533
    :param input: The input of this layer, which must contains id fields.
Z
zhangjinchao01 已提交
534 535 536 537 538 539 540 541
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
Q
qijun 已提交
542 543
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
Z
zhangjinchao01 已提交
544 545 546 547
    proj.origin = input
    return proj


548
def identity_projection(input, offset=None, size=None):
Z
zhangjinchao01 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

R
ranqiu 已提交
578
    :param input: The input of this layer.
579
    :type input: LayerOutput
Z
zhangjinchao01 已提交
580 581
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
582
    :return: A IdentityProjection or IdentityOffsetProjection object
Z
zhangjinchao01 已提交
583 584 585 586 587 588
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
589 590
        if size is None:
            size = input.size - offset
Q
qijun 已提交
591
        proj = IdentityOffsetProjection(
592
            input_layer_name=input.name, offset=offset, size=size)
Z
zhangjinchao01 已提交
593 594 595 596
        proj.origin = input
    return proj


597 598
def slice_projection(input, slices):
    """
599 600
    slice_projection can slice the input value into multiple parts,
    and then select some of them to merge into a new output.
601 602

    .. math::
603
       output = [input.slices()]
604 605 606 607 608 609 610 611 612

    The example usage is:

    .. code-block:: python

       proj = slice_projection(input=layer, slices=[(0, 10), (20, 30)])

    Note that slice_projection should not have any parameter.

R
ranqiu 已提交
613
    :param input: The input of this layer.
614 615 616 617
    :type input: LayerOutput
    :param slices: An array of slice parameters.
                   Each slice contains the start and end offsets based
                   on the input.
H
hedaoyuan 已提交
618
    :type slices: pair of int
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    :return: A SliceProjection object
    :rtype: SliceProjection
    """
    assert len(slices) >= 1
    start = 0
    for i in xrange(len(slices)):
        assert len(slices[i]) == 2
        # The start position of the next slice needs to be greater than
        # or equal to the end position of the previous slice.
        assert slices[i][0] >= start
        assert slices[i][1] >= slices[i][0]
        start = slices[i][1]
    proj = SliceProjection(input_layer_name=input.name, slices=slices)
    proj.origin = input
    return proj


X
xuwei06 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

R
ranqiu 已提交
651
    :param input: The input of this layer.
X
xuwei06 已提交
652 653 654 655 656 657
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
L
Luo Tao 已提交
658
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
659 660 661 662
    proj.origin = input
    return proj


Z
zhangjinchao01 已提交
663
@wrap_param_attr_default()
664
def dotmul_projection(input, param_attr=None):
Z
zhangjinchao01 已提交
665
    """
666
    DotMulProjection with a layer as input.
Z
zhangjinchao01 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

R
ranqiu 已提交
680
    :param input: The input of this layer.
681 682 683 684 685 686
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
Q
qijun 已提交
687 688
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
689
    proj.origin = input
690
    return proj
Z
zhangjinchao01 已提交
691

692 693

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
694 695
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
696

Z
zhangjinchao01 已提交
697
    .. math::
L
Luo Tao 已提交
698
       out.row[i] += scale * (a.row[i] .* b.row[i])
699

Z
zhangjinchao01 已提交
700 701
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
702

Z
zhangjinchao01 已提交
703
    The example usage is:
704

Z
zhangjinchao01 已提交
705
    .. code-block:: python
706

L
Luo Tao 已提交
707
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
708

709 710 711 712
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
Z
zhangjinchao01 已提交
713 714
    :param scale: config scalar, default value is one.
    :type scale: float
715 716
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
Z
zhangjinchao01 已提交
717
    """
718 719 720
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
Q
qijun 已提交
721
    a = kwargs.get('x', a)  # For Backward capacity.
722 723 724 725 726 727
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

Q
qijun 已提交
728
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
729
    op.origin = [a, b]
730
    return op
Z
zhangjinchao01 已提交
731

732

Z
zhangjinchao01 已提交
733
@wrap_bias_attr_default(['padding_attr'])
Q
qijun 已提交
734 735 736
def context_projection(input,
                       context_len,
                       context_start=None,
Z
zhangjinchao01 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

R
ranqiu 已提交
751
    :param input: The input of this layer, which should be a sequence.
Z
zhangjinchao01 已提交
752 753 754 755 756 757 758 759 760
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
R
ranqiu 已提交
761
    :type padding_attr: bool | ParameterAttribute
Z
zhangjinchao01 已提交
762 763 764 765 766 767 768 769 770 771 772
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

Q
qijun 已提交
773 774 775 776 777 778
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
Z
zhangjinchao01 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

Q
qijun 已提交
792
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
Z
zhangjinchao01 已提交
793 794 795 796 797 798
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
R
ranqiu 已提交
799
        :param act: Activation type.
Z
zhangjinchao01 已提交
800
        :type act: BaseActivation
R
ranqiu 已提交
801 802 803
        :param bias_attr: The bias attribute. If the parameter is set to False or an object
                          whose type is not ParameterAttribute, no bias is defined. If the
                          parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
804
        :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
805 806 807
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
Q
qijun 已提交
808 809 810 811 812 813 814
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
Z
zhangjinchao01 已提交
815 816 817 818 819
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

820
    def __iadd__(self, other):
Z
zhangjinchao01 已提交
821 822 823 824 825 826 827 828
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
829
            assert isinstance(other, Projection) or isinstance(other, Operator)
Z
zhangjinchao01 已提交
830
            self.inputs.append(other)
831 832 833 834
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
Z
zhangjinchao01 已提交
835 836 837 838 839 840 841 842
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

843
    def __exit__(self, exc_type, exc_value, tb):
W
wangyang59 已提交
844 845
        if exc_value is not None:
            raise exc_value
Z
zhangjinchao01 已提交
846
        assert len(self.inputs) != 0
847
        ml = MixedLayer(
Z
zhangjinchao01 已提交
848 849 850 851 852
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
Q
qijun 已提交
853
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
854 855 856
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
857
        self.finalized = True
Z
zhangjinchao01 已提交
858 859 860 861 862 863


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
864 865 866 867 868
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
Z
zhangjinchao01 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
R
ranqiu 已提交
896
    :param input: The input of this layer. It is an optional parameter. If set,
Z
zhangjinchao01 已提交
897
                  then this function will just return layer's name.
898
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
899
    :type act: BaseActivation
R
ranqiu 已提交
900 901 902
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
903
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
904 905 906 907 908 909 910 911 912
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
Q
qijun 已提交
913 914 915 916 917 918
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
919
            if isinstance(input, collections.Sequence):
Z
zhangjinchao01 已提交
920 921 922 923 924 925 926 927
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
C
chengduoZH 已提交
928 929
def data_layer(name, size, depth=None, height=None, width=None,
               layer_attr=None):
Z
zhangjinchao01 已提交
930 931 932 933 934 935 936
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
937
        data = data_layer(name="input", size=1000)
Z
zhangjinchao01 已提交
938

R
ranqiu 已提交
939
    :param name: The name of this layer.
Z
zhangjinchao01 已提交
940 941 942
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
L
Luo Tao 已提交
943
    :param height: Height of this data layer, used for image
R
ranqiu 已提交
944
    :type height: int | None
L
Luo Tao 已提交
945
    :param width: Width of this data layer, used for image
R
ranqiu 已提交
946
    :type width: int | None
Z
zhangjinchao01 已提交
947 948
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
949
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
950 951
    :rtype: LayerOutput
    """
Q
qijun 已提交
952 953 954 955
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
C
chengduoZH 已提交
956
        depth=depth,
L
Luo Tao 已提交
957 958
        height=height,
        width=width,
Q
qijun 已提交
959
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
960

C
chengduoZH 已提交
961 962
    if depth is None:
        depth = 1
963 964
    num_filters = None
    if height is not None and width is not None:
C
chengduoZH 已提交
965 966
        num_filters = size / (width * height * depth)
        assert num_filters * width * height * depth == size, \
C
chengduoZH 已提交
967
                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
968 969

    return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
Z
zhangjinchao01 已提交
970 971 972 973


@wrap_name_default("embedding")
@wrap_param_attr_default()
974
@layer_support(ERROR_CLIPPING, DROPOUT)
Z
zhangjinchao01 已提交
975 976 977 978
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

979
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
980
    :type name: basestring
R
ranqiu 已提交
981
    :param input: The input of this layer, which must be Index Data.
Z
zhangjinchao01 已提交
982 983 984 985 986
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
R
ranqiu 已提交
987
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
988
    :param layer_attr: Extra layer Config. Default is None.
R
ranqiu 已提交
989
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
990
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
991 992
    :rtype: LayerOutput
    """
Q
qijun 已提交
993 994 995 996 997 998
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
Z
zhangjinchao01 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
1008 1009 1010 1011 1012 1013 1014
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

L
luotao02 已提交
1027
    which is equal to:
Z
zhangjinchao01 已提交
1028 1029 1030 1031 1032 1033

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

1034
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1035
    :type name: basestring
R
ranqiu 已提交
1036 1037
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
1038 1039
    :param size: The layer dimension.
    :type size: int
1040
    :param act: Activation Type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1041 1042 1043
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
1044 1045 1046
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1047
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1048
    :param layer_attr: Extra Layer config.
R
ranqiu 已提交
1049
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1050
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1051 1052 1053 1054
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
1055
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
1056 1057
        param_attr = [param_attr]
    else:
1058
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
1059 1060
            assert len(input) == len(param_attr)
        else:
1061
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
1062
                logger.fatal(
W
wangmeng28 已提交
1063 1064 1065 1066 1067
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
1068 1069
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

1070
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
1071 1072

    Layer(
Q
qijun 已提交
1073 1074 1075
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
Z
zhangjinchao01 已提交
1076 1077 1078 1079 1080
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
1081 1082 1083
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
Z
zhangjinchao01 已提交
1084

1085

1086
@wrap_name_default("print")
1087
def printer_layer(input, format=None, name=None):
1088 1089
    """
    Print the output value of input layers. This layer is useful for debugging.
1090

1091
    :param name: The name of this layer. It is optional.
1092
    :type name: basestring
R
ranqiu 已提交
1093 1094
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
1095
    :return: LayerOutput
1096
    """
1097 1098 1099 1100 1101
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
1102 1103 1104

    Layer(
        name=name,
1105
        format=format,
1106
        type=LayerType.PRINT_LAYER,
Q
qijun 已提交
1107
        inputs=[l.name for l in input], )
1108
    # this layer don't return anything, can not be input of other layer.
1109

X
xuwei06 已提交
1110 1111 1112 1113 1114 1115 1116
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

Z
zhangjinchao01 已提交
1117

Y
yuan 已提交
1118
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1119
def priorbox_layer(input,
G
gaoyuan 已提交
1120
                   image,
G
gaoyuan 已提交
1121 1122 1123 1124 1125
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1126 1127 1128
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

1129
    :param name: The name of this layer. It is optional.
Y
yuan 已提交
1130
    :type name: basestring
R
ranqiu 已提交
1131
    :param input: The input of this layer.
Y
yuan 已提交
1132
    :type input: LayerOutput
G
gaoyuan 已提交
1133 1134
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1146
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1147 1148 1149
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1150
        inputs=[input.name, image.name],
Y
yuan 已提交
1151 1152 1153 1154 1155 1156
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1157 1158
        name,
        LayerType.PRIORBOX_LAYER,
G
gaoyuan 已提交
1159
        parents=[input, image],
G
gaoyuan 已提交
1160 1161 1162
        num_filters=num_filters,
        size=size)

Z
zhangjinchao01 已提交
1163

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
@wrap_name_default("multibox_loss")
def multibox_loss_layer(input_loc,
                        input_conf,
                        priorbox,
                        label,
                        num_classes,
                        overlap_threshold=0.5,
                        neg_pos_ratio=3.0,
                        neg_overlap=0.5,
                        background_id=0,
                        name=None):
    """
    Compute the location loss and the confidence loss for ssd.

1178
    :param name: The name of this layer. It is optional.
1179
    :type name: basestring
Y
yangyaming 已提交
1180 1181
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput
1182
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1183
    :type input_conf: LayerOutput | List of LayerOutput
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param label: The input label.
    :type label: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param overlap_threshold: The threshold of the overlap.
    :type overlap_threshold: float
    :param neg_pos_ratio: The ratio of the negative bbox to the positive bbox.
    :type neg_pos_ratio: float
    :param neg_overlap: The negative bbox overlap threshold.
    :type neg_overlap: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
1205
    input_loc_num = len(input_loc)
1206 1207 1208 1209 1210 1211

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
1212
    input_conf_num = len(input_conf)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name, label.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox, label]
    parents.extend(input_loc)
    parents.extend(input_conf)

    Layer(
        name=name,
        type=LayerType.MULTIBOX_LOSS_LAYER,
        inputs=inputs,
        input_num=input_loc_num,
        num_classes=num_classes,
        overlap_threshold=overlap_threshold,
        neg_pos_ratio=neg_pos_ratio,
        neg_overlap=neg_overlap,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.MULTIBOX_LOSS_LAYER, parents=parents, size=1)


@wrap_name_default("detection_output")
def detection_output_layer(input_loc,
                           input_conf,
                           priorbox,
                           num_classes,
                           nms_threshold=0.45,
                           nms_top_k=400,
                           keep_top_k=200,
                           confidence_threshold=0.01,
                           background_id=0,
                           name=None):
    """
    Apply the NMS to the output of network and compute the predict bounding
G
gaoyuan 已提交
1250 1251
    box location. The output's shape of this layer could be zero if there is
    no valid bounding box.
1252

1253
    :param name: The name of this layer. It is optional.
1254
    :type name: basestring
Y
yangyaming 已提交
1255 1256
    :param input_loc: The input predict locations.
    :type input_loc: LayerOutput | List of LayerOutput.
1257
    :param input_conf: The input priorbox confidence.
Y
yangyaming 已提交
1258
    :type input_conf: LayerOutput | List of LayerOutput.
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    :param priorbox: The input priorbox location and the variance.
    :type priorbox: LayerOutput
    :param num_classes: The number of the classification.
    :type num_classes: int
    :param nms_threshold: The Non-maximum suppression threshold.
    :type nms_threshold: float
    :param nms_top_k: The bbox number kept of the NMS's output
    :type nms_top_k: int
    :param keep_top_k: The bbox number kept of the layer's output
    :type keep_top_k: int
    :param confidence_threshold: The classification confidence threshold
    :type confidence_threshold: float
    :param background_id: The background class index.
    :type background_id: int
    :return: LayerOutput
    """
    if isinstance(input_loc, LayerOutput):
        input_loc = [input_loc]
    assert isinstance(input_loc, collections.Sequence)  # list or tuple
    for each in input_loc:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1280
    input_loc_num = len(input_loc)
1281 1282 1283 1284 1285 1286

    if isinstance(input_conf, LayerOutput):
        input_conf = [input_conf]
    assert isinstance(input_conf, collections.Sequence)  # list or tuple
    for each in input_conf:
        assert isinstance(each, LayerOutput)
Y
yangyaming 已提交
1287 1288
    input_conf_num = len(input_conf)

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    # Check the input layer number.
    assert input_loc_num == input_conf_num

    inputs = [priorbox.name]
    inputs.extend([l.name for l in input_loc])
    inputs.extend([l.name for l in input_conf])
    parents = [priorbox]
    parents.extend(input_loc)
    parents.extend(input_conf)

    size = keep_top_k * 7

    Layer(
        name=name,
        type=LayerType.DETECTION_OUTPUT_LAYER,
        inputs=inputs,
        size=size,
        input_num=input_loc_num,
        num_classes=num_classes,
        nms_threshold=nms_threshold,
        nms_top_k=nms_top_k,
        keep_top_k=keep_top_k,
        confidence_threshold=confidence_threshold,
        background_id=background_id)
    return LayerOutput(
        name, LayerType.DETECTION_OUTPUT_LAYER, parents=parents, size=size)


G
guosheng 已提交
1317 1318 1319 1320 1321 1322
@wrap_name_default("roi_pool")
def roi_pool_layer(input,
                   rois,
                   pooled_width,
                   pooled_height,
                   spatial_scale,
G
guosheng 已提交
1323
                   num_channels=None,
G
guosheng 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                   name=None):
    """
    A layer used by Fast R-CNN to extract feature maps of ROIs from the last
    feature map.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput.
    :param rois: The input ROIs' data.
    :type rois: LayerOutput.
    :param pooled_width: The width after pooling.
    :type pooled_width: int
    :param pooled_height: The height after pooling.
    :type pooled_height: int
    :param spatial_scale: The spatial scale between the image and feature map.
    :type spatial_scale: float
G
guosheng 已提交
1341 1342
    :param num_channels: number of input channel.
    :type num_channels: int
G
guosheng 已提交
1343 1344
    :return: LayerOutput
    """
G
guosheng 已提交
1345 1346 1347 1348
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    size = num_channels * pooled_width * pooled_height
G
guosheng 已提交
1349 1350 1351 1352 1353 1354
    Layer(
        name=name,
        type=LayerType.ROI_POOL_LAYER,
        inputs=[input.name, rois.name],
        pooled_width=pooled_width,
        pooled_height=pooled_height,
1355 1356
        spatial_scale=spatial_scale,
        num_channels=num_channels)
G
guosheng 已提交
1357 1358
    return LayerOutput(
        name, LayerType.ROI_POOL_LAYER, parents=[input, rois], size=size)
G
guosheng 已提交
1359 1360


1361 1362
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1363 1364 1365 1366 1367
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1368

1369
    :param name: The name of this layer. It is optional.
G
gaoyuan 已提交
1370
    :type name: basestring
R
ranqiu 已提交
1371
    :param input: The input of this layer.
G
gaoyuan 已提交
1372 1373 1374 1375 1376
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1377
    assert input.num_filters is not None
G
gaoyuan 已提交
1378 1379
    Layer(
        name=name,
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1393 1394
    return LayerOutput(
        name,
1395
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1396 1397 1398 1399 1400
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


Z
zhangjinchao01 已提交
1401 1402 1403 1404
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
Q
qijun 已提交
1405 1406 1407 1408
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
L
Luo Tao 已提交
1409
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1410
                  stride=-1,
Z
zhangjinchao01 已提交
1411 1412 1413 1414
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

1415 1416
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the pooling value of the window as the output. Thus, a long sequence
X
xuwei06 已提交
1417 1418 1419
    will be shorten.

    The parameter stride specifies the intervals at which to apply the pooling
L
Luo Tao 已提交
1420
    operation. Note that for sequence with sub-sequence, the default value
1421 1422
    of stride is -1.

Z
zhangjinchao01 已提交
1423 1424 1425 1426 1427 1428
    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
L
Luo Tao 已提交
1429
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1430

L
Luo Tao 已提交
1431 1432
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
Z
zhangjinchao01 已提交
1433
    :type agg_level: AggregateLevel
1434
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1435
    :type name: basestring
R
ranqiu 已提交
1436
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1437 1438 1439
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
R
ranqiu 已提交
1440
    :type pooling_type: BasePoolingType | None
L
Luo Tao 已提交
1441
    :param stride: The step size between successive pooling regions.
1442
    :type stride: Int
R
ranqiu 已提交
1443 1444 1445
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1446
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1447
    :param layer_attr: The Extra Attributes for layer, such as dropout.
R
ranqiu 已提交
1448
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1449
    :return: LayerOutput object.
Y
Yu Yang 已提交
1450
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1451 1452
    """
    extra_dict = dict()
1453
    # noinspection PyUnresolvedReferences
Z
zhangjinchao01 已提交
1454 1455
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1456 1457 1458 1459
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
Z
zhangjinchao01 已提交
1460 1461
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

1462 1463 1464
    if agg_level == AggregateLevel.TO_SEQUENCE:
        assert stride == -1

Z
zhangjinchao01 已提交
1465 1466 1467 1468 1469 1470
    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1471
        stride=stride,
Q
qijun 已提交
1472
        **extra_dict)
Z
zhangjinchao01 已提交
1473

Q
qijun 已提交
1474 1475
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
1476

Q
qijun 已提交
1477

Z
zhangjinchao01 已提交
1478 1479
@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1480
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1481 1482
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
1483
@layer_support()
Q
qijun 已提交
1484 1485
def lstmemory(input,
              name=None,
1486
              size=None,
Q
qijun 已提交
1487 1488 1489 1490 1491 1492
              reverse=False,
              act=None,
              gate_act=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1493 1494 1495 1496 1497 1498 1499 1500
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

L
luotao02 已提交
1501
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
1502

L
luotao02 已提交
1503
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
1504

L
luotao02 已提交
1505
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
1506

L
luotao02 已提交
1507
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
1508

L
luotao02 已提交
1509
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
1510 1511


C
caoying03 已提交
1512
    NOTE: In PaddlePaddle's implementation, the multiplications
Z
zhangjinchao01 已提交
1513
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
C
caoying03 已提交
1514 1515 1516 1517
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
Z
zhangjinchao01 已提交
1518

C
caoying03 已提交
1519
    NOTE: This is a low level user interface. You can use network.simple_lstm
Z
zhangjinchao01 已提交
1520 1521
    to config a simple plain lstm layer.

