pybind.cc 94.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
Y
Yi Wang 已提交
25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
27
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
30
#include "paddle/fluid/framework/io/fs.h"
31
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
32
#include "paddle/fluid/framework/ir/pass_builder.h"
33
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
34 35 36
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
37
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
38
#include "paddle/fluid/framework/op_info.h"
39
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
40
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
42
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
43
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
44
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/selected_rows.h"
46
#include "paddle/fluid/framework/trainer.h"
47
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
48
#include "paddle/fluid/framework/version.h"
H
hong 已提交
49
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
50
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
51
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
52
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
54
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
55
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
56
#include "paddle/fluid/platform/cpu_info.h"
57
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/platform/enforce.h"
59
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
60 61
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
62
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
64
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
65
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
66
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
67
#include "paddle/fluid/pybind/global_value_getter_setter.h"
68
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
69
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
70
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
71
#include "paddle/fluid/pybind/ir.h"
72
#include "paddle/fluid/pybind/pybind_boost_headers.h"
73

74
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
75
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
76
#endif
77
#include "paddle/fluid/framework/data_type.h"
78 79
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
80
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/pybind/tensor_py.h"
82
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
83
#ifdef PADDLE_WITH_CUDA
84
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
85
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
86
#endif
Y
Yi Wang 已提交
87 88
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
89 90
#endif

91 92 93 94
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
95 96
#include "pybind11/stl.h"

97 98 99
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
100
DECLARE_bool(use_mkldnn);
101 102 103
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
104

Q
Qiao Longfei 已提交
105 106
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
Z
Zhen Wang 已提交
107
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensor2DArray);
Q
Qiao Longfei 已提交
108

109
namespace paddle {
110
namespace pybind {
111
bool IsCompiledWithCUDA() {
112
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
113 114 115 116 117 118
  return false;
#else
  return true;
#endif
}

119 120 121 122 123 124 125 126
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

127 128 129 130 131 132 133 134
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

135
bool IsCompiledWithBrpc() {
136
#ifndef PADDLE_WITH_DISTRIBUTE
137 138
  return false;
#endif
139 140 141 142 143 144

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
145 146
}

Y
update  
Yancey1989 已提交
147
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
148
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
149 150 151 152 153 154
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
155 156 157 158 159 160 161 162 163 164
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }
    vec_res.emplace_back(
204
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

315 316 317 318 319 320
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
321 322 323
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
324
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
325

326 327
  AssertStaticGraphAndDygraphGradMakerNoDiff();

328
  m.doc() = "C++ core of PaddlePaddle";
329

330 331 332 333
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

334
  BindException(&m);
Y
Yu Yang 已提交
335

336 337
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
356 357 358 359 360 361 362 363 364
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
365
           const Scope &scope, const Executor *executor) {
H
hong 已提交
366
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
367
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
368 369 370
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

371 372 373 374 375 376
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
396

397 398 399 400 401 402
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
403
  m.def(
S
sneaxiy 已提交
404
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
405 406 407 408
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
409 410 411
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
428 429 430
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
431
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
432

433
  m.def("_set_fuse_parameter_group_size",
434
        &paddle::framework::ir::SetFuseParameterGroupsSize);
435
  m.def("_set_fuse_parameter_memory_size",
436
        &paddle::framework::ir::SetFuseParameterMemorySize);
437

S
sneaxiy 已提交
438 439 440
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

441 442
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

443
  BindImperative(&m);
444

445
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
446
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
447 448
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
449
      .def("_get_dims",
450
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
451
      .def("_set_dims",
Q
qijun 已提交
452
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
453
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
454
           })
Y
yuyang18 已提交
455
      .def("_set_layout",
D
dzhwinter 已提交
456 457 458
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
459
      .def("_alloc_float",
D
dzhwinter 已提交
460
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
461
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
462
           })
Y
yuyang18 已提交
463
      .def("_alloc_float",
Y
Yu Yang 已提交
464
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
465
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
466
           })
467 468 469 470
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
471
      .def("_alloc_int",
Y
Yu Yang 已提交
472
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
473
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
474
           })
Y
yuyang18 已提交
475
      .def("_alloc_int",
D
dzhwinter 已提交
476
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
477
             self.mutable_data<int>(place);
Q
qijun 已提交
478
           })
Y
yuyang18 已提交
479
      .def("_alloc_int",
C
chengduoZH 已提交
480 481 482
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
483
      .def("_alloc_float",
C
chengduoZH 已提交
484 485 486
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
502
      .def("_clear", &Tensor::clear)
503
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
504
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
505
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
506
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
507
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
508 509
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
510 511 512 513 514 515
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.
516 517
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
531

