pybind.cc 97.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
59
#include "paddle/fluid/framework/scope_pool.h"
60
#include "paddle/fluid/framework/selected_rows_utils.h"
61
#include "paddle/fluid/framework/tensor_util.h"
62
#include "paddle/fluid/framework/trainer.h"
63
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
64
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
65
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
66
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
67
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
68 69 70
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
71
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
72
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
73
#include "paddle/fluid/operators/common_infer_shape_functions.h"
74
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
75
#include "paddle/fluid/operators/py_func_op.h"
76
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
77
#include "paddle/fluid/platform/cpu_info.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
95 96
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
97
#include "paddle/utils/none.h"
98 99 100
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
101
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
102
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
103
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
104
#include "paddle/fluid/pybind/box_helper_py.h"
105
#include "paddle/fluid/pybind/communication.h"
106
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
107
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
108
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
111
#include "paddle/fluid/pybind/generator_py.h"
112
#include "paddle/fluid/pybind/global_value_getter_setter.h"
113
#include "paddle/fluid/pybind/gloo_context_py.h"
114
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
115
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
116
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/ir.h"
118
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
119
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
120
#include "paddle/fluid/pybind/pybind_variant_caster.h"
121
#include "paddle/phi/backends/device_manager.h"
122

123
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
124
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
125
#endif
126
#include "paddle/fluid/framework/data_type.h"
127 128
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
129 130
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
131
#include "paddle/fluid/pybind/reader_py.h"
132
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
133
#include "paddle/fluid/pybind/tensor_py.h"
134
#include "paddle/fluid/string/to_string.h"
135 136
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
137
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
138
#endif
139
#ifndef PADDLE_WITH_HIP
140
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
141
#endif
142
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
143 144
#endif

145
#ifdef PADDLE_WITH_ASCEND_CL
146
#include "paddle/fluid/platform/collective_helper.h"
147 148
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
149 150
#endif

151
#ifdef PADDLE_WITH_XPU
152
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
153
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
154 155
#endif

156
#ifdef PADDLE_WITH_CUSTOM_DEVICE
157
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
158 159 160
#include "paddle/phi/capi/capi.h"
#endif

161
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
162

J
jianghaicheng 已提交
163
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
164 165
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
166
#endif
167

168 169 170 171
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
172 173 174 175
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
176
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
177 178 179
#include "paddle/fluid/pybind/fleet_py.h"
#endif

180 181 182 183
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
184
#if defined(PADDLE_WITH_RPC)
185 186 187
#include "paddle/fluid/pybind/rpc.h"
#endif

188
#include "paddle/fluid/eager/api/utils/global_utils.h"
189
#include "paddle/fluid/imperative/layout_autotune.h"
190 191
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
192 193
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
194 195
#include "pybind11/stl.h"

196
DECLARE_bool(use_mkldnn);
197

Q
Qiao Longfei 已提交
198 199
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
200 201 202
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
203

204
namespace paddle {
205
namespace pybind {
206

0
0x45f 已提交
207
PyTypeObject *g_framework_scope_pytype = nullptr;
208
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
209
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
210

211 212 213 214 215 216 217 218
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

219
bool IsCompiledWithCUDA() {
220 221 222 223 224 225 226
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

227 228 229 230 231 232 233 234
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

252 253
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
254 255 256 257 258 259
  return false;
#else
  return true;
#endif
}

260 261 262 263 264 265 266 267
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

268 269 270 271 272 273 274 275
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

276 277 278 279 280 281 282 283
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
284 285 286 287 288 289 290 291
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

292 293 294 295 296 297 298 299
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

300 301 302 303 304 305 306 307
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

308 309 310 311 312 313 314 315
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

316 317 318 319 320 321 322 323
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

324 325 326 327 328 329 330 331 332 333 334
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

335 336 337 338 339 340 341 342 343 344 345
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

363
bool IsCompiledWithBrpc() {
364
#ifndef PADDLE_WITH_DISTRIBUTE
365
  return false;
366
#else
367
  return true;
368
#endif
369 370
}

Y
update  
Yancey1989 已提交
371
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
372
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
373 374 375 376 377 378
  return true;
#else
  return false;
#endif
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
447 448
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
449 450
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
464 465
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
466 467
    }
    vec_res.emplace_back(
468
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
469 470 471 472 473 474 475 476 477 478 479 480
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
481 482
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
483 484 485 486 487 488 489 490 491 492 493 494
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
495 496 497
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
498 499 500 501
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
502 503
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
504 505 506 507
  }
  return vec_res;
}