C
caoying03 已提交
1522 1523 1524 1525
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
Z
zhangjinchao01 已提交
1526 1527 1528 1529 1530

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
1531 1532
    :param size: DEPRECATED. size of the lstm cell
    :type size: int
R
ranqiu 已提交
1533
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1534 1535 1536
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
1537
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
1538 1539 1540 1541 1542
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation
R
ranqiu 已提交
1543 1544 1545
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1546
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1547
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1548
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1549
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1550
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1551
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1552 1553 1554 1555 1556 1557
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1558
    assert input.size is not None and input.size % 4 == 0
1559

1560 1561 1562 1563 1564
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1565 1566 1567
        plog("size of lstmemory layer: %s is automatically set to "
             "size of input layer / 4. The parameter size passing to "
             "this layer is ignored." % (name))
Z
zhangjinchao01 已提交
1568

Q
qijun 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1579

Q
qijun 已提交
1580 1581 1582 1583 1584
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1585

Z
zhangjinchao01 已提交
1586 1587 1588

@wrap_bias_attr_default()
@wrap_param_attr_default()
Q
qijun 已提交
1589
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
1590 1591
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
1592
@layer_support()
Q
qijun 已提交
1593
def grumemory(input,
1594
              size=None,
Q
qijun 已提交
1595 1596 1597 1598 1599 1600
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              bias_attr=None,
              param_attr=None,
Z
zhangjinchao01 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

C
caoying03 已提交
1622 1623
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
Z
zhangjinchao01 已提交
1624 1625 1626 1627 1628

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

C
caoying03 已提交
1629 1630 1631
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
Z
zhangjinchao01 已提交
1632 1633 1634 1635 1636

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

C
caoying03 已提交
1637
    NOTE: In PaddlePaddle's implementation, the multiplication operations
Z
zhangjinchao01 已提交
1638
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
C
caoying03 已提交
1639 1640 1641
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
Z
zhangjinchao01 已提交
1642

C
caoying03 已提交
1643 1644 1645
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
Z
zhangjinchao01 已提交
1646 1647 1648 1649 1650 1651 1652 1653

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
R
ranqiu 已提交
1654 1655
    :type name: None | basestring
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1656
    :type input: LayerOutput.
1657 1658
    :param size: DEPRECATED. size of the gru cell
    :type size: int
1659
    :param reverse: Whether sequence process is reversed or not.
Z
zhangjinchao01 已提交
1660
    :type reverse: bool
R
ranqiu 已提交
1661
    :param act: Activation type, TanhActivation is the default. This activation
Z
zhangjinchao01 已提交
1662 1663 1664 1665 1666 1667
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
R
ranqiu 已提交
1668 1669 1670
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1671
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1672
    :param param_attr: Parameter Attribute.
R
ranqiu 已提交
1673
    :type param_attr: ParameterAttribute | None | False
Z
zhangjinchao01 已提交
1674
    :param layer_attr: Extra Layer attribute
R
ranqiu 已提交
1675
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
1676
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1677 1678 1679 1680
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1681 1682 1683 1684 1685 1686
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
1687 1688 1689
        plog("size of grumemory layer: %s is automatically set to "
             "size of input layer / 3. The parameter size passing to this "
             "layer is ignored." % (name))
Z
zhangjinchao01 已提交
1690

Q
qijun 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
1700

Q
qijun 已提交
1701 1702 1703 1704 1705
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1706

Z
zhangjinchao01 已提交
1707 1708 1709

@wrap_name_default()
@layer_support()
Q
qijun 已提交
1710 1711
def last_seq(input,
             name=None,
L
Luo Tao 已提交
1712
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1713
             stride=-1,
Z
zhangjinchao01 已提交
1714 1715 1716 1717
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1718 1719 1720
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1721
    of stride is -1.
1722

L
Luo Tao 已提交
1723 1724 1725 1726 1727 1728
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

Z
zhangjinchao01 已提交
1729
    :param agg_level: Aggregated level
1730
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1731
    :type name: basestring
R
ranqiu 已提交
1732
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1733
    :type input: LayerOutput
L
Luo Tao 已提交
1734
    :param stride: The step size between successive pooling regions.
1735
    :type stride: Int
Z
zhangjinchao01 已提交
1736 1737
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1738
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1739 1740
    :rtype: LayerOutput
    """
1741 1742 1743 1744 1745 1746
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

L
Luo Tao 已提交
1747
    if agg_level == AggregateLevel.TO_SEQUENCE:
1748 1749
        assert stride == -1

Z
zhangjinchao01 已提交
1750 1751 1752 1753 1754
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1755
        stride=stride,
Q
qijun 已提交
1756 1757 1758 1759 1760 1761
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1762 1763 1764 1765


@wrap_name_default()
@layer_support()
Q
qijun 已提交
1766 1767
def first_seq(input,
              name=None,
L
Luo Tao 已提交
1768
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1769
              stride=-1,
Z
zhangjinchao01 已提交
1770 1771 1772 1773
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1774 1775 1776
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1777
    of stride is -1.
1778

L
Luo Tao 已提交
1779 1780 1781 1782 1783 1784
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

Z
zhangjinchao01 已提交
1785
    :param agg_level: aggregation level
1786
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1787
    :type name: basestring
R
ranqiu 已提交
1788
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1789
    :type input: LayerOutput
L
Luo Tao 已提交
1790
    :param stride: The step size between successive pooling regions.
1791
    :type stride: Int
Z
zhangjinchao01 已提交
1792 1793
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1794
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1795 1796
    :rtype: LayerOutput
    """
1797 1798 1799 1800 1801 1802 1803

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

L
Luo Tao 已提交
1804
    if agg_level == AggregateLevel.TO_SEQUENCE:
1805 1806
        assert stride == -1

Z
zhangjinchao01 已提交
1807 1808 1809 1810 1811
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1812
        stride=stride,
Q
qijun 已提交
1813 1814 1815 1816 1817 1818
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
1819 1820 1821


class ExpandLevel(object):
1822 1823 1824 1825 1826
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

L
Luo Tao 已提交
1827 1828
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1829 1830
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

L
Luo Tao 已提交
1831 1832
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1833 1834
      :code:`SUB_SEQUENCE`.
    """
L
Luo Tao 已提交
1835 1836
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1837 1838
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
Z
zhangjinchao01 已提交
1839

1840

Z
zhangjinchao01 已提交
1841 1842
@wrap_name_default()
@layer_support()
Q
qijun 已提交
1843 1844
def expand_layer(input,
                 expand_as,
Z
zhangjinchao01 已提交
1845 1846
                 name=None,
                 bias_attr=False,
L
Luo Tao 已提交
1847
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
Z
zhangjinchao01 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
L
Luo Tao 已提交
1859
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
Z
zhangjinchao01 已提交
1860

R
ranqiu 已提交
1861
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
1862 1863 1864
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
1865
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
1866
    :type name: basestring
R
ranqiu 已提交
1867 1868 1869
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1870
    :type bias_attr: ParameterAttribute | None | bool | Any
Z
zhangjinchao01 已提交
1871 1872 1873 1874
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1875
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
Q
qijun 已提交
1885 1886 1887 1888 1889 1890
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
Z
zhangjinchao01 已提交
1891 1892


X
xuwei06 已提交
1893
@wrap_name_default()
X
xuwei06 已提交
1894
@wrap_act_default(act=IdentityActivation())
X
xuwei06 已提交
1895
@layer_support()
X
xuwei06 已提交
1896 1897 1898
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
X
xuwei06 已提交
1899
                 act=None,
X
xuwei06 已提交
1900 1901
                 name=None,
                 layer_attr=None):
X
xuwei06 已提交
1902
    """
X
xuwei06 已提交
1903
    A layer for repeating the input for num_repeats times.
X
xuwei06 已提交
1904

X
xuwei06 已提交
1905
    If as_row_vector:
X
xuwei06 已提交
1906
    .. math::
X
xuwei06 已提交
1907 1908 1909 1910 1911
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

X
xuwei06 已提交
1912 1913 1914 1915 1916

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1917
       expand = repeat_layer(input=layer, num_repeats=4)
X
xuwei06 已提交
1918

R
ranqiu 已提交
1919
    :param input: The input of this layer.
X
xuwei06 已提交
1920 1921 1922
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
1923
    :param name: The name of this layer. It is optional.
X
xuwei06 已提交
1924 1925 1926 1927 1928 1929
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1930
    :param act: Activation type. IdentityActivation is the default activation.
X
xuwei06 已提交
1931
    :type act: BaseActivation
X
xuwei06 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
X
xuwei06 已提交
1942
        active_type=act.name,
X
xuwei06 已提交
1943
        num_filters=num_repeats,
X
xuwei06 已提交
1944
        as_row_vector=as_row_vector,
X
xuwei06 已提交
1945
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
Q
qijun 已提交
1946 1947 1948 1949 1950
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
X
xuwei06 已提交
1951
        activation=act,
Q
qijun 已提交
1952 1953
        parents=[input])

X
xuwei06 已提交
1954

1955 1956 1957
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
1958
@layer_support(ERROR_CLIPPING, DROPOUT)
1959 1960 1961 1962 1963 1964 1965 1966
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1967
    the dimension of each instance is M, and the input reshape_size is N, then the
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

R
ranqiu 已提交
1978
    :param input: The input of this layer.
1979 1980 1981
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
1982
    :param name: The name of this layer. It is optional.
1983
    :type name: basestring
1984
    :param act: Activation type. IdentityActivation is the default activation.
1985 1986 1987
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
R
ranqiu 已提交
1988 1989 1990
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
1991
    :type bias_attr: ParameterAttribute | None | bool | Any
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


Z
zhangjinchao01 已提交
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

R
ranqiu 已提交
2030 2031
    :param input: The input of this layer.
    :type input: list | tuple
Z
zhangjinchao01 已提交
2032 2033
    :param weight: Weight layer.
    :type weight: LayerOutput
2034
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2035 2036 2037
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2038
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2039 2040
    :rtype: LayerOutput
    """
2041
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2042
    assert len(input) == 2
2043 2044 2045 2046 2047 2048 2049
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2050 2051 2052 2053
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
Q
qijun 已提交
2054 2055 2056 2057 2058 2059
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
Z
zhangjinchao01 已提交
2060 2061


L
liaogang 已提交
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
2078
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
2079

L
liaogang 已提交
2080
    :param   input:        A input layer.
L
liaogang 已提交
2081
    :type    input:        LayerOutput.
L
liaogang 已提交
2082
    :param   out_size_x:   bilinear interpolation output width.
R
ranqiu 已提交
2083
    :type    out_size_x:   int | None
L
liaogang 已提交
2084
    :param   out_size_y:   bilinear interpolation output height.
R
ranqiu 已提交
2085
    :type    out_size_y:   int | None
L
liaogang 已提交
2086
    :param   name:         The layer's name, which cna not be specified.
R
ranqiu 已提交
2087
    :type    name:         None | basestring
L
liaogang 已提交
2088
    :param   layer_attr:   Extra Layer attribute.
L
liaogang 已提交
2089 2090 2091 2092 2093 2094 2095
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
2096
    assert input.num_filters is not None
L
liaogang 已提交
2097
    num_channels = input.num_filters
Q
qijun 已提交
2098 2099 2100 2101 2102 2103 2104
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
L
Luo Tao 已提交
2105
                channels=num_channels)),
Q
qijun 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

L
liaogang 已提交
2115

Z
zhangjinchao01 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2135
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2136 2137 2138
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2139
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2140 2141 2142
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2143
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2144 2145
    :rtype: LayerOutput
    """
2146 2147 2148
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2149 2150 2151
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
2152
        inputs=[weight.name, input.name],
Q
qijun 已提交
2153 2154 2155
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
Z
zhangjinchao01 已提交
2156 2157 2158 2159 2160 2161


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
2162
    A layer for multiplying input vector by weight scalar.
Z
zhangjinchao01 已提交
2163 2164

    .. math::
2165
       y  = w x
Z
zhangjinchao01 已提交
2166

2167 2168 2169 2170 2171
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2172 2173 2174 2175 2176 2177 2178

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

R
ranqiu 已提交
2179
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2180 2181 2182
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
2183
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2184 2185 2186
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2187
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2188 2189
    :rtype: LayerOutput
    """
2190 2191 2192
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
Z
zhangjinchao01 已提交
2193 2194 2195 2196
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
Q
qijun 已提交
2197 2198 2199
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
Z
zhangjinchao01 已提交
2200 2201 2202 2203 2204 2205


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
2206
    A layer for transposing a minibatch matrix.
Z
zhangjinchao01 已提交
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

R
ranqiu 已提交
2219
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2220
    :type input: LayerOutput
2221
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2222 2223 2224
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2225
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2226 2227 2228 2229 2230 2231
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
Q
qijun 已提交
2232 2233 2234
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
2235 2236


2237 2238
@wrap_name_default()
@layer_support()
H
Haonan 已提交
2239
def rotate_layer(input, height, width, name=None, layer_attr=None):
2240
    """
H
Haonan 已提交
2241 2242
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
2243 2244

    .. math::
H
Haonan 已提交
2245
       y(j,i,:) = x(M-i-1,j,:)
2246

H
Haonan 已提交
2247
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
2248 2249 2250 2251 2252 2253

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
H
Haonan 已提交
2254 2255
                          height=100,
                          width=100)
2256

R
ranqiu 已提交
2257
    :param input: The input of this layer.
2258 2259 2260
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
2261
    :param name: The name of this layer. It is optional.
2262 2263 2264 2265 2266 2267 2268
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
2269 2270 2271
    l = Layer(
        name=name,
        height=height,
H
Haonan 已提交
2272
        width=width,
H
Haonan 已提交
2273 2274 2275 2276 2277 2278 2279 2280
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
2281 2282


Z
zhangjinchao01 已提交
2283 2284
@wrap_name_default()
@layer_support()
2285
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
2286 2287 2288 2289
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
2290
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
2291 2292 2293 2294 2295
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
Z
zhangjinchao01 已提交
2296

2297 2298
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
2299

L
Luo Tao 已提交
2300 2301 2302 2303 2304 2305
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

2306
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2318
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2319 2320
    :rtype: LayerOutput
    """
2321
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
2322 2323 2324 2325 2326 2327
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2328
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2329
    else:
2330 2331
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2332 2333 2334 2335 2336 2337
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
Q
qijun 已提交
2338
            **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
2339
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
Z
zhangjinchao01 已提交
2340

2341

C
caoying03 已提交
2342 2343 2344 2345
@wrap_name_default()
@layer_support()
def l2_distance_layer(x, y, name=None, layer_attr=None):
    """
C
caoying03 已提交
2346
    This layer calculates and returns the Euclidean distance between two input
C
caoying03 已提交
2347
    vectors x and y. The equation is as follows:
C
caoying03 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

    ..  math::
        l2_distance(\\mathbf{x}, \\mathbf{y}) = \\sqrt{\\sum_{i=1}^D(x_i - y_i)}

    The output size of this layer is fixed to be 1. Note that the above
    computation is for one sample. Multiple samples are processed in one batch.

    The example usage is:

    .. code-block:: python

       l2_sim = l2_distance(x=layer1, y=layer2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param x: The first input x for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of x's output.
    :type x: LayerOutput
    :param y: The second input y for this layer, whose output is a matrix with
              dimensionality N x D. N is the sample number in a mini-batch.
              D is the dimensionality of y's output.
    :type y: LayerOutput
    :param layer_attr: The extra layer attributes, for example, drop rate.
                       See ExtraLayerAttribute for more details.
    :type layer_attr: ExtraLayerAttribute
    :return: The returned LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
2378
    assert isinstance(x, LayerOutput) and isinstance(y, LayerOutput)
C
caoying03 已提交
2379 2380 2381
    Layer(
        name=name,
        type=LayerType.L2_DISTANCE,
C
caoying03 已提交
2382
        inputs=[x.name, y.name],
C
caoying03 已提交
2383 2384 2385 2386
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(name, LayerType.L2_DISTANCE, parents=[x, y], size=1)


Z
zhangjinchao01 已提交
2387 2388
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2389
@wrap_param_attr_default()
Z
zhangjinchao01 已提交
2390
@layer_support()
Q
qijun 已提交
2391 2392
def hsigmoid(input,
             label,
2393
             num_classes=None,
Q
qijun 已提交
2394 2395 2396 2397
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
Z
zhangjinchao01 已提交
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2409
                        label=data_layer)
Z
zhangjinchao01 已提交
2410

R
ranqiu 已提交
2411 2412
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
Z
zhangjinchao01 已提交
2413 2414 2415
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
R
ranqiu 已提交
2416
    :type num_classes: int | None
2417
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
2418
    :type name: basestring
R
ranqiu 已提交
2419 2420 2421
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2422
    :type bias_attr: ParameterAttribute | None | bool | Any
2423
    :param param_attr: Parameter Attribute. None means default parameter.
R
ranqiu 已提交
2424
    :type param_attr: ParameterAttribute | None
Z
zhangjinchao01 已提交
2425 2426
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2427
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2428 2429 2430 2431
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2432 2433 2434 2435 2436 2437 2438 2439 2440
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
2441 2442 2443
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2444 2445 2446 2447 2448
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

Z
zhangjinchao01 已提交
2449 2450
    ipts_for_layer = []
    parents = []
2451
    for each_input, each_param_attr in zip(input, param_attr):
Z
zhangjinchao01 已提交
2452
        assert isinstance(each_input, LayerOutput)
2453
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
Z
zhangjinchao01 已提交
2454 2455 2456 2457
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

X
xuwei06 已提交
2458
    l = Layer(
Z
zhangjinchao01 已提交
2459 2460 2461 2462 2463
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
Q
qijun 已提交
2464 2465 2466
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
Z
zhangjinchao01 已提交
2467

2468

Z
zhangjinchao01 已提交
2469 2470 2471 2472 2473
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
Q
qijun 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
W
wanghaoshuang 已提交
2483
                   dilation=1,
Q
qijun 已提交
2484 2485 2486 2487 2488 2489 2490
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2491
                   dilation_y=None,
2492 2493
                   trans=False,
                   layer_type=None):
Z
zhangjinchao01 已提交
2494
    """
2495
    Convolution layer for image. Paddle can support both square and non-square
2496
    input currently.
Z
zhangjinchao01 已提交
2497 2498 2499 2500

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2501

2502
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2503
    and non-square input currently.
2504

X
xuwei06 已提交
2505
    The details of convolution transpose layer,
2506 2507 2508
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
Z
zhangjinchao01 已提交
2509 2510 2511 2512
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

R
ranqiu 已提交
2513 2514
    There are several groups of filters in PaddlePaddle implementation.
    Each group will process some channels of the input. For example, if
C
caoying03 已提交
2515
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
R
ranqiu 已提交
2516 2517 2518
    32*4 = 128 filters to process the input. The channels will be split into 4
    pieces. First 256/4 = 64 channels will be processed by first 32 filters. The
    rest channels will be processed by the rest groups of filters.
Z
zhangjinchao01 已提交
2519

L
Luo Tao 已提交
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2530
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
2531
    :type name: basestring
R
ranqiu 已提交
2532
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2533
    :type input: LayerOutput
R
ranqiu 已提交
2534 2535 2536 2537 2538 2539
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
2540
    :type filter_size: int | tuple | list
R
ranqiu 已提交
2541 2542 2543
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
    :type filter_size_y: int
Z
zhangjinchao01 已提交
2544
    :param num_filters: Each filter group's number of filter
2545
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
2546
    :type act: BaseActivation
R
ranqiu 已提交
2547
    :param groups: The group number. 1 is the default group number.
Z
zhangjinchao01 已提交
2548
    :type groups: int
R
ranqiu 已提交
2549 2550 2551 2552 2553
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided. 1 is the default value.
R
ranqiu 已提交
2554
    :type stride: int | tuple | list
R
ranqiu 已提交
2555
    :param stride_y: The stride on the y axis.
Z
zhangjinchao01 已提交
2556
    :type stride_y: int
R
ranqiu 已提交
2557 2558 2559 2560 2561
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided. 0 is the default padding size.
R
ranqiu 已提交
2562
    :type padding: int | tuple | list
R
ranqiu 已提交
2563
    :param padding_y: The padding size on the y axis.
Z
zhangjinchao01 已提交
2564
    :type padding_y: int
R
ranqiu 已提交
2565 2566 2567 2568 2569
    :param dilation: The dimensions of the dilation. If the parameter is set to one integer,
                     the two dimensions on x and y axises will be same when dilation_y is not
                     set. If it is set to a list, the first element indicates the dimension
                     on the x axis, and the second is used to specify the dimension on the y
                     axis when dilation_y is not provided. 1 is the default dimension.
R
ranqiu 已提交
2570
    :type dilation: int | tuple | list
R
ranqiu 已提交
2571
    :param dilation_y: The dimension of the dilation on the y axis.
W
wanghaoshuang 已提交
2572
    :type dilation_y: int
R
ranqiu 已提交
2573 2574 2575
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
2576
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
2577 2578 2579
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channel number of the input.
Z
zhangjinchao01 已提交
2580
    :type num_channels: int
R
ranqiu 已提交
2581 2582
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
2583
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
2584
    :param shared_biases: Whether biases will be shared between filters or not.
Z
zhangjinchao01 已提交
2585
    :type shared_biases: bool
R
ranqiu 已提交
2586 2587
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2588
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2589
    :param trans: True if it is a convTransLayer, False if it is a convLayer
2590
    :type trans: bool
R
ranqiu 已提交
2591 2592 2593 2594 2595
    :param layer_type: Specify the layer type. If the dilation's dimension on one axis is
                       larger than 1, layer_type has to be "cudnn_conv" or "cudnn_convt".
                       If trans=True, layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or "cudnn_conv".
    :type layer_type: basestring
D
dangqingqing 已提交
2596
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
2597 2598 2599 2600 2601
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2602

Z
zhangjinchao01 已提交
2603
    if filter_size_y is None:
2604 2605 2606 2607 2608 2609
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

Z
zhangjinchao01 已提交
2610
    if stride_y is None:
2611 2612 2613 2614 2615 2616
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

Z
zhangjinchao01 已提交
2617
    if padding_y is None:
2618 2619 2620 2621 2622 2623
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

2624 2625 2626 2627 2628 2629 2630
    if dilation_y is None:
        if isinstance(dilation, collections.Sequence):
            assert len(dilation) == 2
            dilation, dilation_y = dilation
        else:
            dilation_y = dilation

2631 2632
    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
2633
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2634 2635 2636 2637
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2638

2639
    if layer_type:
W
wanghaoshuang 已提交
2640
        if dilation > 1 or dilation_y > 1:
X
xzl 已提交
2641 2642 2643
            assert layer_type in [
                "cudnn_conv", "cudnn_convt", "exconv", "exconvt"
            ]
2644
        if trans:
2645
            assert layer_type in ["exconvt", "cudnn_convt"]
2646 2647 2648 2649 2650
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
Q
qijun 已提交
2651

X
xuwei06 已提交
2652
    l = Layer(
Z
zhangjinchao01 已提交
2653
        name=name,
Q
qijun 已提交
2654 2655 2656 2657 2658
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
2659
                dilation=dilation,
Q
qijun 已提交
2660 2661 2662 2663 2664
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
2665
                dilation_y=dilation_y,
Q
qijun 已提交
2666 2667
                stride_y=stride_y),
            **param_attr.attr),
Z
zhangjinchao01 已提交
2668 2669 2670 2671
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2672
        type=lt,
Q
qijun 已提交
2673 2674 2675 2676 2677 2678 2679 2680
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
2681 2682 2683 2684


@wrap_name_default("pool")
@layer_support()
Q
qijun 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2695 2696
                   padding_y=None,
                   ceil_mode=True):
Z
zhangjinchao01 已提交
2697 2698 2699
    """
    Image pooling Layer.