L
Leo Chen 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
571 572 573 574
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
575
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
576
      .def("_dtype", [](Tensor &self) { return self.type(); })
577
      .def("_share_data_with", &Tensor::ShareDataWith)
578 579 580 581 582 583
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
584

L
Leo Chen 已提交
585
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
586
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
661 662 663 664 665 666 667

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
668 669

        )DOC")
670
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
671 672 673 674 675 676 677 678 679
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
680 681
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
682 683 684
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
685
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
686
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
687 688
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
689 690 691
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
692
      .def("set_lod",
693
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
694
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
695
             LoD new_lod;
696 697
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
698 699 700
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
701
             self.set_lod(new_lod);
S
sneaxiy 已提交
702 703 704 705 706
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
707 708 709 710
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
711 712 713 714 715 716 717 718 719 720

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
721
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
722
           )DOC")
723 724 725 726 727 728 729 730 731 732 733
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
734 735
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
736 737
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
738 739
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
740
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
741

L
Leo Chen 已提交
742
           For example, if recursive_sequence_lengths=[[2, 3]], which means
743
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
744
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
745 746

           Args:
L
Leo Chen 已提交
747 748 749 750
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
751 752 753 754 755 756 757 758 759 760

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
761 762
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
763
           )DOC")
764 765 766 767 768 769 770 771
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
772 773 774 775 776
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
777 778
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
779 780 781 782 783 784 785 786 787 788
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
789
           )DOC")
G
gongweibao 已提交
790
      // Set above comments of set_lod.
791 792 793 794 795 796 797 798
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
799 800
           },
           R"DOC(
L
Leo Chen 已提交
801 802
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
803 804

           Returns:
L
Leo Chen 已提交
805
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
806 807 808 809 810 811 812 813 814 815 816

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
817 818 819 820 821 822 823 824
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
825
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
826 827

           Returns:
L
Leo Chen 已提交
828
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
829 830 831 832 833 834 835 836 837 838 839

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
840 841 842 843 844 845 846
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
847
           )DOC")
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
866
#ifdef _WIN32
867
      });
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
918

Q
qijun 已提交
919 920 921 922 923 924 925 926 927 928 929
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
930 931
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
932 933
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
934 935 936 937 938 939 940 941 942
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
943
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
944
      .def("rows", [](SelectedRows &self) {
945 946 947 948 949
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
950
      });
Q
qijun 已提交
951

952
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
953 954 955

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
956
      .def(py::init<>())
957
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
958
      .def("set_int",
959 960
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
961 962 963 964 965 966 967
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
968
      .def("get_tensor",
969 970
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
971 972
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
973 974 975
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
976 977 978 979 980
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
981 982 983
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
984
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
985 986 987 988 989
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
990
#endif
Y
Refine  
Yu Yang 已提交
991 992
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
993
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
994 995
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
996
           py::return_value_policy::reference);
997

S
sneaxiy 已提交
998
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
999

S
sneaxiy 已提交
1000 1001 1002 1003
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
1004

S
sneaxiy 已提交
1005 1006
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
1007
      .def("push",
S
sneaxiy 已提交
1008
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
1009
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
1010
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1011
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
1012
           })
S
sneaxiy 已提交
1013 1014 1015
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
1016
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
1017
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
1018

S
sneaxiy 已提交
1019
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
1020 1021
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
1022
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
1023 1024 1025 1026
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
1027
        py::return_value_policy::copy);
S
sneaxiy 已提交
1028

S
sneaxiy 已提交
1029
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1043
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1044 1045 1046 1047 1048 1049
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1050 1051
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1052
      .def("var",
1053
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1054
             return self.Var(name);
Y
Yu Yang 已提交
1055
           },
S
sneaxiy 已提交
1056 1057
           py::arg("name"),
           R"DOC(
1058
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1059

1060
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1061
           current scope, the variable would be created. Otherwise,
1062
           return the existing variable.
S
sneaxiy 已提交
1063 1064

           Args:
1065 1066
               name (str): the variable name.