O
OccupyMars2025 已提交
508
static void inline CreateVariableIfNotExist(
509 510
    const py::handle &py_handle,
    const framework::Scope &scope,
511 512 513 514 515 516
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
517 518
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
519 520 521 522 523 524 525 526 527 528 529 530 531
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
532 533 534
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
535 536 537 538 539
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
540 541 542 543 544
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
545 546
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
547
        PADDLE_ENFORCE_NOT_NULL(
548 549 550
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
551 552 553
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
554
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
555
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
556 557
        tensor_temp->mutable_data(
            exe->GetPlace(),
558
            framework::TransToPhiDataType(var_desc.GetDataType()));
559 560 561
      }
    }
  } else {
562 563
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
564 565 566 567 568
  }

  return;
}

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
585 586
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
587 588 589 590 591 592 593
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
594 595 596 597
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
598
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
599 600 601 602 603 604 605 606
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

607
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
608
  BindImperative(&m);
609
  BindEager(&m);
J
Jack Zhou 已提交
610
  BindEagerStringTensor(&m);
611
  BindCudaStream(&m);
612
  BindJit(&m);
613

Y
Yu Yang 已提交
614 615 616
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
617
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
618

619 620
  AssertStaticGraphAndDygraphGradMakerNoDiff();

621
  m.doc() = "C++ core of PaddlePaddle";
622

623 624 625 626
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

627
  BindException(&m);
Y
Yu Yang 已提交
628

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

644 645
  m.def("set_num_threads", &platform::SetNumThreads);

646 647
  m.def("disable_signal_handler", &DisableSignalHandler);

648 649 650 651 652 653 654 655
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

656
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
657
  m.def("cudnn_version", &platform::DnnVersion);
658 659 660 661 662 663
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
664
#endif
665

Z
Zeng Jinle 已提交
666 667 668 669
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

670 671 672 673 674 675 676 677 678
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
679 680
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
681
      .def("replay", &platform::CUDAGraph::Replay)
682 683
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
684 685
#endif

Z
Zeng Jinle 已提交
686 687 688 689
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
690 691 692
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
693 694

    PADDLE_ENFORCE_NOT_NULL(
695 696 697 698
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
699

6
633WHU 已提交
700 701
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
702
    phi::DenseTensor tensor;
6
633WHU 已提交
703

S
Siming Dai 已提交
704
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
705
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
706
    }
707
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
708
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
709
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
710 711 712 713
    }
#endif
    return tensor;
  });
H
hong 已提交
714

715
  m.def("_create_loaded_parameter",
716 717
        [](const py::handle &vec_var_list,
           const Scope &scope,
718
           const Executor *executor) {
O
OccupyMars2025 已提交
719
          CreateVariableIfNotExist(vec_var_list, scope, executor);
720 721
        });

722 723 724 725 726 727
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
728 729
  });

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

755 756 757 758 759 760
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
761

S
sneaxiy 已提交
762
  m.def(
S
sneaxiy 已提交
763
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
764 765 766 767
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
768 769 770
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
787
            }
788
            all_kernels_info.emplace(op_type, kernel_types);
789
          }
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
806
                }
807 808
              } else {
                kernel_types.emplace_back(kernel_type_str);
809
              }
810
            }
811 812 813
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
814
          }
815
        }
816

817 818 819 820
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
821 822 823
           Return the registered kernels in paddle.

           Args:
824
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
825
           )DOC");
826

827 828 829 830 831 832
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
833 834 835 836 837
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
838

S
sneaxiy 已提交
839 840 841
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
842
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
843

844
  m.def("_set_fuse_parameter_group_size",
845
        &paddle::framework::ir::SetFuseParameterGroupsSize);
846
  m.def("_set_fuse_parameter_memory_size",
847
        &paddle::framework::ir::SetFuseParameterMemorySize);
848

S
sneaxiy 已提交
849 850 851
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

852 853
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
854 855
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

856 857 858
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
900 901 902 903 904 905 906 907 908 909 910 911 912
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
913 914 915 916 917
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
918