R
ranqiu 已提交
2700
    The details of pooling layer, please refer to ufldl's pooling_ .
Z
zhangjinchao01 已提交
2701 2702 2703

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

R
ranqiu 已提交
2732
    :param padding: The padding size on the x axis. 0 is the default padding size.
Z
zhangjinchao01 已提交
2733
    :type padding: int
R
ranqiu 已提交
2734 2735 2736 2737
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
2738
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
2739
    :type input: LayerOutput
R
ranqiu 已提交
2740
    :param pool_size: The pooling window length on the x axis.
Z
zhangjinchao01 已提交
2741
    :type pool_size: int
R
ranqiu 已提交
2742 2743 2744 2745 2746 2747 2748
    :param pool_size_y: The pooling window length on the y axis. If the parameter is
                        not set or set to None, its actual value will be automatically
                        set to pool_size.
    :type pool_size_y: int
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
2749
    :type num_channels: int
R
ranqiu 已提交
2750
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Z
zhangjinchao01 已提交
2751
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2752
    :param stride: The stride on the x axis. 1 is the default value.
Z
zhangjinchao01 已提交
2753
    :type stride: int
R
ranqiu 已提交
2754 2755 2756 2757 2758
    :param stride_y: The stride on the y axis. If the parameter is not set or set to
                     None, its actual value will be automatically set to 'stride'.
    :type stride_y: int
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
2759
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2760 2761 2762
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
2763
    :type ceil_mode: bool
D
dangqingqing 已提交
2764 2765
    :return: LayerOutput object.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

X
xzl 已提交
2776
    assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling,
W
wanghaoshuang 已提交
2777
                               CudnnMaxPooling], \
X
xzl 已提交
2778
        "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported"
W
wanghaoshuang 已提交
2779

2780
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2781
        if (
Y
Yu Yang 已提交
2782
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2783
        else pool_type.name
2784 2785 2786 2787
    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

X
xuwei06 已提交
2788
    l = Layer(
Z
zhangjinchao01 已提交
2789 2790
        name=name,
        type=LayerType.POOL_LAYER,
Q
qijun 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
L
Luo Tao 已提交
2803
                    padding_y=padding_y))
Q
qijun 已提交
2804
        ],
2805
        ceil_mode=ceil_mode,
Q
qijun 已提交
2806 2807 2808 2809 2810 2811 2812
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
2813 2814


C
chengduoZH 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
@wrap_name_default("pool3d")
@layer_support()
def img_pool3d_layer(input,
                     pool_size,
                     name=None,
                     num_channels=None,
                     pool_type=None,
                     stride=1,
                     padding=0,
                     layer_attr=None,
                     pool_size_y=None,
                     stride_y=None,
                     padding_y=None,
                     pool_size_z=None,
                     stride_z=None,
                     padding_z=None,
                     ceil_mode=True):
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
        d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool3d_layer(input=conv,
                                 pool_size=3,
                                 num_channels=8,
                                 stride=1,
                                 padding=1,
                                 pool_type=MaxPooling())

    :param padding: pooling padding width.
R
ranqiu 已提交
2867
    :type padding: int | tuple | list
R
ranqiu 已提交
2868
    :param name: The name of this layer. It is optional.
C
chengduoZH 已提交
2869
    :type name: basestring.
R
ranqiu 已提交
2870
    :param input: The input of this layer.
C
chengduoZH 已提交
2871
    :type input: LayerOutput
R
ranqiu 已提交
2872 2873
    :param pool_size: The pooling window lengths along three axises. If the parameter
                      is set to one integer, the three lengths will be same.
R
ranqiu 已提交
2874
    :type pool_size: int | tuple | list
R
ranqiu 已提交
2875 2876 2877
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
C
chengduoZH 已提交
2878
    :type num_channels: int
R
ranqiu 已提交
2879
    :param pool_type: Pooling type. MaxPooling is the default pooling.
C
chengduoZH 已提交
2880
    :type pool_type: BasePoolingType
R
ranqiu 已提交
2881 2882 2883
    :param stride: The strides of the pooling along three axises. If the parameter
                   is set to one integer, the three strides will be same. 1 is the
                   default value.
R
ranqiu 已提交
2884
    :type stride: int | tuple | list
R
ranqiu 已提交
2885 2886 2887 2888 2889
    :param padding: The sizes of padding along three axises. If the parameter is set to
                    one integer, they will be same. 0 is the default padding size.
    :type padding: int | tuple | list
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
C
chengduoZH 已提交
2890
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
2891 2892 2893
    :param ceil_mode: Wether to use the ceil function to calculate output height and width.
                      True is the default. If it is set to False, the floor function will
                      be used.
C
chengduoZH 已提交
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
    :type ceil_mode: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name + '-projection' \
        if (
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
        else pool_type.name

    if isinstance(pool_size, collections.Sequence):
        assert len(pool_size) == 3
        pool_size, pool_size_y, pool_size_z = pool_size
    else:
        pool_size_y = pool_size
        pool_size_z = pool_size

    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride

    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_y = padding
    else:
        padding_y = padding
        padding_z = padding

    l = Layer(
        name=name,
        type=LayerType.POOL3D_LAYER,
        inputs=[
            Input(
                input.name,
                pool=Pool3d(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
                    padding_y=padding_y,
                    size_z=pool_size_z,
                    stride_z=stride_z,
                    padding_z=padding_z))
        ],
        ceil_mode=ceil_mode,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


Q
qijun 已提交
2963 2964
@wrap_name_default("spp")
@layer_support()
Q
qijun 已提交
2965 2966 2967 2968 2969 2970
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2971
    """
R
ranqiu 已提交
2972 2973 2974 2975 2976
    A layer performs spatial pyramid pooling.

    Reference:
        Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
        https://arxiv.org/abs/1406.4729
Q
qijun 已提交
2977

L
Luo Tao 已提交
2978 2979 2980 2981
    The example usage is:

    ..  code-block:: python

2982 2983 2984
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2985 2986
                        pool_type=MaxPooling())

2987
    :param name: The name of this layer. It is optional.
Q
qijun 已提交
2988
    :type name: basestring
R
ranqiu 已提交
2989
    :param input: The input of this layer.
Q
qijun 已提交
2990
    :type input: LayerOutput
R
ranqiu 已提交
2991 2992 2993
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Q
qijun 已提交
2994
    :type num_channels: int
R
ranqiu 已提交
2995
    :param pool_type: Pooling type. MaxPooling is the default pooling.
Q
qijun 已提交
2996
    :type scale: BasePoolingType
R
ranqiu 已提交
2997
    :param pyramid_height: The pyramid height of this pooling.
Q
qijun 已提交
2998
    :type pyramid_height: int
R
ranqiu 已提交
2999 3000
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Q
qijun 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

Q
qijun 已提交
3018
    l = Layer(
Q
qijun 已提交
3019 3020
        name=name,
        type=LayerType.SPP_LAYER,
Q
qijun 已提交
3021 3022 3023 3024 3025
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
L
Luo Tao 已提交
3026
                pyramid_height=pyramid_height)),
Q
qijun 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
Z
zhangjinchao01 已提交
3038 3039 3040 3041
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

X
xuwei06 已提交
3042
    l = Layer(
Q
qijun 已提交
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
Z
zhangjinchao01 已提交
3062 3063 3064 3065


@wrap_name_default("crmnorm")
@layer_support()
Q
qijun 已提交
3066 3067 3068 3069 3070 3071
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
3072
                      layer_attr=None):
Z
zhangjinchao01 已提交
3073
    """
3074
    Response normalization across feature maps.
R
ranqiu 已提交
3075 3076 3077 3078

    Reference:
        ImageNet Classification with Deep Convolutional Neural Networks
        http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
Z
zhangjinchao01 已提交
3079

L
Luo Tao 已提交
3080 3081 3082
    The example usage is:

    ..  code-block:: python
3083

L
Luo Tao 已提交
3084 3085
        norm = img_cmrnorm_layer(input=net, size=5)

3086
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3087
    :type name: basestring
R
ranqiu 已提交
3088
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3089
    :type input: LayerOutput
3090
    :param size: Normalize in number of :math:`size` feature maps.
Z
zhangjinchao01 已提交
3091
    :type size: int
D
dangqingqing 已提交
3092
    :param scale: The hyper-parameter.
Z
zhangjinchao01 已提交
3093
    :type scale: float
D
dangqingqing 已提交
3094
    :param power: The hyper-parameter.
Z
zhangjinchao01 已提交
3095
    :type power: float
R
ranqiu 已提交
3096 3097 3098 3099 3100
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3101
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3102
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3103 3104 3105
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
3106
                              power, num_channels, 0, layer_attr)
Z
zhangjinchao01 已提交
3107 3108 3109


@wrap_bias_attr_default()
3110 3111
@wrap_param_attr_default(
    default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.))
Z
zhangjinchao01 已提交
3112 3113
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
3114
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3115 3116 3117
def batch_norm_layer(input,
                     act=None,
                     name=None,
C
chengduoZH 已提交
3118
                     img3D=False,
Q
qijun 已提交
3119 3120 3121 3122
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
Z
zhangjinchao01 已提交
3123
                     batch_norm_type=None,
P
peterzhang2029 已提交
3124
                     epsilon=1e-5,
Z
zhangjinchao01 已提交
3125
                     moving_average_fraction=0.9,
C
chengduoZH 已提交
3126 3127
                     use_global_stats=None,
                     mean_var_names=None):
Z
zhangjinchao01 已提交
3128
    """
R
ranqiu 已提交
3129
    Batch Normalization Layer. The notation of this layer is as follows.
Z
zhangjinchao01 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

R
ranqiu 已提交
3143 3144 3145 3146
    Reference:
        Batch Normalization: Accelerating Deep Network Training by Reducing
        Internal Covariate Shift
        http://arxiv.org/abs/1502.03167
Z
zhangjinchao01 已提交
3147

L
Luo Tao 已提交
3148 3149 3150
    The example usage is:

    ..  code-block:: python
3151

L
Luo Tao 已提交
3152 3153
        norm = batch_norm_layer(input=net, act=ReluActivation())

3154
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3155
    :type name: basestring
R
ranqiu 已提交
3156
    :param input: This layer's input which is to be performed batch normalization on.
Z
zhangjinchao01 已提交
3157
    :type input: LayerOutput
3158 3159 3160 3161 3162
    :param batch_norm_type: We have batch_norm, mkldnn_batch_norm and cudnn_batch_norm.
                            batch_norm supports CPU, MKLDNN and GPU. cudnn_batch_norm
                            requires cuDNN version greater or equal to v4 (>=v4).
                            But cudnn_batch_norm is faster and needs less
                            memory than batch_norm. mkldnn_batch_norm requires
R
ranqiu 已提交
3163 3164
                            use_mkldnn is enabled. By default (None), we will
                            automatically select cudnn_batch_norm for GPU,
3165
                            mkldnn_batch_norm for MKLDNN and batch_norm for CPU.
R
ranqiu 已提交
3166 3167 3168
                            Users can specify the batch norm type. If you use
                            cudnn_batch_norm, we suggested you use latest version,
                            such as v5.1.
R
ranqiu 已提交
3169
    :type batch_norm_type: None | string, None or "batch_norm" or "cudnn_batch_norm"
3170
                           or "mkldnn_batch_norm"
R
ranqiu 已提交
3171
    :param act: Activation type. ReluActivation is the default activation.
Z
zhangjinchao01 已提交
3172
    :type act: BaseActivation
R
ranqiu 已提交
3173 3174 3175
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
Z
zhangjinchao01 已提交
3176
    :type num_channels: int
R
ranqiu 已提交
3177 3178 3179 3180
    :param bias_attr: :math:`\\beta`. The bias attribute. If the parameter is set to
                      False or an object whose type is not ParameterAttribute, no
                      bias is defined. If the parameter is set to True, the bias is
                      initialized to zero.
R
ranqiu 已提交
3181
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3182 3183
    :param param_attr: :math:`\\gamma`. The parameter attribute. See ParameterAttribute
                       for details.
Z
zhangjinchao01 已提交
3184
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
3185 3186
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3187
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3188 3189 3190 3191 3192 3193
    :param use_global_stats: Whether use moving mean/variance statistics during
                             testing peroid. If the parameter is set to None or
                             True, it will use moving mean/variance statistics
                             during testing. If the parameter is set to False, it
                             will use the mean and variance of the current batch
                             of test data.
R
ranqiu 已提交
3194
    :type use_global_stats: bool | None.
P
peterzhang2029 已提交
3195
    :param epsilon: The small constant added to the variance to improve numeric stability.
P
peterzhang2029 已提交
3196
    :type epsilon: float.
R
ranqiu 已提交
3197 3198
    :param moving_average_fraction: Factor used in the moving average computation.
                                   :math:`runningMean = newMean*(1-factor) + runningMean*factor`
Z
zhangjinchao01 已提交
3199
    :type moving_average_fraction: float.
C
chengduoZH 已提交
3200 3201
    :param mean_var_names: [mean name, variance name]
    :type mean_var_names: string list
D
dangqingqing 已提交
3202
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211
    :rtype: LayerOutput
    """

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
3212
           (batch_norm_type == "mkldnn_batch_norm") or \
Z
zhangjinchao01 已提交
3213
           (batch_norm_type == "cudnn_batch_norm")
P
peterzhang2029 已提交
3214

X
xuwei06 已提交
3215
    l = Layer(
Z
zhangjinchao01 已提交
3216
        name=name,
C
chengduoZH 已提交
3217
        img3D=img3D,
Q
qijun 已提交
3218 3219
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
Z
zhangjinchao01 已提交
3220 3221 3222 3223
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
P
peterzhang2029 已提交
3224
        epsilon=epsilon,
Z
zhangjinchao01 已提交
3225 3226
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
C
chengduoZH 已提交
3227
        mean_var_names=mean_var_names,
Q
qijun 已提交
3228
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3229

Q
qijun 已提交
3230 3231 3232 3233 3234 3235 3236
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
Z
zhangjinchao01 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

R
ranqiu 已提交
3258
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3259
    :type input: LayerOutput
3260
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3261
    :type name: basestring
R
ranqiu 已提交
3262 3263 3264
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3265
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3266 3267 3268 3269 3270 3271
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
Q
qijun 已提交
3272 3273 3274
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
Z
zhangjinchao01 已提交
3275 3276


G
guosheng 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
@wrap_name_default()
@layer_support()
def row_l2_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for L2-normalization in each row.

    .. math::
       out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}

    where the size of :math:`in` is (batchSize x dataDim) ,
    and the size of :math:`out` is a (batchSize x dataDim) .

    The example usage is:

    .. code-block:: python

       row_l2_norm_layer = row_l2_norm_layer(input=layer)

R
ranqiu 已提交
3295
    :param input: The input of this layer.
G
guosheng 已提交
3296
    :type input: LayerOutput
3297
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
3298
    :type name: basestring
R
ranqiu 已提交
3299 3300
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute
                       for details.
G
guosheng 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.ROW_L2_NORM_LAYER,
        inputs=[input.name],
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_L2_NORM_LAYER, parents=[input], size=input.size)


Z
zhangjinchao01 已提交
3314 3315 3316
@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
3317
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
3318
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
Z
zhangjinchao01 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

R
ranqiu 已提交
3337 3338 3339
    This layer just simply adds all input layers together, then activates the
    sum. All inputs should share the same dimension, which is also the dimension
    of this layer's output.
Z
zhangjinchao01 已提交
3340

C
caoying03 已提交
3341 3342 3343
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
Z
zhangjinchao01 已提交
3344

3345
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3346
    :type name: basestring
R
ranqiu 已提交
3347
    :param input: The input layers. It could be a LayerOutput or list/tuple of
Z
zhangjinchao01 已提交
3348
                 LayerOutput.
R
ranqiu 已提交
3349
    :type input: LayerOutput | list | tuple
3350
    :param act: Activation Type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3351
    :type act: BaseActivation
R
ranqiu 已提交
3352 3353 3354
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3355
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3356 3357
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3358
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3359
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3360 3361 3362 3363 3364 3365
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

3366
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3367 3368 3369 3370 3371 3372 3373
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

X
xuwei06 已提交
3374
    l = Layer(
Q
qijun 已提交
3375 3376 3377
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
Z
zhangjinchao01 已提交
3378 3379
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
Q
qijun 已提交
3380
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3381

Q
qijun 已提交
3382 3383 3384 3385 3386 3387 3388
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
Z
zhangjinchao01 已提交
3389 3390 3391 3392


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
3393
@layer_support(DROPOUT, ERROR_CLIPPING)
3394
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
Z
zhangjinchao01 已提交
3395
    """
R
ranqiu 已提交
3396 3397
    Concatenate all input vectors to one vector.
    Inputs can be a list of LayerOutput or a list of projection.
Z
zhangjinchao01 已提交
3398

3399 3400 3401 3402 3403 3404
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

3405
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3406
    :type name: basestring
R
ranqiu 已提交
3407
    :param input: The input layers or projections
R
ranqiu 已提交
3408
    :type input: list | tuple | collections.Sequence
3409
    :param act: Activation type. IdentityActivation is the default activation.
Z
zhangjinchao01 已提交
3410
    :type act: BaseActivation
R
ranqiu 已提交
3411 3412
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
3413
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3414
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3415 3416 3417 3418 3419 3420 3421 3422
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
3423
        assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
3424 3425

    def __is_type__(o, tp):
3426
        if not isinstance(o, collections.Sequence):
Z
zhangjinchao01 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

Q
qijun 已提交
3448 3449
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
Z
zhangjinchao01 已提交
3450

Q
qijun 已提交
3451 3452
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
Z
zhangjinchao01 已提交
3453

3454 3455
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
3456

3457
    layer = Layer(
Q
qijun 已提交
3458 3459
        name=name,
        type=layer_type,
Z
zhangjinchao01 已提交
3460 3461
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
3462
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
3463
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3464

3465
    sz = layer.config.size
Z
zhangjinchao01 已提交
3466

Q
qijun 已提交
3467 3468 3469 3470 3471 3472 3473 3474
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


3475 3476
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
3477
@wrap_bias_attr_default(has_bias=False)
3478
@layer_support(DROPOUT, ERROR_CLIPPING)
3479 3480 3481
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
R
ranqiu 已提交
3482
    Concatenate sequence a and sequence b.
3483

3484
    Inputs:
X
xuwei06 已提交
3485
      - a = [a1, a2, ..., am]
3486
      - b = [b1, b2, ..., bn]
3487

X
xuwei06 已提交
3488 3489 3490 3491
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
3492 3493 3494 3495 3496 3497 3498