S
sneaxiy 已提交
1067
           Returns:
1068
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1069 1070 1071 1072
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1073
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
1074
           its parent scope. Return None if not found.
1075

S
sneaxiy 已提交
1076 1077
           Args:
               name (str): the variable name.
1078

S
sneaxiy 已提交
1079
           Returns:
1080
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1081
           )DOC",
1082
           py::return_value_policy::reference)
1083
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1084 1085 1086 1087 1088 1089
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1090
           py::return_value_policy::reference)
S
sneaxiy 已提交
1091 1092 1093
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1094 1095
           )DOC")
      .def("_kids", &Scope::kids);
1096

S
sneaxiy 已提交
1097 1098 1099 1100 1101 1102
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1103 1104
        R"DOC(
        Create a new scope.
1105

S
sneaxiy 已提交
1106 1107 1108
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1109 1110
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1111 1112
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1113 1114
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1115 1116 1117 1118
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1119 1120
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1121 1122 1123 1124
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1125 1126
    return ret_values;
  });
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1156 1157 1158
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1159 1160 1161 1162 1163
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1164 1165 1166
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1181
  m.def("prune", [](const ProgramDesc &origin,
1182
                    const std::set<std::string> &feeded_var_names,
1183
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1184
    ProgramDesc prog_with_targets(origin);
1185

1186
    for (const auto &t : targets) {
1187
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1188
    }
1189
    proto::ProgramDesc pruned_desc;
1190
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1191
    return new ProgramDesc(pruned_desc);
1192
  });
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1210 1211 1212 1213
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1214 1215 1216
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1217 1218
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1219
  // clang-format off
Y
Yu Yang 已提交
1220
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1221 1222
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1223
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1224 1225 1226
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1227
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1228
                      -> paddle::platform::DeviceContext* {
1229
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1230
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1231
#else
Q
qijun 已提交
1232
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1233
#endif
C
chengduoZH 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1245
// clang-format on
1246
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1247 1248
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1249
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1250 1251 1252 1253 1254 1255 1256 1257
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1258
    The memory of CUDAPlace with different dev_id is not accessible.
1259 1260 1261 1262 1263 1264 1265 1266
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1267 1268 1269 1270

    Examples:
        .. code-block:: python

1271
          import paddle.fluid as fluid
L
lujun 已提交
1272 1273
          gpu_place = fluid.CUDAPlace(0)

1274
        )DOC")
S
sneaxiy 已提交
1275 1276 1277
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1302 1303
             new (&self) platform::CUDAPlace(dev_id);
#else
1304 1305 1306 1307 1308 1309 1310 1311 1312
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1313 1314
#endif
           })
S
sneaxiy 已提交
1315 1316 1317 1318 1319 1320
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1321
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1322

1323
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1324 1325
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1326 1327 1328 1329

    Examples:
        .. code-block:: python

1330
          import paddle.fluid as fluid
1331
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1332

1333
        )DOC")
1334
      .def(py::init<>())
S
sneaxiy 已提交
1335 1336 1337 1338 1339 1340
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1341
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1342

1343
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1344 1345 1346 1347 1348 1349
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1350 1351 1352 1353

    Examples:
        .. code-block:: python

1354
          import paddle.fluid as fluid
L
lujun 已提交
1355 1356
          place = fluid.CUDAPinnedPlace()

1357
        )DOC")
S
sneaxiy 已提交
1358
      .def("__init__",
S
sneaxiy 已提交
1359
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1360 1361 1362
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1363
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1364
           })
S
sneaxiy 已提交
1365 1366 1367 1368 1369 1370 1371 1372
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1373 1374
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1375 1376
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1377 1378 1379 1380 1381
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1382 1383
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1384 1385 1386 1387 1388 1389
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1390 1391 1392 1393
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1394 1395
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1396 1397 1398 1399 1400
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1401
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1402
             self = gpu_place;
C
chengduoZH 已提交
1403 1404
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1405 1406
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1407
      });
Y
Yu Yang 已提交
1408

Y
Yu Yang 已提交
1409
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1421
      .def("run",
1422
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1423 1424 1425
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1426
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1427 1428 1429 1430 1431
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1432 1433 1434 1435 1436 1437 1438
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1439 1440
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1441
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1442
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1443 1444 1445 1446
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1447

1448 1449 1450
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1451 1452 1453 1454 1455 1456 1457 1458 1459
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1460
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1461
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1462
      .def("close", &Executor::Close)
1463 1464
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1465 1466
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1467 1468 1469 1470
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1471
             pybind11::gil_scoped_release release;
1472 1473 1474 1475 1476 1477 1478
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1491
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1492 1493 1494 1495 1496 1497 1498
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1509
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1510 1511
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1512
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1513 1514
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1515
      });
S
sneaxiy 已提交
1516