919
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
920 921 922

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
923
      .def(py::init<>())
924
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
925
      .def("set_int",
926 927
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
928 929 930 931 932 933 934
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
935 936
      .def(
          "get_tensor",
937 938
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
939 940
          },
          py::return_value_policy::reference)
941 942 943 944
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
945 946 947 948
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
949 950 951 952
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
979
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
980 981 982 983 984 985
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
986
#endif
987 988 989
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
990 991
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
992 993 994 995 996 997 998 999 1000 1001
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1002 1003
                scope_vec->size(),
                0,
1004 1005 1006 1007 1008
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1009 1010 1011 1012
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1013

S
sneaxiy 已提交
1014
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1015

0
0x45f 已提交
1016
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1030
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1031 1032 1033 1034 1035
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1036 1037 1038
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1039 1040
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1041 1042 1043 1044 1045 1046 1047
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1048
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1049

1050
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1051
           current scope, the variable would be created. Otherwise,
1052
           return the existing variable.
S
sneaxiy 已提交
1053 1054

           Args:
1055 1056
               name (str): the variable name.

S
sneaxiy 已提交
1057
           Returns:
1058
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1059
           )DOC",
1060
          py::return_value_policy::reference)
1061 1062 1063
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1064
           R"DOC(
1065
           Find variable named :code:`name` in the current scope or
1066
           its parent scope. Return None if not found.
1067

S
sneaxiy 已提交
1068 1069
           Args:
               name (str): the variable name.
1070

S
sneaxiy 已提交
1071
           Returns:
1072
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1073
           )DOC",
1074
           py::return_value_policy::reference)
1075
      .def("size", &Scope::Size)
1076 1077 1078
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1079 1080
           R"DOC(
           Find variable named :code:`name` in the current scope or
1081
           its parent scope. Return None if not found.
1082 1083 1084 1085 1086 1087 1088 1089

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1090
      .def(
1091 1092
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1093
          R"DOC(
S
sneaxiy 已提交
1094 1095 1096 1097 1098
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1099
          py::return_value_policy::reference)
1100 1101
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1102 1103
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1104
           )DOC")
1105 1106
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1107

1108 1109 1110 1111 1112 1113 1114 1115
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1116
        Create a new scope.
1117

S
sneaxiy 已提交
1118 1119 1120
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1121
      py::return_value_policy::reference);
S
sneaxiy 已提交
1122

Y
Yu Yang 已提交
1123 1124
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1125 1126
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1127 1128 1129 1130
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1131
        PADDLE_ENFORCE_EQ(
1132 1133
            info.Proto().SerializeToString(&str),
            true,
1134 1135
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1136 1137 1138
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1139 1140
    return ret_values;
  });
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1179 1180 1181 1182 1183 1184 1185 1186
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1187
              res = op_checker->GetDefaultAttrsMap();
1188 1189 1190 1191
            }
          }
          return res;
        });
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1227 1228 1229
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1230 1231 1232 1233 1234
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1235 1236 1237
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1238
  m.def("infer_no_need_buffer_slots",
1239 1240
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1268 1269 1270 1271 1272 1273
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1274 1275
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1276

1277
            Args:
1278 1279 1280
                   program (ProgramDesc): The original program.

             Returns:
1281
                   tuple(ProgramDesc, map<int, int>): The first part is
1282 1283 1284 1285
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1286 1287 1288 1289
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1290 1291
    VLOG(4) << s;
    return s;
1292 1293 1294 1295 1296 1297
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1298
  });
1299 1300 1301 1302
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1303 1304 1305
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1306 1307
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1308