    The example usage is:

    ..  code-block:: python

        concat = seq_concat_layer(a=layer1, b=layer2)

3499
    :param name: The name of this layer. It is optional.
3500
    :type name: basestring
R
ranqiu 已提交
3501
    :param a: The first input sequence layer
3502
    :type a: LayerOutput
R
ranqiu 已提交
3503
    :param b: The second input sequence layer
3504
    :type b: LayerOutput
3505
    :param act: Activation type. IdentityActivation is the default activation.
3506
    :type act: BaseActivation
R
ranqiu 已提交
3507 3508
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3509
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
3510 3511 3512
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3513
    :type bias_attr: ParameterAttribute | None | bool | Any
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


3535
@wrap_name_default("memory", "memory_name")
Q
qijun 已提交
3536 3537
def memory(name,
           size,
3538
           memory_name=None,
Q
qijun 已提交
3539 3540 3541 3542
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
Z
zhangjinchao01 已提交
3543 3544
           boot_with_const_id=None):
    """
R
ranqiu 已提交
3545
    The memory takes a layer's output at previous time step as its own output.
Z
zhangjinchao01 已提交
3546

R
ranqiu 已提交
3547
    If boot_bias, the activation of the bias is the initial value of the memory.
Z
zhangjinchao01 已提交
3548

R
ranqiu 已提交
3549 3550
    If boot_with_const_id is set, then the memory's output at the first time step
    is a IndexSlot, the Arguments.ids()[0] is this :code:`cost_id`.
Z
zhangjinchao01 已提交
3551

R
ranqiu 已提交
3552 3553
    If boot_layer is specified, the memory's output at the first time step will
    be the boot_layer's output.
Z
zhangjinchao01 已提交
3554

R
ranqiu 已提交
3555
    In other case, the default memory's output at the first time step is zero.
Z
zhangjinchao01 已提交
3556

3557 3558 3559 3560 3561
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

R
ranqiu 已提交
3562 3563
    If you do not want to specify the name, you can also use set_input()
    to specify the layer to be remembered as the following:
3564 3565

    .. code-block:: python
L
Liu Yiqun 已提交
3566

3567 3568 3569 3570
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

R
ranqiu 已提交
3571
    :param name: The name of the layer which this memory remembers.
3572 3573
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
Z
zhangjinchao01 已提交
3574
    :type name: basestring
R
ranqiu 已提交
3575
    :param size: The dimensionality of memory.
Z
zhangjinchao01 已提交
3576
    :type size: int
R
ranqiu 已提交
3577
    :param memory_name: The name of the memory. It is ignored when name is provided.
3578
    :type memory_name: basestring
3579
    :param is_seq: DEPRECATED. is sequence for boot_layer
Z
zhangjinchao01 已提交
3580
    :type is_seq: bool
R
ranqiu 已提交
3581 3582
    :param boot_layer: This parameter specifies memory's output at the first time
                       step and the output is boot_layer's output.
R
ranqiu 已提交
3583
    :type boot_layer: LayerOutput | None
R
ranqiu 已提交
3584 3585 3586 3587
    :param boot_bias: The bias attribute of memory's output at the first time step.
                      If the parameter is set to False or an object whose type is not
                      ParameterAttribute, no bias is defined. If the parameter is set
                      to True, the bias is initialized to zero.
R
ranqiu 已提交
3588
    :type boot_bias: ParameterAttribute | None
R
ranqiu 已提交
3589 3590
    :param boot_bias_active_type: Activation type for memory's bias at the first time
                                  step. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
3591
    :type boot_bias_active_type: BaseActivation
R
ranqiu 已提交
3592 3593
    :param boot_with_const_id: This parameter specifies memory's output at the first
                               time step and the output is an index.
Z
zhangjinchao01 已提交
3594
    :type boot_with_const_id: int
R
ranqiu 已提交
3595
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
3606 3607
    if name is not None:
        memory_name = None
Z
zhangjinchao01 已提交
3608

3609 3610 3611 3612 3613 3614 3615 3616
    memory_name = Memory(
        name,
        size,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
Q
qijun 已提交
3617 3618

    lout = LayerOutput(
3619
        name=memory_name,
Q
qijun 已提交
3620 3621 3622
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
Z
zhangjinchao01 已提交
3623 3624 3625 3626
    return lout


@wrap_bias_attr_default()
3627 3628
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(param_names=['state_act'], act=TanhActivation())
Z
zhangjinchao01 已提交
3629 3630 3631
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
Q
qijun 已提交
3632 3633
def lstm_step_layer(input,
                    state,
3634
                    size=None,
Q
qijun 已提交
3635 3636 3637 3638 3639 3640
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3641
    """
3642 3643
    LSTM Step Layer. This function is used only in recurrent_group.
    The lstm equations are shown as follows.
Z
zhangjinchao01 已提交
3644 3645 3646

    ..  math::

3647
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
3648

3649
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
3650

3651
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
3652

3653
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
Z
zhangjinchao01 已提交
3654

L
luotao02 已提交
3655
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
3656 3657


L
luotao02 已提交
3658
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
Z
zhangjinchao01 已提交
3659
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
3660
    input vectors.
Z
zhangjinchao01 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


3671
    This layer has two outputs. The default output is :math:`h_t`. The other
R
ranqiu 已提交
3672
    output is :math:`o_t`, whose name is 'state' and users can use
Z
zhangjinchao01 已提交
3673 3674
    :code:`get_output_layer` to extract this output.

3675
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3676
    :type name: basestring
R
ranqiu 已提交
3677 3678
    :param size: The dimension of this layer's output, which must be
                 equal to the dimension of the state.
Z
zhangjinchao01 已提交
3679
    :type size: int
R
ranqiu 已提交
3680
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
3681
    :type input: LayerOutput
3682
    :param state: The state of the LSTM unit.
Z
zhangjinchao01 已提交
3683
    :type state: LayerOutput
3684
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
3685
    :type act: BaseActivation
3686 3687
    :param gate_act: Activation type of the gate. SigmoidActivation is the
                     default activation.
Z
zhangjinchao01 已提交
3688
    :type gate_act: BaseActivation
3689 3690
    :param state_act: Activation type of the state. TanhActivation is the
                      default activation.
Z
zhangjinchao01 已提交
3691
    :type state_act: BaseActivation
R
ranqiu 已提交
3692 3693 3694
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
3695
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3696
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
Z
zhangjinchao01 已提交
3697
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3698
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3699 3700
    :rtype: LayerOutput
    """
3701 3702 3703

    assert size is None or state.size == size
    size = state.size
Z
zhangjinchao01 已提交
3704 3705 3706 3707 3708 3709 3710
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3711
        size=state.size,
Q
qijun 已提交
3712 3713
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3714

Q
qijun 已提交
3715 3716 3717 3718 3719 3720 3721
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
Z
zhangjinchao01 已提交
3722 3723 3724


@wrap_bias_attr_default()
W
wangyang59 已提交
3725
@wrap_param_attr_default()
Q
qijun 已提交
3726
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
Z
zhangjinchao01 已提交
3727 3728 3729
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
Q
qijun 已提交
3730 3731 3732 3733 3734 3735 3736
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
W
wangyang59 已提交
3737
                   param_attr=None,
Q
qijun 已提交
3738
                   layer_attr=None):
Z
zhangjinchao01 已提交
3739 3740
    """

R
ranqiu 已提交
3741
    :param input: The input of this layer, whose dimension can be divided by 3.
Z
zhangjinchao01 已提交
3742
    :type input: LayerOutput
R
ranqiu 已提交
3743 3744 3745 3746 3747 3748
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3749 3750
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3751
    :type act: BaseActivation
3752
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3753
    :type name: basestring
3754 3755
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation is
                     the default activation.
R
ranqiu 已提交
3756
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3757 3758 3759 3760
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3761
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3762 3763 3764 3765
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3766
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3767 3768 3769 3770 3771 3772 3773 3774
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3775 3776 3777 3778
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3779
        # backward model compatibility.
3780
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
Z
zhangjinchao01 已提交
3781 3782 3783 3784
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
Q
qijun 已提交
3785
        **ExtraAttr.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3786
    return LayerOutput(
Q
qijun 已提交
3787 3788
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
Z
zhangjinchao01 已提交
3789
        parents=[input, output_mem],
Q
qijun 已提交
3790 3791
        size=size,
        activation=act)
Z
zhangjinchao01 已提交
3792 3793


Y
Yu Yang 已提交
3794 3795 3796 3797
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3798
@wrap_name_default('gru_step_naive')
Y
Yu Yang 已提交
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
3810
    GRU Step Layer, which is realized using PaddlePaddle API. It supports ERROR_CLIPPING
Y
Yu Yang 已提交
3811 3812
    and DROPOUT.

3813
    :param input: The input of this layer, whose dimensionality can be divided by 3.
R
ranqiu 已提交
3814 3815 3816 3817 3818 3819
    :param output_mem: A memory which memorizes the output of this layer at previous
                       time step.
    :type output_mem: LayerOutput
    :param size: The dimension of this layer's output. If it is not set or set to None,
                 it will be set to one-third of the dimension of the input automatically.
    :type size: int
3820
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
3821
    :type name: basestring
3822 3823
    :param act: Activation type of this layer's output. TanhActivation
                is the default activation.
R
ranqiu 已提交
3824
    :type act: BaseActivation
3825 3826
    :param gate_act: Activation type of this layer's two gates. SigmoidActivation
                     is the default activation.
R
ranqiu 已提交
3827
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
3828 3829 3830 3831
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute, no bias
                      is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3832
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3833 3834 3835 3836 3837
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
R
ranqiu 已提交
3838
    :rtype: LayerOutput
Y
Yu Yang 已提交
3839 3840 3841 3842 3843 3844
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

3845
    if bias_attr and bias_attr.attr.get("parameter_name", None) is not None:
3846 3847 3848 3849
        raise ValueError("You should not specify the field `name` in bias_attr."
                         " Otherwise, the three biases, which correponding to "
                         " the two gates and the mixed layer for computing Wx+b"
                         ", will share the same parameter matrix unexpectedly.")
3850

Y
Yu Yang 已提交
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


Z
zhangjinchao01 已提交
3888 3889 3890 3891
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
C
caoying03 已提交
3892 3893 3894 3895
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
Z
zhangjinchao01 已提交
3896

3897
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
3898
    :type name: basestring
R
ranqiu 已提交
3899
    :param input: The input layer. And this layer should contain
Z
zhangjinchao01 已提交
3900 3901
                   multiple outputs.
    :type input: LayerOutput
3902
    :param arg_name: The name of the output to be extracted from the input layer.
Z
zhangjinchao01 已提交
3903
    :type arg_name: basestring
R
ranqiu 已提交
3904 3905
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
3906
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
3907 3908 3909 3910 3911 3912 3913
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
Q
qijun 已提交
3914 3915 3916 3917 3918 3919 3920
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
3921

Q
qijun 已提交
3922 3923 3924 3925 3926
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
Z
zhangjinchao01 已提交
3927 3928 3929 3930 3931 3932 3933


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
Q
qijun 已提交
3934 3935 3936 3937 3938 3939 3940
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
Z
zhangjinchao01 已提交
3941
    """
3942 3943
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
Z
zhangjinchao01 已提交
3944

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


R
ranqiu 已提交
3960
    :param input: The input of this layer.
3961
    :type input: LayerOutput
3962
    :param act: Activation type. TanhActivation is the default activation.
3963
    :type act: BaseActivation
3964
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
P
peterzhang2029 已提交
3965 3966 3967
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If the parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
3968
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
3969 3970
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
3971
    :type param_attr: ParameterAttribute
3972
    :param name: The name of this layer. It is optional.
3973
    :type name: basestring
R
ranqiu 已提交
3974 3975
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
3976
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3977
    :return: LayerOutput object.
3978
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
3979
    """
Q
qijun 已提交
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
Z
zhangjinchao01 已提交
3995 3996 3997 3998 3999


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
R
ranqiu 已提交
4000
    and can be a sequence or non-sequence.
4001 4002
    :param size: DEPRECATED
    :param is_seq: DEPRECATED
Z
zhangjinchao01 已提交
4003
    """
4004

Z
zhangjinchao01 已提交
4005 4006 4007
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
4008
        assert input.size is not None
Z
zhangjinchao01 已提交
4009
        if size is not None:
4010
            assert input.size == size
Z
zhangjinchao01 已提交
4011 4012


4013
def SubsequenceInput(input):
Z
zhangjinchao01 已提交
4014
    """
4015
    DEPRECATED.
Z
zhangjinchao01 已提交
4016 4017 4018 4019 4020 4021 4022 4023
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
4024
    return input
Z
zhangjinchao01 已提交
4025 4026 4027


@wrap_name_default("recurrent_group")
4028
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
Z
zhangjinchao01 已提交
4029
    """
C
caoying03 已提交
4030 4031 4032
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
4033 4034
    sequence input. This is useful for attention-based models, or Neural
    Turning Machine like models.
Z
zhangjinchao01 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

4056 4057
    :param step: A step function which takes the input of recurrent_group as its own
                 input and returns values as recurrent_group's output every time step.
Z
zhangjinchao01 已提交
4058

R
ranqiu 已提交
4059 4060 4061
                 The recurrent group scatters a sequence into time steps. And
                 for each time step, it will invoke step function, and return
                 a time step result. Then gather outputs of each time step into
Z
zhangjinchao01 已提交
4062 4063 4064 4065
                 layer group's output.

    :type step: callable

R
ranqiu 已提交
4066
    :param name: The recurrent_group's name. It is optional.
Z
zhangjinchao01 已提交
4067 4068 4069 4070 4071 4072 4073
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
R
ranqiu 已提交
4074
                  over time. It's a mechanism to access layer outside step function.
Z
zhangjinchao01 已提交
4075

R
ranqiu 已提交
4076
    :type input: LayerOutput | StaticInput | SubsequenceInput | list | tuple
Z
zhangjinchao01 已提交
4077

R
ranqiu 已提交
4078
    :param reverse: If reverse is set to True, the recurrent unit will process the
4079
                    input sequence in a reverse order.
Z
zhangjinchao01 已提交
4080
    :type reverse: bool
4081

4082 4083
    :param targetInlink: DEPRECATED.
                         The input layer which share info with layer group's output
4084 4085 4086 4087 4088 4089 4090

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

R
ranqiu 已提交
4091
    :type targetInlink: LayerOutput | SubsequenceInput
4092

D
dangqingqing 已提交
4093
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4094 4095 4096 4097
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

4098
    if isinstance(input, LayerOutput) or isinstance(input, StaticInput):
Z
zhangjinchao01 已提交
4099
        input = [input]
4100
    assert isinstance(input, collections.Sequence)
Z
zhangjinchao01 已提交
4101 4102

    def is_in_links(x):
4103
        return isinstance(x, LayerOutput)
Z
zhangjinchao01 已提交
4104 4105 4106 4107

    in_links = filter(is_in_links, input)

    RecurrentLayerGroupWithoutOutLinksBegin(
Q
qijun 已提交
4108
        name=name,
4109 4110
        in_links=map(lambda x: x.name, in_links),
        seq_reversed=reverse)
Z
zhangjinchao01 已提交
4111 4112
    in_args = []
    for each_input in input:
4113
        if isinstance(each_input, StaticInput):  # StaticInput
Z
zhangjinchao01 已提交
4114
            mem_name = "__%s_memory__" % each_input.input.name
Q
qijun 已提交
4115
            mem = memory(
4116
                name=None,
Q
qijun 已提交
4117 4118
                size=each_input.input.size,
                boot_layer=each_input.input)
4119
            mem.set_input(mem)
Z
zhangjinchao01 已提交
4120
            in_args.append(mem)
4121 4122
        else:
            in_args.append(each_input)
L
Luo Tao 已提交
4123

Z
zhangjinchao01 已提交
4124 4125 4126 4127 4128
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

4129 4130 4131 4132 4133 4134
    for layer_out in layer_outs:
        assert isinstance(
            layer_out, LayerOutput
        ), "Type of step function's return value must be LayerOutput."
        layer_out.reverse = reverse
        RecurrentLayerGroupSetOutLink(layer_out.name)
Z
zhangjinchao01 已提交
4135 4136 4137

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
4138
    for layer_out in layer_outs:
4139 4140
        # The previous full_name is the name inside the recurrent group.
        # We need a full_name outside the recurrent group.
X
xuwei06 已提交
4141 4142
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

Z
zhangjinchao01 已提交
4143 4144 4145 4146 4147
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

4148

Z
zhangjinchao01 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
        if isinstance(input, LayerOutput):
            input = [input]
        elif isinstance(input, collections.Sequence):
            input = list(input)
            if len(input) > 1:
                logger.info(
                    ("More than one layers inside the recurrent_group "
                     "are returned as outputs of the entire recurrent_group "
                     "PLEASE garantee the first output is probability of "
                     "the predicted next word."))

        return [maxid_layer(
            input=input[0], name='__beam_search_predict__')] + (
                input[1:] if len(input) > 1 else [])
Z
zhangjinchao01 已提交
4177 4178

    def before_real_step(self):
Q
qijun 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
Z
zhangjinchao01 已提交
4188 4189 4190
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
4191
        super(GeneratedInput, self).__init__()
Z
zhangjinchao01 已提交
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

R
ranqiu 已提交
4209
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4210
    :type input: LayerOutput
4211
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4212
    :type name: basestring
R
ranqiu 已提交
4213 4214
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4215
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4216
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4217 4218 4219 4220
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
Q
qijun 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4231

4232

R
ranqiu 已提交
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
@wrap_name_default()
def dot_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the dot product of two vectors.

    The example usage is:

    .. code-block:: python

        dot_prod = dot_prod_layer(input1=vec1, input2=vec2)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input1: The first input layer.
    :type input: LayerOutput
    :param input2: The second input layer.
    :type input2: LayerOutput
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
    assert input1.size == input2.size, ("Two inputs should have the same size.")

    l = Layer(
        name=name,
        type=LayerType.DOT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.DOT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)


H
Haonan 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

4284
    :param name: The name of this layer. It is optional.
H
Haonan 已提交
4285
    :type name: basestring
R
ranqiu 已提交
4286
    :param input1: The first input layer.
H
Haonan 已提交
4287
    :type input: LayerOutput
R
ranqiu 已提交
4288
    :param input2: The second input layer.
H
Haonan 已提交
4289
    :type input2: LayerOutput
R
ranqiu 已提交
4290 4291
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
H
Haonan 已提交
4292 4293 4294 4295 4296 4297 4298
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
Q
qijun 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
4309

Z
zhangjinchao01 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

4326
    :param name: The name of this layer. It is optional.
L
luotao02 已提交
4327
    :type name: basestring
R
ranqiu 已提交
4328
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
4329
    :type input: LayerOutput
R
ranqiu 已提交
4330
    :param eos_id: End id of sequence
Z
zhangjinchao01 已提交
4331
    :type eos_id: int
R
ranqiu 已提交
4332 4333
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
Z
zhangjinchao01 已提交
4334
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
4335
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4336 4337
    :rtype: LayerOutput
    """
Q
qijun 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
Z
zhangjinchao01 已提交
4349 4350 4351


@wrap_name_default()
Q
qijun 已提交
4352 4353 4354 4355 4356 4357 4358
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
Z
zhangjinchao01 已提交
4359
                num_results_per_sample=None):
4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
4371
            with mixed_layer(size=512, name='rnn') as simple_rnn:
4372 4373 4374 4375
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

4376 4377 4378 4379 4380
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

4381 4382
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
4383 4384
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
4385 4386
                               bos_id=0,
                               eos_id=1,
4387
                               beam_size=5)
4388 4389 4390 4391 4392 4393

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

4394 4395
    :param name: The name of the recurrent unit that is responsible for
                 generating sequences. It is optional.
R
ranqiu 已提交
4396
    :type name: basestring
4397
    :param step: A callable function that defines the calculation in a time
4398
                 step, and it is applied to sequences with arbitrary length by
4399 4400 4401 4402 4403
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
4404 4405
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
4406
                  In beam_search, none of the input's type should be LayerOutput.
4407
    :type input: list
4408 4409 4410
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
4411
                   symbol is essential, since it is used to initialize the RNN
4412 4413 4414 4415 4416 4417 4418 4419
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
4420 4421
    :param max_length: Max generated sequence length.
    :type max_length: int
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
4432 4433
    :return: The generated word index.
    :rtype: LayerOutput
4434 4435
    """

Z
zhangjinchao01 已提交
4436 4437 4438 4439 4440
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

Q
qijun 已提交
4441
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
Z
zhangjinchao01 已提交
4442 4443 4444 4445 4446 4447
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
4448 4449 4450
        assert not isinstance(each_input, LayerOutput), (
            "in beam_search, "
            "none of the input should has a type of LayerOutput.")
Z
zhangjinchao01 已提交
4451
        if isinstance(each_input, BaseGeneratedInput):
4452 4453
            assert generated_input_index == -1, ("recurrent_group accepts "
                                                 "only one GeneratedInput.")
Z
zhangjinchao01 已提交
4454
            generated_input_index = i
4455