D
dzhwinter 已提交
1517
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1518
  m.def("init_glog", framework::InitGLOG);
1519
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1520 1521
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1522

1523
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1524
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1525
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1526
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1527
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
H
hutuxian 已提交
1528 1529 1530
  m.def("run_cmd", [](const std::string &cmd) -> const std::string {
    return paddle::framework::shell_get_command_output(cmd);
  });
1531 1532 1533 1534 1535 1536
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1537

1538
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1539
  m.def("get_fetch_variable", framework::GetFetchVariable);
1540
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1541

X
Xin Pan 已提交
1542 1543
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1544 1545 1546 1547 1548
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1549
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1550

Y
Yu Yang 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1560
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1561
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1562 1563 1564

    Examples:
        .. code-block:: python
1565

Z
Zeng Jinle 已提交
1566 1567 1568 1569
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1570 1571
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1582 1583 1584 1585 1586 1587
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1588 1589
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1590 1591 1592 1593 1594 1595
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1618

Z
Zhen Wang 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
  py::class_<LoDTensor2DArray>(m, "LoDTensor2DArray", R"DOC(
        LoDTensor2DArray is 2-D array of LoDTensor.
        )DOC")
      .def("_move_to_list",
           [](LoDTensor2DArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
                 tmp[j] = py::cast(std::move(self[i][j]));
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1638
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1639
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1640
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1641

P
peizhilin 已提交
1642
#ifndef _WIN32
D
dangqingqing 已提交
1643 1644 1645
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1646
#endif
P
peizhilin 已提交
1647
#endif
Y
Yu Yang 已提交
1648

1649 1650 1651 1652 1653 1654
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1655 1656 1657 1658
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1659
      .value("kAll", platform::ProfilerState::kAll)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1671
  m.def("set_tracer_option", platform::SetTracerOption);
1672 1673
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1674
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1675
  m.def("reset_profiler", platform::ResetProfiler);
1676
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1677 1678 1679
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1680

1681 1682
  m.def("size_of_dtype", framework::SizeOfType);

1683 1684 1685
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1686 1687
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1688
      .def("has", &ir::Pass::Has)
1689 1690 1691
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1692
           })
1693
      .def(
1694
          "set",
1695 1696 1697
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1698 1699
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
1700 1701
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1716 1717
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1718
        self.Apply(graph.get());
F
flame 已提交
1719
      });
1720

X
fix  
Xin Pan 已提交
1721 1722
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1737
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1738

Y
yuyang18 已提交
1739
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1740 1741 1742 1743
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1744 1745 1746
    Examples:
        .. code-block:: python

1747
          import paddle.fluid as fluid
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1758 1759 1760
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1761 1762
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1763 1764
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1765 1766
        )DOC");

Y
yuyang18 已提交
1767
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1768 1769 1770 1771 1772
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1783
      .def_property(
1784 1785 1786 1787
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1788 1789 1790 1791
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1792 1793 1794 1795 1796
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1797 1798 1799
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1800 1801
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1802 1803 1804 1805 1806 1807 1808
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1809 1810 1811 1812
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1813 1814
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1815 1816 1817 1818 1819 1820

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1821
              )DOC")
Q
Qiao Longfei 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1831
                user call exe.run() in python
Q
Qiao Longfei 已提交
1832
              )DOC")
1833 1834 1835 1836 1837 1838 1839 1840
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
1841 1842 1843 1844 1845
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1846

Y
yuyang18 已提交
1847
  exec_strategy.def_property(
Y
yuyang18 已提交
1848 1849 1850 1851 1852 1853 1854
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1855 1856
      });

C
chengduo 已提交
1857 1858 1859 1860
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1861 1862 1863
    Examples:
        .. code-block:: python

1864 1865
            import os
            import numpy as np
F
flame 已提交
1866
            import paddle.fluid as fluid
1867 1868 1869 1870 1871 1872 1873 1874 1875

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1876
            build_strategy = fluid.BuildStrategy()
1877 1878
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1879
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1880 1881 1882 1883
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1884
)DOC");
Y
yuyang18 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1901 1902
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1903
            self.reduce_ = strategy;
C
chengduo 已提交
1904
          },
1905
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1906 1907
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1908
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1909 1910
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1911
                Default is 'AllReduce'.
F
flame 已提交
1912 1913 1914 1915 1916 1917 1918 1919