Y
Yu Yang 已提交
1309
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1310
      .def_static("create",
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1327
                  })
1328 1329 1330 1331
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1332
#ifndef PADDLE_WITH_XPU
1333 1334 1335
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1336
#else
W
Wilber 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1351
#endif
1352 1353 1354 1355 1356
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1357
#ifndef PADDLE_WITH_MLU
1358 1359 1360
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1361 1362
#else
                    return new paddle::platform::MLUDeviceContext(place);
1363
#endif
1364 1365 1366 1367 1368
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1369
#ifndef PADDLE_WITH_ASCEND_CL
1370 1371 1372
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1373 1374
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1375
#endif
1376 1377 1378 1379
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1380
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1381 1382 1383 1384
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1385 1386
#else
                return new paddle::platform::CustomDeviceContext(place);
1387
#endif
1388 1389 1390 1391 1392
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1393
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1394 1395 1396
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1397
#else
L
Leo Chen 已提交
1398
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1411 1412 1413 1414
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1415 1416
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1417
#endif
1418 1419 1420 1421 1422
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1423
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1424 1425 1426
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1427 1428 1429
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1430
          });
1431
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1432 1433
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1434 1435 1436
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1437
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1438
#else
R
ronnywang 已提交
1439
          VLOG(1) << string::Sprintf(
1440 1441 1442 1443
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1444
              "PaddlePaddle by: pip install paddlepaddle\n");
1445 1446 1447 1448 1449 1450
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1451
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1452
#else
R
ronnywang 已提交
1453
          VLOG(1) << string::Sprintf(
1454 1455 1456 1457
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1458
              "PaddlePaddle by: pip install paddlepaddle\n");
1459 1460 1461 1462 1463 1464
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1465
    devices = phi::DeviceManager::GetAllDeviceList();
1466
#else
R
ronnywang 已提交
1467
          VLOG(1) << string::Sprintf(
1468 1469 1470 1471
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1472
              "PaddlePaddle by: pip install paddlepaddle\n");
1473 1474 1475 1476 1477 1478
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1479
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1480
#else
R
ronnywang 已提交
1481
          VLOG(1) << string::Sprintf(
1482 1483 1484 1485 1486 1487
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1488
              "PaddlePaddle by: pip install paddlepaddle\n");
1489 1490 1491
#endif
    return devices;
  });
Y
Yu Yang 已提交
1492

Y
Yu Yang 已提交
1493
  py::class_<OperatorBase>(m, "Operator")
1494 1495 1496 1497 1498 1499 1500
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1501 1502
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1503 1504 1505 1506 1507 1508
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1509
      .def("run",
1510 1511
           [](OperatorBase &self,
              const Scope &scope,
1512 1513 1514 1515
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1516
      .def("run",
1517 1518
           [](OperatorBase &self,
              const Scope &scope,
1519 1520 1521 1522
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1523
      .def("run",
1524 1525
           [](OperatorBase &self,
              const Scope &scope,
1526 1527 1528 1529
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1530
      .def("run",
1531 1532
           [](OperatorBase &self,
              const Scope &scope,
1533 1534 1535 1536
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1537
      .def("run",
1538 1539
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1540
              const platform::CUDAPinnedPlace &place) {
1541
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1542 1543
             self.Run(scope, place);
           })
1544
      .def("run",
1545 1546
           [](OperatorBase &self,
              const Scope &scope,
1547 1548 1549 1550
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1551
      .def("run",
1552 1553
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1554 1555 1556 1557
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1558 1559 1560 1561 1562
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1563 1564
             return op.Outputs();
           })
Q
qijun 已提交
1565 1566
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1567
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1568
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1569 1570 1571 1572
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1573

1574 1575 1576
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1577 1578
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1579 1580 1581 1582 1583 1584
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1585 1586
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1587

1588 1589
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1590
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1591
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1592
      .def("close", &Executor::Close)
1593 1594
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1595
           py::call_guard<py::gil_scoped_release>())
1596 1597
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1598
           py::call_guard<py::gil_scoped_release>())
1599
      .def("init_for_dataset",
1600 1601 1602 1603
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1604
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1605
             pybind11::gil_scoped_release release;
1606 1607 1608 1609 1610 1611 1612
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1613
      .def("run_prepared_ctx",
1614 1615 1616
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1617
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1618
              std::map<std::string, FetchType *> *fetch_targets,
1619 1620
              bool create_local_scope = true,
              bool create_vars = true,
1621 1622 1623
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1624 1625 1626 1627 1628 1629 1630 1631
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1632
           })
1633
      .def("run_prepared_ctx",
1634 1635 1636 1637 1638
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1639 1640
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1641 1642
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1643
           })
1644
      .def("prepare",
1645 1646 1647
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1648 1649 1650 1651
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1652 1653
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1654 1655
           })
      .def("create_variables", &Executor::CreateVariables)
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1672

1673
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1674
      .def(py::init<>())
1675 1676 1677 1678 1679
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1680