Z
zhangjinchao01 已提交
4456 4457 4458
        else:
            real_input.append(each_input)

4459
    assert generated_input_index != -1, "No GeneratedInput is given."
Z
zhangjinchao01 已提交
4460 4461 4462 4463 4464 4465 4466 4467

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
Q
qijun 已提交
4468 4469 4470 4471 4472 4473
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
Z
zhangjinchao01 已提交
4474 4475 4476 4477 4478 4479

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

4480
        eos_layer(input=predict[0], eos_id=eos_id, name=eos_name)
Z
zhangjinchao01 已提交
4481 4482
        return predict

4483 4484
    return recurrent_group(
        step=__real_step__, input=real_input, reverse=False, name=name)
Z
zhangjinchao01 已提交
4485

Q
qijun 已提交
4486

4487 4488
def __cost_input__(input, label, weight=None):
    """
4489
    inputs and parents for cost layers.
4490
    """
C
caoying03 已提交
4491 4492 4493 4494 4495 4496
    if isinstance(input, LayerOutput):
        input = [input]
    if isinstance(label, LayerOutput):
        label = [label]
    ipts = [Input(ipt.name) for ipt in (input + label)]
    parents = [ipt for ipt in (input + label)]
4497
    if weight is not None:
4498
        assert weight.size == 1
4499 4500 4501
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
4502

Z
zhangjinchao01 已提交
4503 4504

@wrap_name_default()
L
luotao1 已提交
4505
@layer_support()
4506 4507 4508 4509 4510 4511
def square_error_cost(input,
                      label,
                      weight=None,
                      name=None,
                      coeff=1.0,
                      layer_attr=None):
Z
zhangjinchao01 已提交
4512
    """
4513
    sum of square error cost:
L
Luo Tao 已提交
4514 4515 4516

    ..  math::

4517
        cost = \\sum_{i=1}^N(t_i-y_i)^2
Z
zhangjinchao01 已提交
4518

4519
    :param name: The name of this layer. It is optional.
4520
    :type name: basestring
R
ranqiu 已提交
4521
    :param input: The first input layer.
4522
    :type input: LayerOutput
R
ranqiu 已提交
4523
    :param label: The input label.
4524
    :type label: LayerOutput
R
ranqiu 已提交
4525 4526
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4527
    :type weight: LayerOutput
R
ranqiu 已提交
4528
    :param coeff: The weight of the gradient in the back propagation.
4529
                  1.0 is the default value.
4530
    :type coeff: float
R
ranqiu 已提交
4531 4532
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4533
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4534
    :return: LayerOutput object.
4535
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
4536
    """
4537 4538
    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4539 4540 4541 4542
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
4543
        coeff=coeff,
Q
qijun 已提交
4544
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
4545
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4546 4547


4548
regression_cost = square_error_cost
L
Luo Tao 已提交
4549 4550


Z
zhangjinchao01 已提交
4551
@wrap_name_default("cost")
4552
@layer_support()
Q
qijun 已提交
4553 4554 4555 4556
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
4557
                        evaluator=classification_error_evaluator,
4558 4559
                        layer_attr=None,
                        coeff=1.):
Z
zhangjinchao01 已提交
4560 4561 4562
    """
    classification cost Layer.

4563
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4564
    :type name: basestring
R
ranqiu 已提交
4565
    :param input: The first input layer.
Z
zhangjinchao01 已提交
4566
    :type input: LayerOutput
R
ranqiu 已提交
4567
    :param label: The input label.
Z
zhangjinchao01 已提交
4568
    :type label: LayerOutput
R
ranqiu 已提交
4569 4570
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
4571
    :type weight: LayerOutput
R
ranqiu 已提交
4572 4573 4574 4575
    :param evaluator: Evaluator method. classification_error_evaluator is the default.
    :type evaluator: Evaluator method
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
4576
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
4577
    :param coeff: The weight of the gradient in the back propagation.
4578
                  1.0 is the default value.
4579
    :type coeff: float
D
dangqingqing 已提交
4580
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4581 4582 4583 4584 4585
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
4586 4587 4588

    ipts, parents = __cost_input__(input, label, weight)

Q
qijun 已提交
4589 4590 4591 4592
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
4593
        coeff=coeff,
Q
qijun 已提交
4594
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

4605
        e(name=e.__name__, input=input, label=label, weight=weight)
Z
zhangjinchao01 已提交
4606

4607
    if not isinstance(evaluator, collections.Sequence):
Z
zhangjinchao01 已提交
4608 4609 4610 4611 4612
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

X
xuwei06 已提交
4613
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
4614

4615

Q
qijun 已提交
4616 4617 4618 4619 4620 4621 4622 4623 4624
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
4625 4626
                  padding_y=None,
                  trans=False):
Z
zhangjinchao01 已提交
4627 4628 4629 4630
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
R
ranqiu 已提交
4631
    supports GPU mode.
Z
zhangjinchao01 已提交
4632 4633 4634 4635 4636

    The example usage is:

    .. code-block:: python

4637 4638
       op = conv_operator(img=input1,
                          filter=input2,
4639
                          filter_size=3,
Z
zhangjinchao01 已提交
4640 4641 4642
                          num_filters=64,
                          num_channels=64)

R
ranqiu 已提交
4643
    :param img: The input image.
4644
    :type img: LayerOutput
R
ranqiu 已提交
4645
    :param filter: The input filter.
4646
    :type filter: LayerOutput
R
ranqiu 已提交
4647
    :param filter_size: The dimension of the filter kernel on the x axis.
Z
zhangjinchao01 已提交
4648
    :type filter_size: int
R
ranqiu 已提交
4649 4650 4651
    :param filter_size_y: The dimension of the filter kernel on the y axis.
                          If the parameter is not set or set to None, it will
                          set to 'filter_size' automatically.
Z
zhangjinchao01 已提交
4652
    :type filter_size_y: int
R
ranqiu 已提交
4653
    :param num_filters: The number of the output channels.
4654
    :type num_filters: int
R
ranqiu 已提交
4655 4656 4657
    :param num_channels: The number of the input channels. If the parameter is not set
                         or set to None, it will be automatically set to the channel
                         number of the 'img'.
4658
    :type num_channels: int
R
ranqiu 已提交
4659
    :param stride: The stride on the x axis.
L
luotao02 已提交
4660
    :type stride: int
R
ranqiu 已提交
4661 4662
    :param stride_y: The stride on the y axis. If the parameter is not set or
                     set to None, it will be set to 'stride' automatically.
L
luotao02 已提交
4663
    :type stride_y: int
R
ranqiu 已提交
4664
    :param padding: The padding size on the x axis.
Z
zhangjinchao01 已提交
4665
    :type padding: int
R
ranqiu 已提交
4666 4667
    :param padding_y: The padding size on the y axis. If the parameter is not set
                      or set to None, it will be set to 'padding' automatically.
Z
zhangjinchao01 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4678

4679 4680
    if num_channels is None:
        num_channels = img.num_filters
4681 4682

    assert isinstance(filter, LayerOutput)
4683
    assert filter.size is not None
4684

4685 4686 4687
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
Q
qijun 已提交
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4699

4700
    op.origin = [img, filter]
Z
zhangjinchao01 已提交
4701 4702
    return op

Q
qijun 已提交
4703

4704
@wrap_param_attr_default()
Q
qijun 已提交
4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4715 4716
                    param_attr=None,
                    trans=False):
4717
    """
R
ranqiu 已提交
4718 4719 4720
    Different from img_conv_layer and conv_op, conv_projection is a Projection,
    which can be used in mixed_layer and concat_layer. It uses cudnn to implement
    convolution and only supports GPU mode.
4721 4722 4723 4724 4725

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4726
       proj = conv_projection(input=input1,
4727 4728 4729 4730
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

R
ranqiu 已提交
4731
    :param input: The input of this layer.
4732
    :type input: LayerOutput
R
ranqiu 已提交
4733 4734 4735 4736 4737
    :param filter_size: The dimensions of the filter kernel. If the parameter is
                        set to one integer, the two dimensions on x and y axises
                        will be same when filter_size_y is not set. If it is set
                        to a list, the first element indicates the dimension on
                        the x axis, and the second is used to specify the dimension
R
ranqiu 已提交
4738
                        on the y axis when filter_size_y is not provided.
R
ranqiu 已提交
4739 4740 4741
    :type filter_size: int | tuple | list
    :param filter_size_y: The dimension of the filter kernel on the y axis. If the parameter
                          is not set, it will be set automatically according to filter_size.
4742
    :type filter_size_y: int
R
ranqiu 已提交
4743
    :param num_filters: The number of filters.
4744
    :type num_filters: int
R
ranqiu 已提交
4745
    :param num_channels: The number of the input channels.
4746
    :type num_channels: int
R
ranqiu 已提交
4747 4748 4749 4750 4751 4752 4753
    :param stride: The strides. If the parameter is set to one integer, the strides
                   on x and y axises will be same when stride_y is not set. If it is
                   set to a list, the first element indicates the stride on the x axis,
                   and the second is used to specify the stride on the y axis when
                   stride_y is not provided.
    :type stride: int | tuple | list
    :param stride_y: The stride on the y axis.
4754
    :type stride_y: int
R
ranqiu 已提交
4755 4756 4757 4758 4759 4760 4761
    :param padding: The padding sizes. If the parameter is set to one integer, the padding
                    sizes on x and y axises will be same when padding_y is not set. If it
                    is set to a list, the first element indicates the padding size on the
                    x axis, and the second is used to specify the padding size on the y axis
                    when padding_y is not provided.
    :type padding: int | tuple | list
    :param padding_y: The padding size on the y axis.
4762 4763 4764
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
R
ranqiu 已提交
4765 4766
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
4767
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
4768
    :param trans: Whether it is ConvTransProjection or ConvProjection
R
ranqiu 已提交
4769
    :type trans: bool
R
ranqiu 已提交
4770 4771
    :return: A Projection Object.
    :rtype: ConvTransProjection | ConvProjection
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
Q
qijun 已提交
4800
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4801 4802 4803 4804 4805
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4806 4807 4808
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
Q
qijun 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4821 4822 4823 4824

    proj.origin = input
    return proj

Z
zhangjinchao01 已提交
4825

D
dangqingqing 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
R
ranqiu 已提交
4836 4837
    and pad_w. pad_c, pad_h, pad_w specify the size in the corresponding
    dimension. And the input data shape is NCHW.
D
dangqingqing 已提交
4838

R
ranqiu 已提交
4839 4840 4841 4842
    For example, pad_c=[2,3] means padding 2 zeros before the input data
    and 3 zeros after the input data in the channel dimension. pad_h means
    padding zeros in the height dimension. pad_w means padding zeros in the
    width dimension.
4843

D
dangqingqing 已提交
4844
    For example,
4845

4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4867 4868

    The simply usage is:
D
dangqingqing 已提交
4869 4870 4871 4872 4873 4874 4875 4876

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

R
ranqiu 已提交
4877
    :param input: The input of this layer.
D
dangqingqing 已提交
4878
    :type input: LayerOutput
R
ranqiu 已提交
4879
    :param pad_c: The padding size in the channel dimension.
R
ranqiu 已提交
4880
    :type pad_c: list | None
R
ranqiu 已提交
4881
    :param pad_h: The padding size in the height dimension.
R
ranqiu 已提交
4882
    :type pad_h: list | None
R
ranqiu 已提交
4883
    :param pad_w: The padding size in the width dimension.
R
ranqiu 已提交
4884
    :type pad_w: list | None
R
ranqiu 已提交
4885 4886
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
4887
    :type layer_attr: ExtraLayerAttribute
4888
    :param name: The name of this layer. It is optional.
D
dangqingqing 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


Z
zhangjinchao01 已提交
4931
@wrap_name_default()
L
luotao1 已提交
4932 4933
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
4934
    """
R
ranqiu 已提交
4935
    This layer performs cyclic convolution on two inputs. For example:
Z
zhangjinchao01 已提交
4936 4937 4938 4939 4940 4941 4942 4943
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

R
ranqiu 已提交
4944
    In this formula:
4945 4946 4947 4948
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
Z
zhangjinchao01 已提交
4949 4950 4951 4952 4953

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4954
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
Z
zhangjinchao01 已提交
4955

4956
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
4957
    :type name: basestring
R
ranqiu 已提交
4958
    :param a: The first input of this layer.
4959
    :type a: LayerOutput
R
ranqiu 已提交
4960
    :param b: The second input of this layer.
4961
    :type b: LayerOutput
R
ranqiu 已提交
4962 4963
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
4964
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4965
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
4966 4967
    :rtype: LayerOutput
    """
4968 4969
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
Z
zhangjinchao01 已提交
4970 4971 4972
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4973
        inputs=[a.name, b.name],
Q
qijun 已提交
4974
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
4975

Q
qijun 已提交
4976 4977
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
Z
zhangjinchao01 已提交
4978 4979 4980 4981 4982


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4983
@wrap_act_default(act=LinearActivation())
Z
zhangjinchao01 已提交
4984
@layer_support(ERROR_CLIPPING, DROPOUT)
Q
qijun 已提交
4985 4986 4987 4988 4989 4990 4991 4992
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
Z
zhangjinchao01 已提交
4993
    """
R
ranqiu 已提交
4994 4995
    This layer performs tensor operation on two inputs.
    For example:
Z
zhangjinchao01 已提交
4996 4997

    .. math::
4998
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
Z
zhangjinchao01 已提交
4999 5000

    In this formular:
5001 5002
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
Z
zhangjinchao01 已提交
5003 5004
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
5005
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
Z
zhangjinchao01 已提交
5006 5007 5008 5009 5010

    The simple usage is:

    .. code-block:: python

5011
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
Z
zhangjinchao01 已提交
5012

5013
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5014
    :type name: basestring
R
ranqiu 已提交
5015
    :param a: The first input of this layer.
5016
    :type a: LayerOutput
R
ranqiu 已提交
5017
    :param b: The second input of this layer.
5018
    :type b: LayerOutput
R
ranqiu 已提交
5019 5020
    :param size: The dimension of this layer.
    :type size: int
5021
    :param act: Activation type. LinearActivation is the default activation.
Z
zhangjinchao01 已提交
5022
    :type act: BaseActivation
R
ranqiu 已提交
5023 5024
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5025
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5026 5027 5028 5029
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5030
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5031 5032
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5033
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5034
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5035 5036
    :rtype: LayerOutput
    """
5037
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
Z
zhangjinchao01 已提交
5038 5039 5040 5041 5042 5043
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5044 5045 5046 5047
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
Z
zhangjinchao01 已提交
5048 5049 5050 5051 5052 5053


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
5054
@layer_support(DROPOUT, ERROR_CLIPPING)
Q
qijun 已提交
5055 5056
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
5057
                       select=None,
Q
qijun 已提交
5058 5059
                       act=None,
                       name=None,
Z
zhangjinchao01 已提交
5060 5061 5062
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
Q
qijun 已提交
5063 5064 5065
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5066 5067
    """
    Selectived fully connected layer. Different from fc_layer, the output
R
ranqiu 已提交
5068
    of this layer can be sparse. It requires an additional input to indicate
Z
zhangjinchao01 已提交
5069 5070 5071 5072 5073 5074 5075
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

5076
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
Z
zhangjinchao01 已提交
5077

5078
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5079
    :type name: basestring
R
ranqiu 已提交
5080 5081
    :param input: The input of this layer.
    :type input: LayerOutput | list | tuple
R
ranqiu 已提交
5082 5083 5084 5085
    :param select: The layer to select columns to output. It should be a sparse
                   binary matrix, and is treated as the mask of selective fc. If
                   it is not set or set to None, selective_fc_layer acts exactly
                   like fc_layer.
5086
    :type select: LayerOutput
R
ranqiu 已提交
5087 5088
    :param size: The dimension of this layer, which should be equal to that of
                 the layer 'select'.
Z
zhangjinchao01 已提交
5089
    :type size: int
5090
    :param act: Activation type. TanhActivation is the default activation.
Z
zhangjinchao01 已提交
5091
    :type act: BaseActivation
R
ranqiu 已提交
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
    :param pass_generation: The flag which indicates whether it is during generation.
    :type pass_generation: bool
    :param has_selected_colums: The flag which indicates whether the parameter 'select'
                                has been set. True is the default.
    :type has_selected_colums: bool
    :param mul_ratio: A ratio helps to judge how sparse the output is and determine
                      the computation method for speed consideration.
    :type mul_ratio: float
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5102
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
5103 5104 5105 5106
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5107
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5108 5109
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
5110
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
5111
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5112 5113 5114 5115
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5116
        assert not isinstance(param_attr, collections.Sequence)
Z
zhangjinchao01 已提交
5117 5118
        param_attr = [param_attr]
    else:
5119
        if isinstance(param_attr, collections.Sequence):
Z
zhangjinchao01 已提交
5120 5121
            assert len(input) == len(param_attr)
        else:
5122
            if "parameter_name" in param_attr.attr and len(input) > 1:
W
wangmeng28 已提交
5123
                logger.fatal(
W
wangmeng28 已提交
5124 5125 5126 5127 5128
                    "When the name field of param_attr is manually specified "
                    "and the input is a list, the param_attr should also be a "
                    "list with each item being the param_attr for each input "
                    "item. If only one named param_attr is provided, all the "
                    "input items would share this parameter.")
Z
zhangjinchao01 已提交
5129 5130
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5131 5132 5133 5134
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
Z
zhangjinchao01 已提交
5135
    Layer(
Q
qijun 已提交
5136 5137 5138
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
Z
zhangjinchao01 已提交
5139 5140 5141
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
5142
        bias=ParameterAttribute.to_bias(bias_attr),
Z
zhangjinchao01 已提交
5143 5144 5145 5146
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
Q
qijun 已提交
5147 5148 5149 5150 5151 5152 5153
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
Z
zhangjinchao01 已提交
5154 5155 5156


@wrap_name_default()
L
luotao1 已提交
5157 5158
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5159
    """
R
ranqiu 已提交
5160
    A layer for sampling id from a multinomial distribution from the input layer.
Z
zhangjinchao01 已提交
5161 5162 5163 5164 5165 5166 5167 5168
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

R
ranqiu 已提交
5169
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5170
    :type input: LayerOutput
5171
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5172
    :type name: basestring
R
ranqiu 已提交
5173 5174 5175
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5176
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5177 5178
    :rtype: LayerOutput
    """
X
xuwei06 已提交
5179
    l = Layer(
Z
zhangjinchao01 已提交
5180 5181 5182
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
Q
qijun 已提交
5183 5184 5185
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
Z
zhangjinchao01 已提交
5186 5187 5188


@wrap_name_default()
L
luotao1 已提交
5189
@layer_support()
Q
qijun 已提交
5190 5191 5192 5193
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
5194
                          layer_attr=None):
Z
zhangjinchao01 已提交
5195
    """
R
ranqiu 已提交
5196
    This layer for applying a slope and an intercept to the input.
Z
zhangjinchao01 已提交
5197 5198 5199 5200 5201 5202 5203 5204 5205 5206

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

R
ranqiu 已提交
5207
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5208
    :type input: LayerOutput
5209
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5210
    :type name: basestring
R
ranqiu 已提交
5211 5212 5213 5214 5215 5216 5217
    :param slope: The scale factor.
    :type slope: float
    :param intercept: The offset.
    :type intercept: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5218
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5219 5220 5221 5222 5223 5224 5225 5226
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
Q
qijun 已提交
5227 5228 5229
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
Z
zhangjinchao01 已提交
5230 5231 5232


@wrap_name_default()
L
luotao1 已提交
5233
@layer_support()
Q
qijun 已提交
5234
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
Z
zhangjinchao01 已提交
5235
    """
5236 5237 5238 5239
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
Z
zhangjinchao01 已提交
5240 5241 5242

    .. math::

5243
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
5244

5245 5246 5247 5248 5249
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
Z
zhangjinchao01 已提交
5250

5251
       z = x^\mathrm{T} Y
Z
zhangjinchao01 已提交
5252 5253

    In this formular:
5254 5255 5256 5257 5258 5259
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
Z
zhangjinchao01 已提交
5260 5261 5262 5263 5264

    The simple usage is:

    .. code-block:: python

5265
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
Z
zhangjinchao01 已提交
5266 5267
                                       size=elem_dim)

5268 5269 5270 5271
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
R
ranqiu 已提交
5272
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5273
    :type size: int
5274
    :param name: The name of this layer. It is optional.
Z
zhangjinchao01 已提交
5275
    :type name: basestring
R
ranqiu 已提交
5276 5277 5278
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5279
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5280 5281
    :rtype: LayerOutput
    """
5282 5283 5284 5285
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
Q
qijun 已提交
5286
            size = vectors.size / weights.size
5287 5288
        else:
            assert size == vectors.size / weights.size
Z
zhangjinchao01 已提交
5289 5290
    Layer(
        name=name,
5291
        type=LayerType.LINEAR_COMBINATION_LAYER,
Z
zhangjinchao01 已提交
5292
        size=size,
5293
        inputs=[Input(weights.name), Input(vectors.name)],
Q
qijun 已提交
5294 5295 5296
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
5297

5298

5299
convex_comb_layer = linear_comb_layer
Z
zhangjinchao01 已提交
5300

5301

Z
zhangjinchao01 已提交
5302
@wrap_name_default()
L
luotao1 已提交
5303
@layer_support()
Z
zhangjinchao01 已提交
5304 5305 5306 5307 5308 5309 5310
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
5311
                       num_channels=None,
L
luotao1 已提交
5312 5313
                       name=None,
                       layer_attr=None):
Z
zhangjinchao01 已提交
5314 5315
    """
    Expand feature map to minibatch matrix.
5316
       - matrix width is: block_y * block_x * num_channels
L
luotao02 已提交
5317
       - matirx height is: outputH * outputW
Z
zhangjinchao01 已提交
5318 5319 5320 5321 5322 5323 5324

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

R
ranqiu 已提交
5325
    The expanding method is the same with ExpandConvLayer, but saved the transposed
Z
zhangjinchao01 已提交
5326
    value. After expanding, output.sequenceStartPositions will store timeline.
R
ranqiu 已提交
5327
    The number of time steps is outputH * outputW and the dimension of each
5328
    time step is block_y * block_x * num_channels. This layer can be used after
R
ranqiu 已提交
5329
    convolutional neural network, and before recurrent neural network.
Z
zhangjinchao01 已提交
5330

5331 5332 5333 5334
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
5335
       block_expand = block_expand_layer(input=layer,
5336
                                         num_channels=128,
5337 5338 5339 5340 5341
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

R
ranqiu 已提交
5342
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5343
    :type input: LayerOutput
R
ranqiu 已提交
5344 5345 5346 5347
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
Z
zhangjinchao01 已提交
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
5360
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5361 5362 5363 5364
    :type name: basestring.
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5365
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5366 5367
    :rtype: LayerOutput
    """
5368 5369 5370
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
Q
qijun 已提交
5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
Z
zhangjinchao01 已提交
5388 5389


5390 5391
@wrap_name_default()
@layer_support()
5392
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
5393
    """
R
ranqiu 已提交
5394 5395 5396 5397
    A layer to do max out on convolutional layer output.
      - Input: the output of a convolutional layer.
      - Output: feature map size same as the input's, and its channel number is
        (input channel) / groups.
5398

5399
    So groups should be larger than 1, and the num of channels should be able
R
ranqiu 已提交
5400 5401 5402 5403 5404 5405 5406
    to be devided by groups.