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1920 1921 1922 1923 1924
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1925 1926
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1927
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1928
          },
1929 1930
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1931 1932
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1933
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1934 1935 1936 1937 1938

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1967
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1982
                   )DOC")
Y
yuyang18 已提交
1983 1984 1985 1986
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1987 1988
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1989
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1990
          },
1991
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1992
                writing the SSA Graph to file in the form of graphviz.
1993
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1994 1995 1996 1997 1998 1999

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
2000 2001
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
2002
                    )DOC")
S
sneaxiy 已提交
2003 2004 2005 2006 2007 2008
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2009 2010
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
2011 2012
            self.enable_sequential_execution_ = b;
          },
2013 2014
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2015 2016 2017 2018 2019 2020 2021 2022

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2023 2024 2025 2026 2027 2028
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2029 2030
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
2031 2032
            self.remove_unnecessary_lock_ = b;
          },
2033 2034
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2035 2036 2037 2038 2039 2040 2041 2042

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2043 2044 2045 2046
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2047 2048 2049
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
2050 2051
            self.num_trainers_ = num_trainers;
          })
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2064 2065 2066 2067 2068 2069
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2070
      .def_property("use_hierarchical_allreduce",
2071 2072 2073 2074 2075 2076
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2077
      .def_property("hierarchical_allreduce_inter_nranks",
2078 2079 2080 2081 2082 2083 2084
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2085 2086 2087 2088 2089 2090
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2091 2092
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
2093 2094
            self.fuse_elewise_add_act_ops_ = b;
          },
2095
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2096
                to fuse elementwise_add_op and activation_op,
2097
                it may make the execution faster. Default is False.
F
flame 已提交
2098 2099 2100 2101 2102 2103 2104 2105

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy is finlaized."));
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2147 2148 2149 2150 2151 2152
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2153 2154
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
2155 2156
            self.fuse_relu_depthwise_conv_ = b;
          },
2157
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2158 2159 2160
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2161
                Default is False.
F
flame 已提交
2162 2163 2164 2165 2166 2167 2168 2169

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
2180
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2181 2182 2183 2184
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2185 2186 2187 2188 2189 2190 2191 2192 2193
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2194 2195
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2196 2197
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2198 2199
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2200 2201
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
2202 2203
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2204 2205 2206 2207
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
2208 2209
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
2210 2211
            self.sync_batch_norm_ = b;
          },
2212
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2213 2214 2215
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2216 2217
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2218 2219 2220 2221 2222 2223 2224 2225

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2226 2227
      .def_property(
          "memory_optimize",
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2243 2244
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2245 2246
            }
          },
2247
          R"DOC((bool, optional): memory opitimize aims to save total memory
2248
                consumption, set to True to enable it.
2249

2250 2251 2252
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2253
                True means enabling and False means disabling. Default is None.)DOC")
2254 2255 2256
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2257 2258 2259 2260 2261 2262 2263 2264 2265
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2266 2267 2268
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2269
      .def_property(
D
dzhwinter 已提交
2270 2271 2272
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2273 2274
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2275 2276 2277 2278
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2279
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2280 2281 2282 2283 2284 2285 2286
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2287 2288 2289 2290
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2291 2292 2293 2294 2295 2296 2297 2298 2299
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2300
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2301
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2302 2303 2304 2305 2306
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2307 2308

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2309
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2310
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2311
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2312 2313 2314 2315
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2316 2317 2318 2319 2320
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2321 2322 2323
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2324 2325 2326 2327
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2328 2329
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
               return py::cast(std::move(
                   boost::get<paddle::framework::FeedFetchList>(ret)));
             } else {
               return py::cast(std::move(
                   boost::get<paddle::framework::FetchUnmergedList>(ret)));
             }
2344 2345
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2346

D
dongdaxiang 已提交
2347
  BindFleetWrapper(&m);
2348
  BindGlooWrapper(&m);
H
hutuxian 已提交
2349
  BindBoxHelper(&m);
H
hutuxian 已提交
2350 2351 2352
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2353
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2354
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2355
#endif
F
flame 已提交
2356 2357
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2358
  BindInferenceApi(&m);
2359
  BindDataset(&m);
2360 2361 2362
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2363
}
2364
}  // namespace pybind
2365
}  // namespace paddle