    Reference:
        Maxout Networks
        http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
        Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
        https://arxiv.org/pdf/1312.6082v4.pdf
5407

X
xuwei06 已提交
5408 5409 5410 5411 5412 5413 5414 5415
    .. math::
       y_{si+j} = \max_k x_{gsi + sk + j}
       g = groups
       s = input.size / num_channels
       0 \le i < num_channels / groups
       0 \le j < s
       0 \le k < groups

5416 5417 5418 5419 5420 5421 5422 5423
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

R
ranqiu 已提交
5424
    :param input: The input of this layer.
5425
    :type input: LayerOutput
R
ranqiu 已提交
5426 5427 5428 5429
    :param num_channels: The number of input channels. If the parameter is not set or
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
    :type num_channels: int
5430 5431
    :param groups: The group number of input layer.
    :type groups: int
5432
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5433 5434 5435
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
Q
qijun 已提交
5446 5447 5448 5449 5450 5451 5452 5453 5454
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
5455 5456


Z
zhangjinchao01 已提交
5457
@wrap_name_default()
L
luotao1 已提交
5458
@layer_support()
Q
qijun 已提交
5459 5460 5461 5462 5463
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
5464
              layer_attr=None):
Z
zhangjinchao01 已提交
5465 5466
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
R
ranqiu 已提交
5467
    classication task. e.g. sequence labeling problems where the
Z
zhangjinchao01 已提交
5468 5469
    alignment between the inputs and the target labels is unknown.

R
ranqiu 已提交
5470 5471 5472 5473
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5474 5475

    Note:
R
ranqiu 已提交
5476 5477 5478 5479 5480
        Considering the 'blank' label needed by CTC, you need to use (num_classes + 1)
        as the size of the input, where num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer (e.g.
        fc_layer with softmax activation) should be (num_classes + 1). The size of
        ctc_layer should also be (num_classes + 1).
5481

C
caoying03 已提交
5482
    The example usage is:
Z
zhangjinchao01 已提交
5483 5484 5485 5486 5487 5488 5489 5490

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

R
ranqiu 已提交
5491
    :param input: The input of this layer.
Z
zhangjinchao01 已提交
5492
    :type input: LayerOutput
R
ranqiu 已提交
5493
    :param label: The input label.
Z
zhangjinchao01 已提交
5494
    :type label: LayerOutput
R
ranqiu 已提交
5495
    :param size: The dimension of this layer, which must be equal to (category number + 1).
Z
zhangjinchao01 已提交
5496
    :type size: int
5497
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5498 5499
    :type name: basestring
    :param norm_by_times: Whether to do normalization by times. False is the default.
Z
zhangjinchao01 已提交
5500
    :type norm_by_times: bool
R
ranqiu 已提交
5501 5502 5503
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5504
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5505 5506 5507 5508
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
5509 5510 5511 5512 5513
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
Z
zhangjinchao01 已提交
5514
    Layer(
5515 5516 5517 5518
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
5519
        inputs=[input.name, label.name],
Q
qijun 已提交
5520
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5521 5522
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

5523

5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
L
Liu Yiqun 已提交
5535
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
5536
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
L
Liu Yiqun 已提交
5537 5538 5539 5540 5541 5542 5543
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

R
ranqiu 已提交
5544 5545 5546 5547
    Reference:
        Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
        with Recurrent Neural Networks
        http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf
5548 5549

    Note:
R
ranqiu 已提交
5550 5551 5552
        - Let num_classes represents the category number. Considering the 'blank'
          label needed by CTC, you need to use (num_classes + 1) as the size of
          warp_ctc layer.
5553
        - You can set 'blank' to any value ranged in [0, num_classes], which
R
ranqiu 已提交
5554
          should be consistent with those used in your labels.
5555
        - As a native 'softmax' activation is interated to the warp-ctc library,
R
ranqiu 已提交
5556
          'linear' activation is expected to be used instead in the 'input' layer.
5557

C
caoying03 已提交
5558
    The example usage is:
5559 5560 5561 5562 5563 5564 5565 5566 5567

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

R
ranqiu 已提交
5568
    :param input: The input of this layer.
5569
    :type input: LayerOutput
R
ranqiu 已提交
5570
    :param label: The input label.
5571
    :type label: LayerOutput
R
ranqiu 已提交
5572
    :param size: The dimension of this layer, which must be equal to (category number + 1).
5573
    :type size: int
5574
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5575 5576
    :type name: basestring
    :param blank: The 'blank' label used in ctc.
5577
    :type blank: int
R
ranqiu 已提交
5578
    :param norm_by_times: Whether to do normalization by times. False is the default.
5579
    :type norm_by_times: bool
R
ranqiu 已提交
5580 5581 5582
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


Z
zhangjinchao01 已提交
5605
@wrap_name_default()
5606
@wrap_param_attr_default()
L
luotao1 已提交
5607
@layer_support()
Q
qijun 已提交
5608 5609 5610 5611 5612 5613
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
5614
              coeff=1.0,
L
luotao1 已提交
5615
              layer_attr=None):
Z
zhangjinchao01 已提交
5616 5617 5618 5619
    """
    A layer for calculating the cost of sequential conditional random
    field model.

C
caoying03 已提交
5620
    The example usage is:
Z
zhangjinchao01 已提交
5621 5622 5623 5624 5625 5626 5627

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

R
ranqiu 已提交
5628
    :param input: The first input layer.
Z
zhangjinchao01 已提交
5629
    :type input: LayerOutput
R
ranqiu 已提交
5630
    :param label: The input label.
5631
    :type label: LayerOutput
Z
zhangjinchao01 已提交
5632 5633
    :param size: The category number.
    :type size: int
R
ranqiu 已提交
5634 5635
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5636
    :type weight: LayerOutput
R
ranqiu 已提交
5637 5638
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5639
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5640
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5641 5642
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5643
                  1.0 is the default value.
5644
    :type coeff: float
R
ranqiu 已提交
5645 5646 5647
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5648
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5649 5650 5651 5652 5653
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
5654 5655 5656 5657 5658 5659
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
Z
zhangjinchao01 已提交
5660

Q
qijun 已提交
5661
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
Z
zhangjinchao01 已提交
5662 5663 5664 5665
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
5666 5667 5668 5669
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
5670
        coeff=coeff,
Q
qijun 已提交
5671
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5672 5673 5674
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
X
xuwei06 已提交
5675 5676 5677 5678
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5679

5680

Z
zhangjinchao01 已提交
5681
@wrap_name_default()
5682
@wrap_param_attr_default()
L
luotao1 已提交
5683
@layer_support()
Q
qijun 已提交
5684 5685 5686 5687 5688
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
5689
                       layer_attr=None):
Z
zhangjinchao01 已提交
5690 5691 5692
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
R
ranqiu 已提交
5693 5694 5695
    If the input 'label' is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for an incorrect
    decoding and 0 for the correct.
Z
zhangjinchao01 已提交
5696

C
caoying03 已提交
5697
    The example usage is:
L
Luo Tao 已提交
5698 5699 5700 5701 5702 5703

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

Z
zhangjinchao01 已提交
5704 5705
    :param input: The first input layer.
    :type input: LayerOutput
R
ranqiu 已提交
5706
    :param size: The dimension of this layer.
Z
zhangjinchao01 已提交
5707
    :type size: int
R
ranqiu 已提交
5708 5709 5710 5711
    :param label: The input label.
    :type label: LayerOutput | None
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
Z
zhangjinchao01 已提交
5712
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
5713
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5714 5715 5716 5717
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5718
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5719 5720 5721 5722 5723 5724
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5725
    ipts = [Input(input.name, **param_attr.attr)]
Z
zhangjinchao01 已提交
5726 5727 5728 5729
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5730 5731 5732 5733
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
Q
qijun 已提交
5734
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5735 5736 5737
    parents = [input]
    if label is not None:
        parents.append(label)
X
xuwei06 已提交
5738 5739 5740 5741
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
Z
zhangjinchao01 已提交
5742

Q
qijun 已提交
5743

C
caoying03 已提交
5744 5745 5746 5747 5748
"""
Following are cost Layers.
"""


5749
@wrap_bias_attr_default(has_bias=True)
5750
@wrap_param_attr_default()
5751 5752
@wrap_name_default()
@layer_support()
Q
qijun 已提交
5753 5754
def nce_layer(input,
              label,
C
caoying03 已提交
5755
              num_classes=None,
5756
              param_attr=None,
Q
qijun 已提交
5757 5758 5759 5760 5761 5762
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5763 5764
    """
    Noise-contrastive estimation.
C
caoying03 已提交
5765 5766 5767 5768

    Reference:
        A fast and simple algorithm for training neural probabilistic language
        models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf
5769 5770 5771 5772 5773

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5774 5775
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5776 5777
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

5778
    :param name: The name of this layer. It is optional.
5779
    :type name: basestring
R
ranqiu 已提交
5780
    :param input: The first input of this layer.
R
ranqiu 已提交
5781
    :type input: LayerOutput | list | tuple | collections.Sequence
R
ranqiu 已提交
5782
    :param label: The input label.
5783
    :type label: LayerOutput
C
caoying03 已提交
5784
    :param weight: The weight layer defines a weight for each sample in the
R
ranqiu 已提交
5785
                   mini-batch. It is optional.
5786
    :type weight: LayerOutput
R
ranqiu 已提交
5787
    :param num_classes: The number of classes.
5788
    :type num_classes: int
5789
    :param act: Activation type. SigmoidActivation is the default activation.
Y
Yu Yang 已提交
5790
    :type act: BaseActivation
R
ranqiu 已提交
5791 5792
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
5793
    :type param_attr: ParameterAttribute
5794 5795
    :param num_neg_samples: The number of sampled negative labels. 10 is the
                            default value.
5796
    :type num_neg_samples: int
C
caoying03 已提交
5797 5798 5799
    :param neg_distribution: The discrete noisy distribution over the output
                             space from which num_neg_samples negative labels
                             are sampled. If this parameter is not set, a
R
ranqiu92 已提交
5800
                             uniform distribution will be used. A user-defined
C
caoying03 已提交
5801 5802 5803
                             distribution is a list whose length must be equal
                             to the num_classes. Each member of the list defines
                             the probability of a class given input x.
R
ranqiu 已提交
5804
    :type neg_distribution: list | tuple | collections.Sequence | None
P
peterzhang2029 已提交
5805 5806 5807 5808
    :param bias_attr: The parameter attribute for bias. If this parameter is set to
                      False or an object whose type is not ParameterAttribute,
                      no bias is defined. If this parameter is set to True,
                      the bias is initialized to zero.
R
ranqiu 已提交
5809
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
5810 5811
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
5812
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
5813
    :return: LayerOutput object.
5814 5815 5816 5817
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5818 5819 5820 5821 5822 5823 5824 5825
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5826
    assert isinstance(input, collections.Sequence)
5827

5828 5829
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5830 5831
    if num_classes is None:
        num_classes = label.size
5832 5833 5834
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5835
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
5836

5837 5838
    ipts_for_layer = []
    parents = []
5839
    for each_input, attr in zip(input, param_attr):
5840
        assert isinstance(each_input, LayerOutput)
5841
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

X
xuwei06 已提交
5852
    l = Layer(
5853 5854 5855 5856
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
C
caoying03 已提交
5857
        active_type=SigmoidActivation().name,
5858 5859 5860
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
Q
qijun 已提交
5861 5862
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5863 5864 5865 5866
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
C
caoying03 已提交
5867
        activation=SigmoidActivation())
5868 5869


Z
zhangjinchao01 已提交
5870
@wrap_name_default()
L
luotao1 已提交
5871
@layer_support()
Q
qijun 已提交
5872 5873 5874 5875 5876 5877 5878
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
Z
zhangjinchao01 已提交
5879
    """
R
ranqiu 已提交
5880 5881 5882 5883 5884
    A cost Layer for learning to rank using gradient descent.

    Reference:
        Learning to Rank using Gradient Descent
        http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf
Z
zhangjinchao01 已提交
5885 5886 5887

    .. math::

L
luotao02 已提交
5888
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
Z
zhangjinchao01 已提交
5889

L
luotao02 已提交
5890
       o_{i,j} & =  o_i - o_j
Z
zhangjinchao01 已提交
5891

L
luotao02 已提交
5892
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
Z
zhangjinchao01 已提交
5893 5894 5895 5896 5897 5898 5899 5900

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

C
caoying03 已提交
5901
    The example usage is:
Z
zhangjinchao01 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
R
ranqiu 已提交
5915 5916
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
Z
zhangjinchao01 已提交
5917
    :type weight: LayerOutput
R
ranqiu 已提交
5918
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5919 5920
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
5921
                  1.0 is the default value.
Z
zhangjinchao01 已提交
5922
    :type coeff: float
R
ranqiu 已提交
5923 5924
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5925
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5926
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

Q
qijun 已提交
5939 5940 5941 5942 5943 5944
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
5945

X
xuwei06 已提交
5946
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
Z
zhangjinchao01 已提交
5947

5948

Z
zhangjinchao01 已提交
5949
@wrap_name_default()
L
luotao1 已提交
5950
@layer_support()
Q
qijun 已提交
5951 5952 5953 5954 5955 5956
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
Z
zhangjinchao01 已提交
5957 5958 5959
    """
    lambdaCost for lambdaRank LTR approach.

C
caoying03 已提交
5960
    The example usage is:
Z
zhangjinchao01 已提交
5961 5962 5963 5964 5965 5966 5967 5968

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

R
ranqiu 已提交
5969 5970
    :param input: The first input of this layer, which is often a document
                  samples list of the same query and whose type must be sequence.
Z
zhangjinchao01 已提交
5971
    :type input: LayerOutput
R
ranqiu 已提交
5972
    :param score: The scores of the samples.
Z
zhangjinchao01 已提交
5973 5974
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
R
ranqiu 已提交
5975
                     e.g., 5 for NDCG@5. It must be less than or equal to the
R
ranqiu 已提交
5976
                     minimum size of the list.
Z
zhangjinchao01 已提交
5977
    :type NDCG_num: int
R
ranqiu 已提交
5978 5979 5980 5981 5982
    :param max_sort_size: The size of partial sorting in calculating gradient. If
                          max_sort_size is equal to -1 or greater than the number
                          of the samples in the list, then the algorithm will sort
                          the entire list to compute the gradient. In other cases,
                          max_sort_size must be greater than or equal to NDCG_num.
Z
zhangjinchao01 已提交
5983
    :type max_sort_size: int
R
ranqiu 已提交
5984
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
5985 5986 5987
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
5988
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5989
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
5990 5991
    :rtype: LayerOutput
    """
5992 5993 5994
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
Q
qijun 已提交
5995 5996 5997 5998 5999 6000 6001
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6002

Q
qijun 已提交
6003 6004
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
Z
zhangjinchao01 已提交
6005

6006

Z
zhangjinchao01 已提交
6007
@wrap_name_default()
L
luotao1 已提交
6008
@layer_support()
6009 6010 6011 6012 6013 6014
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
Z
zhangjinchao01 已提交
6015 6016 6017
    """
    A loss layer for multi class entropy.

C
caoying03 已提交
6018 6019
    The example usage is:

Z
zhangjinchao01 已提交
6020 6021
    .. code-block:: python

X
xuwei06 已提交
6022
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
6023
                            label=label_layer)
Z
zhangjinchao01 已提交
6024 6025 6026 6027

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
R
ranqiu 已提交
6028
    :type input: LayerOutput
R
ranqiu 已提交
6029
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6030 6031
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6032
                  1.0 is the default value.
R
ranqiu 已提交
6033
    :type coeff: float
R
ranqiu 已提交
6034 6035
    :param weight: The weight layer defines a weight for each sample in the
                   mini-batch. It is optional.
6036
    :type weight: LayerOutout
R
ranqiu 已提交
6037 6038
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6039
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6040
    :return: LayerOutput object.
R
ranqiu 已提交
6041
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6042 6043
    """

6044
    ipts, parents = __cost_input__(input, label, weight)
Q
qijun 已提交
6045 6046 6047
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
6048
        inputs=ipts,
Q
qijun 已提交
6049 6050
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6051
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
Z
zhangjinchao01 已提交
6052

6053

Z
zhangjinchao01 已提交
6054
@wrap_name_default()
L
luotao1 已提交
6055
@layer_support()
Q
qijun 已提交
6056 6057 6058 6059
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
6060 6061
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
Z
zhangjinchao01 已提交
6062 6063
    """
    A loss layer for multi class entropy with selfnorm.
6064
    Input should be a vector of positive numbers, without normalization.
Z
zhangjinchao01 已提交
6065

C
caoying03 已提交
6066 6067
    The example usage is:

Z
zhangjinchao01 已提交
6068 6069
    .. code-block:: python

X
xuwei06 已提交
6070
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
6071
                                          label=label_layer)
Z
zhangjinchao01 已提交
6072 6073

    :param input: The first input layer.
R
ranqiu 已提交
6074
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6075
    :param label: The input label.
R
ranqiu 已提交
6076
    :type input: LayerOutput
R
ranqiu 已提交
6077
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6078 6079
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6080
                  1.0 is the default value.
R
ranqiu 已提交
6081
    :type coeff: float
Z
zhangjinchao01 已提交
6082
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
R
ranqiu 已提交
6083 6084 6085
    :type softmax_selfnorm_alpha: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6086
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6087
    :return: LayerOutput object.
R
ranqiu 已提交
6088
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6089
    """
Q
qijun 已提交
6090 6091 6092 6093 6094 6095 6096
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
Z
zhangjinchao01 已提交
6097

Q
qijun 已提交
6098 6099 6100 6101 6102
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
Z
zhangjinchao01 已提交
6103

6104

X
xuwei06 已提交
6105 6106 6107 6108
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6109
    A loss layer which calculates the sum of the input as loss.
X
xuwei06 已提交
6110

C
caoying03 已提交
6111 6112
    The example usage is:

X
xuwei06 已提交
6113 6114
    .. code-block:: python

L
Luo Tao 已提交
6115
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
6116

R
ranqiu 已提交
6117
    :param input: The input of this layer.
R
ranqiu 已提交
6118
    :type input: LayerOutput
R
ranqiu 已提交
6119
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6120 6121 6122
    :type name: basestring
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
X
xuwei06 已提交
6123 6124 6125 6126
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
6127
    assert isinstance(input, LayerOutput)
Q
qijun 已提交
6128 6129 6130 6131 6132
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
6133

Q
qijun 已提交
6134
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
6135 6136


Z
zhangjinchao01 已提交
6137
@wrap_name_default()
L
luotao1 已提交
6138
@layer_support()
L
Luo Tao 已提交
6139 6140 6141 6142 6143 6144
def huber_regression_cost(input,
                          label,
                          name=None,
                          delta=1.0,
                          coeff=1.0,
                          layer_attr=None):
Z
zhangjinchao01 已提交
6145
    """
6146 6147 6148
    In statistics, the Huber loss is a loss function used in robust regression,
    that is less sensitive to outliers in data than the squared error loss.
    Given a prediction f(x), a label y and :math:`\delta`, the loss function
L
Luo Tao 已提交
6149 6150 6151 6152 6153
    is defined as:

    .. math:
       loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta
       loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise
Z
zhangjinchao01 已提交
6154

C
caoying03 已提交
6155 6156
    The example usage is:

Z
zhangjinchao01 已提交
6157 6158
    .. code-block:: python

L
Luo Tao 已提交
6159 6160 6161
       cost = huber_regression_cost(input=input_layer, label=label_layer)

    :param input: The first input layer.
R
ranqiu 已提交
6162
    :type input: LayerOutput
L
Luo Tao 已提交
6163
    :param label: The input label.
R
ranqiu 已提交
6164
    :type input: LayerOutput
R
ranqiu 已提交
6165
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6166
    :type name: basestring
L
Luo Tao 已提交
6167
    :param delta: The difference between the observed and predicted values.
R
ranqiu 已提交
6168 6169
    :type delta: float
    :param coeff: The weight of the gradient in the back propagation.
6170
                  1.0 is the default value.
R
ranqiu 已提交
6171 6172 6173
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
Luo Tao 已提交
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
    assert isinstance(input, LayerOutput)
    Layer(
        name=name,
        type=LayerType.HUBER_REGRESSION,
        inputs=[input.name, label.name],
        delta=delta,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HUBER_REGRESSION, parents=[input, label], size=1)


Z
zhangjinchao01 已提交
6190
@wrap_name_default()
L
luotao1 已提交
6191
@layer_support()
6192 6193 6194 6195 6196
def huber_classification_cost(input,
                              label,
                              name=None,
                              coeff=1.0,
                              layer_attr=None):
Z
zhangjinchao01 已提交
6197
    """
6198 6199 6200
    For classification purposes, a variant of the Huber loss called modified Huber
    is sometimes used. Given a prediction f(x) (a real-valued classifier score) and
    a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber
6201 6202 6203
    loss is defined as:

    .. math:
6204
       loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1
6205
       loss = -4yf(x), \text{otherwise}
Z
zhangjinchao01 已提交
6206

C
caoying03 已提交
6207 6208
    The example usage is:

Z
zhangjinchao01 已提交
6209 6210
    .. code-block:: python

6211
       cost = huber_classification_cost(input=input_layer, label=label_layer)
Z
zhangjinchao01 已提交
6212 6213

    :param input: The first input layer.
R
ranqiu 已提交
6214
    :type input: LayerOutput
Z
zhangjinchao01 已提交
6215
    :param label: The input label.
R
ranqiu 已提交
6216
    :type input: LayerOutput
R
ranqiu 已提交
6217
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6218 6219
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6220
                  1.0 is the default value.
R
ranqiu 已提交
6221 6222 6223
    :type coeff: float
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6224
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6225
    :return: LayerOutput object.
R
ranqiu 已提交
6226
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
6227
    """
6228 6229 6230
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
Q
qijun 已提交
6231 6232
    Layer(
        name=name,
6233
        type=LayerType.HUBER_CLASSIFICATION,
Q
qijun 已提交
6234 6235 6236
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
6237 6238
    return LayerOutput(
        name, LayerType.HUBER_CLASSIFICATION, parents=[input, label], size=1)
Z
zhangjinchao01 已提交
6239

6240

Z
zhangjinchao01 已提交
6241
@wrap_name_default()
L
luotao1 已提交
6242
@layer_support()
Q
qijun 已提交
6243 6244 6245 6246
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
6247
                                     layer_attr=None):
Z
zhangjinchao01 已提交
6248 6249 6250
    """
    A loss layer for multi binary label cross entropy.

C
caoying03 已提交
6251 6252
    The example usage is:

Z
zhangjinchao01 已提交
6253 6254
    .. code-block:: python

X
xuwei06 已提交
6255
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
6256
                                               label=label_layer)
Z
zhangjinchao01 已提交
6257 6258 6259 6260 6261

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6262
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6263 6264
    :type name: basestring
    :param coeff: The weight of the gradient in the back propagation.
6265
                  1.0 is the default value.
Z
zhangjinchao01 已提交
6266
    :type coeff: float
R
ranqiu 已提交
6267 6268
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
L
luotao1 已提交
6269
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
6270
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
6271 6272 6273
    :rtype: LayerOutput
    """

6274 6275
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
C
caoying03 已提交
6276 6277 6278 6279
        logger.log(logging.WARN,
                   ("%s is not a recommended activation for "
                    "multi_binary_label_cross_entropy, sigmoid is better") %
                   repr(input.activation))
Q
qijun 已提交
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
6292 6293


C
caoying03 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315
class BeamInput(object):
    """
    Define the input for cross_entropy_over_beam layer.

    A beam is made up of a triple: the first one is scores over all
    candidates; the second one is indices of top k selected candidates; the
    third one is the index of ground truth, which is also always called
    gold.
    """

    def __init__(self, candidate_scores, selected_candidates, gold):
        assert isinstance(candidate_scores, LayerOutput)
        self.candidate_scores = candidate_scores
        assert candidate_scores.size == 1

        assert isinstance(selected_candidates, LayerOutput)
        self.selected_candidates = selected_candidates

        assert isinstance(gold, LayerOutput)
        self.gold = gold


C
caoying03 已提交
6316 6317
@wrap_name_default()
@layer_support()
C
caoying03 已提交
6318
def cross_entropy_over_beam(input, name=None):
C
caoying03 已提交
6319
    """
C
caoying03 已提交
6320 6321 6322
    This layer is used in learning to search models, which is to solve complex
    joint prediction problems based on learning to search through a
    problem-defined search space.
C
caoying03 已提交
6323

C
caoying03 已提交
6324 6325 6326 6327 6328
    Specifically, the learning to search process for this layer begins with
    searching a target sequence from a nested sequence. In the first search
    step, top beam size sequences with highest scores, indices of these top k
    sequences in the original nested sequence, and the ground truth (also
    called gold) altogether (a triple) make up of the first beam.
C
caoying03 已提交
6329

C
caoying03 已提交
6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347
    Then, several special positions, for example, start and end positions
    that define meaningful segments are searched. In these searches, top k
    positions with highest scores are selected, and then sequence, starting
    from the selected starts till ends of the sequences (or a fixed position)
    are taken to search next.

    We call the possible top k results returned in one search the beam. This
    search process can be repeated for pre-defined turns and leads to several
    beam expansions.

    Finally, the layer cross_entropy_over_beam takes all the beam expansions
    which contain several candidate targets found along the multi-step search.
    cross_entropy_over_beam calculates cross entropy over the expanded beams
    which all the candidates in the beam as the normalized factor.

    Note that, if gold falls off the beam at search step t, then the cost is
    calculated over the beam at step t.

6348
    This cost layer always works together with kmax_seq_score_layer,
C
caoying03 已提交
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
    sub_nested_seq_layer, and sequence_slice_layer to trim the input to form a
    sub-search space.


    The example usage is:

    .. code-block:: python

       cost = cross_entropy_over_beam(input=[
           BeamInput(
               candidate_scores=beam1_candidates,
               selected_candidates=beam1_topk,
               gold=gold1),
           BeamInput(
               candidate_scores=beam2_candidates,
               selected_candidates=beam2_topk,
               gold=gold2),
       ])


R
ranqiu 已提交
6369
    :param input: Input beams for this layer.
C
caoying03 已提交
6370
    :type input: BeamInput
R
ranqiu 已提交
6371
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    if isinstance(input, BeamInput):
        input = [input]
    else:
        assert isinstance(input, list), (
            'input for cross_entropy_over_beam shold be a python list '
            'of BeamInput object.')
        for ipt in input:
            assert isinstance(ipt, BeamInput), (
                'input for cross_entropy_over_beam '
                'should be a BeamInput object.')

    ipts = []
    parents = []
    for beam in input:
        parents += [beam.candidate_scores, beam.selected_candidates, beam.gold]
        ipts += [
            beam.candidate_scores.name, beam.selected_candidates.name,
            beam.gold.name
        ]

    Layer(name=name, type=LayerType.CROSS_ENTROPY_OVER_BEAM, inputs=ipts)
C
caoying03 已提交
6398 6399 6400
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)


D
dangqingqing 已提交
6401 6402
@wrap_name_default()
@layer_support()
6403
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
6404 6405
    """
    This is a L1 loss but more smooth. It requires that the
R
ranqiu 已提交
6406
    sizes of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
6407 6408 6409 6410 6411 6412 6413 6414 6415

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

6416
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
6417

R
ranqiu 已提交
6418 6419 6420
    Reference:
        Fast R-CNN
        https://arxiv.org/pdf/1504.08083v2.pdf
D
dangqingqing 已提交
6421

C
caoying03 已提交
6422 6423
    The example usage is:

D
dangqingqing 已提交
6424 6425
    .. code-block:: python

6426 6427
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
6428 6429 6430 6431 6432

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
R
ranqiu 已提交
6433
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6434
    :type name: basestring
R
ranqiu 已提交
6435
    :param coeff: The weight of the gradient in the back propagation.
6436
                  1.0 is the default value.
6437
    :type coeff: float
R
ranqiu 已提交
6438 6439
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
D
dangqingqing 已提交
6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
6452
        coeff=coeff,
D
dangqingqing 已提交
6453 6454 6455
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
W
wwhu 已提交
6456 6457 6458 6459 6460


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
R
ranqiu 已提交
6461 6462 6463
    This layer multiplex multiple layers according to the indexes,
    which are provided by the first input layer.
    inputs[0]: the indexes of the layers to form the output of size batchSize.
W
wwhu 已提交
6464
    inputs[1:N]; the candidate output data.
R
ranqiu 已提交
6465 6466
    For each index i from 0 to batchSize - 1, the i-th row of the output is the
    the same to the i-th row of the (index[i] + 1)-th layer.
W
wwhu 已提交
6467 6468 6469 6470 6471 6472 6473 6474

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

C
caoying03 已提交
6475 6476
    The example usage is:

W
wwhu 已提交
6477 6478 6479 6480 6481 6482
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
6483
    :param name: The name of this layer. It is optional.
W
wwhu 已提交
6484
    :type name: basestring
R
ranqiu 已提交
6485 6486
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
W
wwhu 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
6510 6511


6512 6513 6514 6515
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """

R
ranqiu 已提交
6516 6517 6518 6519 6520 6521
    The example usage is:

    .. code-block:: python

        dropout = dropout_layer(input=input_layer, dropout_rate=0.5)

6522
    :param name: The name of this layer. It is optional.
R
ranqiu 已提交
6523
    :type name: basestring
R
ranqiu 已提交
6524
    :param input: The input of this layer.
R
ranqiu 已提交
6525 6526 6527 6528 6529
    :type input: LayerOutput
    :param dropout_rate: The probability of dropout.
    :type dropout_rate: float
    :return: LayerOutput object.
    :rtype: LayerOutput
6530 6531 6532 6533 6534 6535 6536
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
6537 6538


D
dangqingqing 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
R
ranqiu 已提交
6552
    introduced in paper of `Deep Speech 2: End-to-End Speech Recognition
D
dangqingqing 已提交
6553 6554 6555 6556 6557 6558 6559
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
R
ranqiu 已提交
6560
    efficient manner to improve unidirectional RNNs.
6561

R
ranqiu 已提交
6562
    The connection of row convolution is different from the 1D sequence
D
dangqingqing 已提交
6563 6564 6565 6566
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
6567

D
dangqingqing 已提交
6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


R
ranqiu 已提交
6583
    :param input: The input of this layer.
D
dangqingqing 已提交
6584 6585 6586 6587
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
6588
    :param act: Activation Type. LinearActivation is the default activation.
D
dangqingqing 已提交
6589
    :type act: BaseActivation
R
ranqiu 已提交
6590 6591
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
D
dangqingqing 已提交
6592
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
6593 6594
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6595
    :type layer_attr: ExtraLayerAttribute | None
D
dangqingqing 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
6611 6612


6613 6614 6615 6616 6617
@layer_support()
@wrap_name_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
6618 6619
                channel_shared=None,
                num_channels=None,
6620 6621 6622
                param_attr=None,
                layer_attr=None):
    """
R
ranqiu 已提交
6623
    The Parametric Relu activation that actives outputs with a learnable weight.
6624 6625 6626 6627 6628 6629 6630 6631 6632

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

C
caoying03 已提交
6633 6634 6635 6636 6637 6638
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

6639
    :param name: The name of this layer. It is optional.
6640
    :type name: basestring
R
ranqiu 已提交
6641
    :param input: The input of this layer.
6642
    :type input: LayerOutput
R
ranqiu 已提交
6643
    :param partial_sum: this parameter makes a group of inputs share the same weight.
C
caoying03 已提交
6644 6645

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
R
ranqiu 已提交
6646 6647
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share the same weight.
        - partial_sum = number of outputs, indicates all elements share the same weight.
C
caoying03 已提交
6648 6649

    :type partial_sum: int
6650
    :param channel_shared: whether or not the parameter are shared across channels.
Z
Zhaolong Xing 已提交
6651

6652 6653
        - channel_shared = True, we set the partial_sum to the number of outputs.
        - channel_shared = False, we set the partial_sum to the number of elements in one channel.
Z
Zhaolong Xing 已提交
6654

6655
    :type channel_shared: bool
6656 6657
    :param num_channels: number of input channel.
    :type num_channels: int
6658
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
R
ranqiu 已提交
6659 6660 6661
    :type param_attr: ParameterAttribute
    :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6662
    :type layer_attr: ExtraLayerAttribute | None
6663 6664 6665 6666
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

6667
    assert isinstance(input, LayerOutput), 'prelu_layer accepts only one input.'
X
xzl 已提交
6668

6669
    if not param_attr:
X
xzl 已提交
6670
        param_attr = ParamAttr(initial_mean=0.25, initial_std=0.0)
6671 6672 6673 6674
    else:
        assert isinstance(param_attr, ParameterAttribute)

    if num_channels is None:
6675 6676
        assert input.num_filters is not None, \
                'the input channel cannot be detected, please specify the num_channels parameter'
6677 6678 6679 6680
        num_channels = input.num_filters

    if channel_shared is not None:
        assert isinstance(channel_shared, bool)
6681 6682
        assert (input.height != 0 and input.width != 0), \
            'input height and widht must be setted'
6683 6684 6685 6686
        if channel_shared:
            partial_sum = input.height * input.width * num_channels
        else:
            partial_sum = input.height * input.width
6687 6688 6689

    l = Layer(
        name=name,
C
caoying03 已提交
6690
        type=LayerType.PRELU,
C
caoying03 已提交
6691
        inputs=Input(input.name, **param_attr.attr),
6692 6693 6694 6695 6696 6697
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
X
xzl 已提交
6698
        num_filters=num_channels,
6699
        size=l.config.size)
6700 6701


6702
@wrap_name_default()
C
caoying03 已提交
6703
@layer_support(ERROR_CLIPPING, DROPOUT)
6704 6705 6706 6707 6708 6709 6710
@wrap_act_default(act=LinearActivation())
def gated_unit_layer(input,
                     size,
                     act=None,
                     name=None,
                     gate_attr=None,
                     gate_param_attr=None,
C
caoying03 已提交
6711 6712
                     gate_bias_attr=True,
                     inproj_attr=None,
6713 6714 6715 6716 6717 6718 6719
                     inproj_param_attr=None,
                     inproj_bias_attr=True,
                     layer_attr=None):
    """
    The gated unit layer implements a simple gating mechanism over the input.
    The input :math:`X` is first projected into a new space :math:`X'`, and
    it is also used to produce a gate weight :math:`\sigma`. Element-wise
R
ranqiu 已提交
6720
    product between :match:`X'` and :math:`\sigma` is finally returned.
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733

    Reference:
        Language Modeling with Gated Convolutional Networks
        https://arxiv.org/abs/1612.08083

    .. math::
       y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c)

    The example usage is:

    .. code-block:: python
        gated_unit = gated_unit_layer(size=128, input=input_layer))

R
ranqiu 已提交
6734
    :param input: The input of this layer.
6735
    :type input: LayerOutput
R
ranqiu 已提交
6736
    :param size: The dimension of this layer's output.
6737
    :type size: int
6738 6739
    :param act: Activation type of the projection. LinearActivation is the default
                activation.
6740
    :type act: BaseActivation
6741
    :param name: The name of this layer. It is optional.
6742
    :type name: basestring
R
ranqiu 已提交
6743 6744
    :param gate_attr: The extra layer attribute of the gate. See ExtraLayerAttribute for
                      details.
R
ranqiu 已提交
6745
    :type gate_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6746 6747 6748
    :param gate_param_attr: The parameter attribute of the gate. See ParameterAttribute
                            for details.
    :type gate_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6749
    :param gate_bias_attr: The bias attribute of the gate. If this parameter is set to False or
R
ranqiu 已提交
6750
                           an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6751
                           If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6752 6753 6754
    :type gate_bias_attr: ParameterAttribute | bool | None | Any
    :param inproj_attr: Extra layer attributes of the projection. See ExtraLayerAttribute for
                        details.
R
ranqiu 已提交
6755
    :type inproj_attr: ExtraLayerAttribute | None
R
ranqiu 已提交
6756 6757 6758
    :param inproj_param_attr: The parameter attribute of the projection. See ParameterAttribute
                              for details.
    :type inproj_param_attr: ParameterAttribute
P
peterzhang2029 已提交
6759
    :param inproj_bias_attr: The bias attribute of the projection. If this parameter is set to False
R
ranqiu 已提交
6760
                             or an object whose type is not ParameterAttribute, no bias is defined.
P
peterzhang2029 已提交
6761
                             If this parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
6762 6763 6764
    :type inproj_bias_attr: ParameterAttribute | bool | None | Any
    :param layer_attr: Extra layer attribute of the product. See ExtraLayerAttribute for
                       details.
R
ranqiu 已提交
6765
    :type layer_attr: ExtraLayerAttribute | None
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(
        input, LayerOutput), 'The gated linear unit accepts only one input.'

    input_proj = fc_layer(
        input=input,
        name="%s_input_proj" % name,
        size=size,
        act=act,
C
caoying03 已提交
6778
        layer_attr=inproj_attr,
6779 6780 6781 6782 6783 6784 6785 6786 6787
        param_attr=inproj_param_attr,
        bias_attr=inproj_bias_attr)

    gate = fc_layer(
        size=size,
        name="%s_gate" % name,
        act=SigmoidActivation(),
        input=input,
        layer_attr=gate_attr,
C
caoying03 已提交
6788
        param_attr=gate_param_attr,
6789 6790 6791 6792 6793
        bias_attr=gate_bias_attr)
    return mixed_layer(
        name="%s_gated_act" % name,
        input=dotmul_operator(input_proj, gate),
        layer_attr=layer_attr)
6794 6795


6796
@layer_support()
6797
@wrap_name_default('switch_order')
W
wanghaoshuang 已提交
6798 6799
def switch_order_layer(input,
                       name=None,
6800
                       reshape_axis=None,
W
wanghaoshuang 已提交
6801 6802
                       act=None,
                       layer_attr=None):
6803
    """
6804
    This layer switch dimension order of image input.
6805 6806
    From order "batchSize, channels, height, width"
    to order "batchSize, height, width, channels".
6807 6808 6809 6810

    The example usage is:

    .. code-block:: python
6811 6812
       reshape_axis = 3
       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
6813
       reshape = {'height':[ 0, 1, 2], 'width':[3]}
6814

R
ranqiu 已提交
6815
    :param input: The input of this layer.
6816
    :type input: LayerOutput
6817
    :param name: The name of this layer. It is optional.
6818
    :type name: basestring
R
ranqiu 已提交
6819 6820
    :param reshape_axis: Specify the axises of 'height'. Its value should be positive and less than 4.
    :type reshape_axis: int
6821 6822 6823
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
6824
    assert isinstance(input, LayerOutput)
6825 6826 6827 6828 6829
    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
    height = [ele for ele in xrange(reshape_axis)]
    width = [ele for ele in range(reshape_axis, 4)]
    reshape = {'height': height, 'width': width}

6830 6831
    l = Layer(
        name=name,
W
wanghaoshuang 已提交
6832
        inputs=input.name,
6833 6834
        reshape=reshape,
        type=LayerType.SWITCH_ORDER_LAYER,
W
wanghaoshuang 已提交
6835
        active_type=act.name,
6836 6837 6838
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
6839
        layer_type=LayerType.SWITCH_ORDER_LAYER,
6840
        activation=act,
6841 6842
        parents=input,
        size=l.config.size)
W
wanghaoshuang 已提交
6843 6844


6845 6846
@wrap_name_default()
@layer_support()
6847
def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None):
6848
    """
R
ranqiu 已提交
6849 6850 6851
    This layer crops images according to the offset and shape. Users can set
    the crop shape through the argument 'shape' explicitly or by specifying a
    reference input layer.
6852

6853 6854 6855
    The example usage is:

    .. code-block:: python
W
whs 已提交
6856
    crop = crop_layer(input=[image_input, reference_input], axis=2, offset=[2, 3])
6857

R
ranqiu 已提交
6858 6859
    :param input: The input of this layer. If two inputs are given, the second one
                  will be regarded as the reference.
R
ranqiu 已提交
6860 6861
    :type input: LayerOutput | Sequence
    :param offset: The crop offset.
6862
    :type offset: Sequence
R
ranqiu 已提交
6863
    :param axis: The start axis to be cropped. For image input layer:
6864 6865 6866 6867
        - 0: batch size
        - 1: channels
        - 2: height
        - 3: width
R
ranqiu 已提交
6868 6869
    :type axis: int
    :param shape: The shape to be cropped to. Default is None.
6870
    :type shape: Sequence | None
6871
    :param name: The name of this layer. It is optional.
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
    else:
        assert isinstance(input, collections.Sequence)
    l = Layer(
        inputs=[x.name for x in input],
        axis=axis,
        offset=offset,
        shape=shape,
        name=name,
        type=LayerType.CROP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.CROP_LAYER,
        parents=input,
        size=l.config.size)
G
guosheng 已提交
6893 6894


C
caoying03 已提交
6895 6896
@wrap_name_default()
@layer_support()
6897
def sub_nested_seq_layer(input, selected_indices, name=None):
C
caoying03 已提交
6898
    """
6899
    The sub_nested_seq_layer accepts two inputs: the first one is a nested
6900
    sequence; the second one is a set of selceted indices in the nested sequence.
C
caoying03 已提交
6901

C
caoying03 已提交
6902 6903 6904
    Then sub_nest_seq_layer trims the first nested sequence input according
    to the selected indices to form a new output. This layer is useful in
    beam training.
C
caoying03 已提交
6905 6906 6907 6908

    The example usage is:

    .. code-block:: python
C
caoying03 已提交
6909

R
ranqiu 已提交
6910
        sub_nest_seq = sub_nested_seq_layer(input=data, selected_indices=selected_ids)
6911

C
caoying03 已提交
6912

R
ranqiu 已提交
6913
    :param input: The input of this layer. It is a nested sequence.
6914
    :type input: LayerOutput
R
ranqiu 已提交
6915
    :param selected_indices: A set of sequence indices in the nested sequence.
C
caoying03 已提交
6916
    :type input: LayerOutput
6917
    :param name: The name of this layer. It is optional.
C
caoying03 已提交
6918 6919 6920 6921
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
C
caoying03 已提交
6922

6923 6924 6925 6926 6927 6928 6929
    assert isinstance(input, LayerOutput), (
        'The first input of '
        'sub_nested_seq_layer must be a Paddle layer.')
    assert isinstance(selected_indices, LayerOutput), (
        'The second input of '
        'sub_nested_seq_layer must be a Paddle layer.')

C
caoying03 已提交
6930
    l = Layer(
6931 6932
        inputs=input.name,
        selected_indices=selected_indices.name,
C
caoying03 已提交
6933 6934 6935 6936 6937 6938 6939
        name=name,
        type=LayerType.SUB_NESTED_SEQ)
    return LayerOutput(
        name=name,
        layer_type=LayerType.SUB_NESTED_SEQ,
        parents=input,
        size=l.config.size)
6940 6941


G
guosheng 已提交
6942
@wrap_name_default("clip")
6943
def clip_layer(input, min, max, name=None):
G
guosheng 已提交
6944 6945 6946 6947 6948 6949 6950 6951 6952
    """
    A layer for clipping the input value by the threshold.

    .. math::

        out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right)

    .. code-block:: python

6953
        clip = clip_layer(input=input_layer, min=-10, max=10)
G
guosheng 已提交
6954

6955
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
6956
    :type name: basestring
R
ranqiu 已提交
6957
    :param input: The input of this layer.
G
guosheng 已提交
6958
    :type input: LayerOutput.
6959
    :param min: The lower threshold for clipping.
R
ranqiu 已提交
6960
    :type min: float
6961
    :param max: The upper threshold for clipping.
R
ranqiu 已提交
6962
    :type max: float
6963 6964
    :return: LayerOutput object.
    :rtype: LayerOutput
G
guosheng 已提交
6965 6966 6967 6968 6969
    """
    Layer(
        name=name,
        type=LayerType.CLIP_LAYER,
        inputs=[input.name],
6970 6971
        min=min,
        max=max)
G
guosheng 已提交
6972 6973
    return LayerOutput(
        name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
6974 6975


6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
    """
    seq_slice_layer will return one or several sub-sequences from the
    input sequence layer given start and end indices.

        - If only start indices are given, and end indices are set to None,
          this layer slices the input sequence from the given start indices
          to its end.
        - If only end indices are given, and start indices are set to None,
          this layer slices the input sequence from its beginning to the
          given end indices.
        - If start and end indices are both given, they should have the same
          number of elements.

    If start or end indices contains more than one elements, the input sequence
    will be sliced for multiple times.


    .. code-block:: python

        seq_silce = seq_slice_layer(input=input_seq,
                                    starts=start_pos, ends=end_pos)

7000
    :param name: The name of this layer. It is optional.
7001
    :type name: basestring
R
ranqiu 已提交
7002
    :param input: The input of this layer, which should be a sequence.
7003
    :type input: LayerOutput
R
ranqiu 已提交
7004
    :param starts: The start indices to slice the input sequence.
R
ranqiu 已提交
7005
    :type starts: LayerOutput | None
R
ranqiu 已提交
7006
    :param ends: The end indices to slice the input sequence.
R
ranqiu 已提交
7007
    :type ends: LayerOutput | None
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of seq_slice layer must be a PaddlePaddle layer.')

    if starts is not None:
        assert isinstance(starts, LayerOutput), (
            'The start indices for seq_slice layer '
            'must be a PaddlePaddle layer.')
    if ends is not None:
        assert isinstance(ends, LayerOutput), (
            'The end indices for seq_slice layer must be a PaddlePaddle layer.')
    assert starts is not None or ends is not None, (
        'start and end indices '
        'cannot be set to None at the same time, at least one of '
        'them should be given.')
    if starts is not None and ends is not None:
        assert starts.size == ends.size, (
            'If start and end indices are both given to seq_slice_layer, '
            'they should have the same width.')

    Layer(
        name=name,
        type=LayerType.SEQ_SLICE,
        inputs=input.name,
        starts=starts.name if starts is not None else None,
        ends=ends.name if ends is not None else None)
    return LayerOutput(
        name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
7039 7040


7041 7042
@wrap_name_default()
@layer_support()
7043
def kmax_seq_score_layer(input, name=None, beam_size=1):
7044
    """
R
ranqiu 已提交
7045
    This layer accepts one input which is scores over a sequence or a nested
7046 7047 7048 7049
    sequence, and returns indices of beam_size sequences with highest scores.

    .. code-block:: python

7050
        kmax_indices = kmax_seq_score_layer(input=input_layer, beam_size)
7051 7052


7053
    :param name: The name of this layer. It is optional.
7054
    :type name: basestring
R
ranqiu 已提交
7055 7056
    :param input: The input of this layer. It stores scores over a sequence or
                  a nested sequence and its size must be 1.
R
ranqiu 已提交
7057
    :type input: LayerOutput
R
ranqiu 已提交
7058 7059
    :param beam_size: The indices of the sequences with top beam_size scores are returned.
    :type beam_size: int
7060 7061 7062
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
7063
    assert isinstance(input, LayerOutput), ("kmax_seq_score_layer "
7064
                                            "accepts only one input.")
7065
    assert input.size == 1, (
7066
        "input of kmax_seq_score_layer is a score "
7067 7068 7069 7070 7071 7072 7073 7074 7075 7076
        "over a sequence or a nested sequence, so its width must be 1.")

    Layer(
        name=name,
        type=LayerType.KMAX_SEQ_SCORE,
        inputs=[input.name],
        beam_size=beam_size)

    return LayerOutput(
        name, LayerType.KMAX_SEQ_SCORE, parents=[input], size=input.size)
G
guosheng 已提交
7077 7078


7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
@wrap_name_default("conv3d")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_conv3d_layer(input,
                     filter_size,
                     num_filters,
                     name=None,
                     num_channels=None,
                     act=None,
                     groups=1,
                     stride=1,
                     padding=0,
                     bias_attr=None,
                     param_attr=None,
                     shared_biases=True,
                     layer_attr=None,
                     trans=False,
                     layer_type=None):
    """

    The example usage is:

    ..  code-block:: python

C
chengduoZH 已提交
7105
        conv = img_conv3d_layer(input=data, filter_size=1,
7106 7107 7108 7109 7110
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

7111
    :param name: The name of this layer. It is optional.
7112
    :type name: basestring
R
ranqiu 已提交
7113
    :param input: The input of this layer.
7114
    :type input: LayerOutput
R
ranqiu 已提交
7115 7116
    :param filter_size: The dimensions of the filter kernel along three axises. If the parameter
                        is set to one integer, the three dimensions will be same.
R
ranqiu 已提交
7117
    :type filter_size: int | tuple | list
R
ranqiu 已提交
7118 7119
    :param num_filters: The number of filters in each group.
    :type num_filters: int
7120
    :param act: Activation type. ReluActivation is the default activation.
7121
    :type act: BaseActivation
R
ranqiu 已提交
7122
    :param groups: The number of the filter groups.
7123
    :type groups: int
R
ranqiu 已提交
7124 7125
    :param stride: The strides of the convolution along three axises. If the parameter
                   is set to one integer, the three strides will be same.
R
ranqiu 已提交
7126
    :type stride: int | tuple | list
R
ranqiu 已提交
7127 7128
    :param padding: The numbers of padding along three axises. If the parameter is set to
                    one integer, they will be same.
R
ranqiu 已提交
7129
    :type padding: int | tuple | list
R
ranqiu 已提交
7130 7131 7132
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7133
    :type bias_attr: ParameterAttribute | None | bool | Any
R
ranqiu 已提交
7134
    :param num_channels: The number of input channels. If the parameter is not set or
R
ranqiu 已提交
7135 7136
                         set to None, its actual value will be automatically set to
                         the channels number of the input.
7137
    :type num_channels: int
R
ranqiu 已提交
7138 7139
    :param param_attr: The parameter attribute of the convolution. See ParameterAttribute for
                       details.
7140
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7141
    :param shared_biases: Whether biases will be shared between filters or not.
7142
    :type shared_biases: bool
R
ranqiu 已提交
7143 7144
    :param layer_attr: The extra layer attributes. See ExtraLayerAttribute for
                       details.
7145
    :type layer_attr: ExtraLayerAttribute
R
ranqiu 已提交
7146
    :param trans: True if it is a convTransLayer, False if it is a convLayer
7147
    :type trans: bool
R
ranqiu 已提交
7148
    :param layer_type: Specify the layer type. If the parameter is set, it must be "deconv3d"
R
ranqiu 已提交
7149 7150 7151
                       when trans=True. If not set, it will be automatically set to "deconv3d"
                       when trans=True and "conv3d" when trans=False.
    :type layer_type: basestring
7152 7153 7154 7155 7156 7157 7158
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

C
chengduoZH 已提交
7159 7160 7161 7162 7163 7164
    if isinstance(filter_size, collections.Sequence):
        assert len(filter_size) == 3
        filter_size, filter_size_y, filter_size_z = filter_size
    else:
        filter_size_y = filter_size
        filter_size_z = filter_size
7165

C
chengduoZH 已提交
7166 7167 7168 7169 7170 7171
    if isinstance(stride, collections.Sequence):
        assert len(stride) == 3
        stride, stride_y, stride_z = stride
    else:
        stride_y = stride
        stride_z = stride
7172

C
chengduoZH 已提交
7173 7174 7175 7176 7177 7178
    if isinstance(padding, collections.Sequence):
        assert len(padding) == 3
        padding, padding_y, padding_z = padding
    else:
        padding_y = padding
        padding_z = padding
7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

    if layer_type:
        if trans:
            assert layer_type in ["deconv3d"]
        lt = layer_type
    else:
        lt = LayerType.DECONV3D_LAYER if trans else LayerType.CONV3D_LAYER

    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            conv=Conv3D(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y,
                filter_size_z=filter_size_z,
                padding_z=padding_z,
                stride_z=stride_z),
            **param_attr.attr),
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
        type=lt,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
C
chengduoZH 已提交
7225 7226


G
guosheng 已提交
7227 7228 7229 7230 7231
@wrap_name_default("scale_shift")
@wrap_param_attr_default()
@wrap_bias_attr_default()
def scale_shift_layer(input, name=None, param_attr=None, bias_attr=None):
    """
X
xuwei06 已提交
7232
    A layer applies a linear transformation to each element in each row of
R
ranqiu 已提交
7233
    the input matrix. For each element, the layer first re-scales it and then
7234 7235
    adds a bias to it.

X
xuwei06 已提交
7236
    This layer is very like the SlopeInterceptLayer, except the scale and
7237 7238
    bias are trainable.

G
guosheng 已提交
7239 7240 7241 7242 7243 7244 7245 7246
    .. math::

        y = w * x + b

    .. code-block:: python

        scale_shift = scale_shift_layer(input=input_layer, bias_attr=False)

7247
    :param name: The name of this layer. It is optional.
G
guosheng 已提交
7248
    :type name: basestring
R
ranqiu 已提交
7249 7250
    :param input: The input of this layer.
    :type input: LayerOutput
R
ranqiu 已提交
7251 7252
    :param param_attr: The parameter attribute of scaling. See ParameterAttribute for
                      details.
G
guosheng 已提交
7253
    :type param_attr: ParameterAttribute
R
ranqiu 已提交
7254 7255 7256
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
R
ranqiu 已提交
7257
    :type bias_attr: ParameterAttribute | None | bool | Any
G
guosheng 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SCALE_SHIFT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        bias=ParamAttr.to_bias(bias_attr))
    return LayerOutput(
        name, LayerType.SCALE_SHIFT_LAYER, parents=[input], size=input.size)
7268 7269 7270 7271 7272 7273 7274 7275 7276


@wrap_name_default("resize")
def resize_layer(input, size, name=None):
    """
    The resize layer resizes the input matrix with a shape of [Height, Width]
    into the output matrix with a shape of [Height x Width / size, size],
    where size is the parameter of this layer indicating the output dimension.

R
ranqiu 已提交
7277
    :param input: The input of this layer.
7278 7279 7280
    :type input: LayerOutput.
    :param name: The name of this layer. It is optional.
    :type name: basestring
R
ranqiu 已提交
7281
    :param size: The resized output dimension of this layer.
7282 7283 7284 7285 7286 7287
    :type size: int
    :return: A LayerOutput object.
    :rtype: LayerOutput
    """
    Layer(name=name, type=LayerType.RESIZE, inputs=Input(input.name), size=size)
    return LayerOutput(name, LayerType.RESIZE, parents=[input], size=input.size)
7288 7289


Y
yangyaming 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
@wrap_act_default(act=LinearActivation())
@wrap_name_default('sub_seq')
def sub_seq_layer(input, offsets, sizes, act=None, bias_attr=None, name=None):
    """
    sub_seq_layer will return sub-sequences from the input sequences. For each
    sequence in the input sequence layer, sub_seq_layer will slice it by given
    offset and size. Please notice that, number of offset value and size value
    both are equal to the number of sequence in the input layer.

    .. code-block:: python

        sub_seq = sub_seq_layer(input=input_seq, offsets=offsets, sizes=sizes)

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer, which should be sequence.
    :type input: LayerOutput
R
ranqiu 已提交
7307 7308
    :param offsets: The offset indices to slice the input sequence, which should
                    be sequence type.
Y
yangyaming 已提交
7309
    :type offsets: LayerOutput
R
ranqiu 已提交
7310
    :param sizes: The sizes of the sub-sequences, which should be sequence type.
Y
yangyaming 已提交
7311
    :type sizes: LayerOutput
7312
    :param act: Activation type, LinearActivation is the default activation.
Y
yangyaming 已提交
7313
    :type act: BaseActivation.
R
ranqiu 已提交
7314 7315 7316
    :param bias_attr: The bias attribute. If the parameter is set to False or an object
                      whose type is not ParameterAttribute, no bias is defined. If the
                      parameter is set to True, the bias is initialized to zero.
Y
yangyaming 已提交
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341
    :type bias_attr: ParameterAttribute | None | bool | Any
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
        'The first input of sub_seq_layer layer must be a PaddlePaddle layer.')
    assert isinstance(offsets, LayerOutput), (
        'The offset indices for sub_seq_layer, '
        'must be a PaddlePaddle layer.')
    assert isinstance(sizes, LayerOutput), (
        'The sizes of sub-sequences, must be a PaddlePaddle layer.')

    Layer(
        name=name,
        type=LayerType.SUB_SEQ_LAYER,
        inputs=[input.name, offsets.name, sizes.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr))

    return LayerOutput(
        name,
        LayerType.SUB_SEQ_LAYER,
        parents=[input, offsets, sizes],
        size=input.size)
Y
yangyaming 已提交
7342 7343


Y
yangyaming 已提交
7344 7345
@wrap_name_default('scale_sub_region')
def scale_sub_region_layer(input, indices, value, name=None):
Y
yangyaming 已提交
7346
    """
Y
yangyaming 已提交
7347 7348 7349 7350 7351 7352
    Given an image or feature map with CHW information, scale_sub_region_layer
    can be used to multiply a real value to values of a sub continuous region.
    You can provide start and end indices of CHW for each instance.
    Please notice that all start indices are counting from 1.
    The shape of indices should be [batch_size, 6] and the layout for each row
    is [C_Start, C_End, H_Start, H_End, W_Start, W_End].
Y
yangyaming 已提交
7353 7354 7355

    .. code-block:: python

Y
yangyaming 已提交
7356 7357 7358
        scale_sub_region = scale_sub_region_layer(input=input,
                                                  indices=indices,
                                                  value=value)
Y
yangyaming 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373

    :param name: The name of this layer. It is optional.
    :type name: basestring
    :param input: The input of this layer which should contains CHW information.
    :type input: LayerOutput
    :param indices: Start index and end index for C H W, the input value should
                    be a 2-D matrix with shape [batch_size, 6].
    :type indices: LayerOutput.
    :param value: value to multiply.
    :type value: float
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput), (
Y
yangyaming 已提交
7374 7375
        'The first input of scale_sub_region_layer, '
        'must be a PaddlePaddle layer.')
Y
yangyaming 已提交
7376 7377 7378 7379 7380 7381 7382
    assert isinstance(indices, LayerOutput), (
        'The start and end indices for CHW, must be a PaddlePaddle layer.')
    assert isinstance(value, float), (
        'The value to multiply, must be a real value.')

    Layer(
        name=name,
Y
yangyaming 已提交
7383
        type=LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7384 7385 7386 7387 7388
        inputs=[input.name, indices.name],
        value=value)

    return LayerOutput(
        name,
Y
yangyaming 已提交
7389
        LayerType.SCALE_SUB_REGION_LAYER,
Y
yangyaming 已提交
7390
        parents=[input, indices],
Y
yangyaming 已提交
7391
        num_filters=input.num_filters,
Y
yangyaming 已提交
7392
        size=input.size)
7393 7394


7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support()
def factorization_machine(input,
                          factor_size,
                          act=None,
                          name=None,
                          param_attr=None,
                          layer_attr=None):
    """
    The Factorization Machine models pairwise feature interactions as inner
    product of the learned latent vectors corresponding to each input feature.
    The Factorization Machine can effectively capture feature interactions
7409 7410 7411 7412 7413
    especially when the input is sparse.

    This implementation only consider the 2-order feature interactions using
    Factorization Machine with the formula:

7414 7415
    .. math::
        y = \sum_{i=1}^{n-1}\sum_{j=i+1}^n\langle v_i, v_j \rangle x_i x_j
7416

7417 7418 7419 7420
    Note:
        X is the input vector with size n. V is the factor matrix. Each row of V
        is the latent vector corresponding to each input dimesion. The size of
        each latent vector is k.
7421 7422

    For details of Factorization Machine, please refer to the paper:
7423
    Factorization machines.
7424

7425
    .. code-block:: python
W
wangmeng28 已提交
7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436
        first_order = paddle.layer.fc(input=input,
                                      size=1,
                                      act=paddle.activation.Linear())
        second_order = paddle.layer.factorization_machine(input=input,
                                                          factor_size=10)
        fm = paddle.layer.addto(input=[first_order, second_order],
                                act=paddle.activation.Linear(),
                                bias_attr=False)

    :param input: The input layer. Supported input types: all input data types
                  on CPU, and only dense input types on GPU.
7437 7438
    :type input: LayerOutput
    :param factor_size: The hyperparameter that defines the dimensionality of
W
wangmeng28 已提交
7439
                        the latent vector size.
7440 7441 7442
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
W
wangmeng28 已提交
7443 7444
    :param param_attr: The parameter attribute. See ParameterAttribute for
                       details.
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert factor_size > 0, "the factor_size must be greater than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        factor_size=factor_size,
        type=LayerType.FACTORIZATION_MACHINE,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FACTORIZATION_MACHINE, input, activation=act, size=1)