1681
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1682
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1683
      .def("run",
1684
           [](StandaloneExecutor &self,
1685
              Scope *scope,
1686
              std::vector<std::string> feed_names,
1687 1688 1689 1690
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1691
               ret = self.Run(scope, feed_names, fetch_names);
1692 1693 1694
             }
             return py::cast(std::move(ret));
           })
1695 1696
      .def("dry_run",
           [](StandaloneExecutor &self,
1697
              Scope *scope,
1698
              const std::unordered_map<std::string, py::array> &input_dict) {
1699
             std::vector<phi::DenseTensor> feed_tensors;
1700 1701 1702
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1703
               phi::DenseTensor t;
1704 1705 1706 1707 1708 1709
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1710
             framework::interpreter::CostInfo cost_info;
1711 1712
             {
               pybind11::gil_scoped_release release;
1713
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1714 1715
             }
             return cost_info;
H
hong 已提交
1716 1717
           });

D
dzhwinter 已提交
1718
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1719
  m.def("init_glog", framework::InitGLOG);
1720 1721 1722 1723
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1724 1725 1726 1727 1728 1729 1730 1731
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1732 1733
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1734
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1735
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1736
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1737
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1738
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1739
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1740
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1741
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1742
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1743 1744
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1745
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1746
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1747
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1748
  m.def("supports_bfloat16", SupportsBfloat16);
1749
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1750 1751
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1752
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1753
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1754
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1755 1756 1757
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1777 1778 1779
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1780 1781
  m.def(
      "run_cmd",
1782 1783
      [](const std::string &cmd,
         int time_out = -1,
1784
         int sleep_inter = -1) -> const std::string {
1785 1786
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1787
      },
1788 1789 1790
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1791 1792
  m.def(
      "shell_execute_cmd",
1793 1794 1795
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1796
         bool redirect_stderr = false) -> std::vector<std::string> {
1797 1798
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1799
      },
1800 1801 1802
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1803
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1804

1805
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1806 1807
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1808
    return platform::GetGPUComputeCapability(place.device) >= 53;
1809
  });
1810 1811 1812 1813
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1814
#endif
1815

S
Steffy-zxf 已提交
1816
  m.def("set_feed_variable",
1817 1818
        static_cast<void (*)(  // NOLINT
            Scope *,
1819
            const phi::DenseTensor &,
1820 1821
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1822
  m.def("set_feed_variable",
1823 1824 1825 1826 1827
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1828
  m.def("get_fetch_variable",
1829 1830
        [](const Scope &scope,
           const std::string &var_name,
1831 1832 1833
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1834
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1835
          } else {
R
Ruibiao Chen 已提交
1836
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1837 1838
          }
        });
1839
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1840

X
Xin Pan 已提交
1841 1842
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1843 1844 1845 1846
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1847
  BindCostModel(&m);
1848
  BindConstValue(&m);
1849
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1850
  BindFleetExecutor(&m);
1851
  BindTCPStore(&m);
1852
  BindAutoParallel(&m);
1853
  BindJitProperty(&m);
Y
Yu Yang 已提交
1854

Y
Yu Yang 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1864
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1865
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1866 1867 1868

    Examples:
        .. code-block:: python
1869

Z
Zeng Jinle 已提交
1870 1871 1872
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1873 1874 1875 1876
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1877 1878
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1879 1880 1881 1882
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1883 1884
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1885
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1886 1887
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1888 1889 1890
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1891 1892 1893
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1894 1895
      .def(
          "append",
1896
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1897 1898 1899 1900
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1901 1902
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1903
             Append a LoDensor to LoDTensorArray.
1904

1905 1906 1907 1908 1909
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1921
           )DOC")
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1933

1934
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1935
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1936
        )DOC")
1937 1938 1939 1940 1941 1942
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
1943
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
1944
                res[i] = py::cast(std::move(data));
1945 1946 1947
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1948
              } else {
R
Ruibiao Chen 已提交
1949
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1961

1962 1963
      .def(
          "append",
1964
          [](FetchList &self, const phi::DenseTensor &t) {
1965
            self.emplace_back();
1966
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
1967 1968 1969 1970 1971 1972 1973 1974 1975
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1976
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1977 1978 1979 1980 1981 1982
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1983 1984

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1985
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1986
        )DOC")
1987 1988 1989 1990 1991 1992 1993 1994
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
1995
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
1996 1997
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1998
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2013

Y
Yu Yang 已提交
2014
  m.def("op_support_gpu", OpSupportGPU);
2015
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2016
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2017
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2018 2019 2020 2021 2022 2023 2024 2025
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2026 2027 2028 2029 2030 2031
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2032 2033

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2059
      });
D
dangqingqing 已提交
2060

2061
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2062 2063 2064
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2065 2066 2067
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2068 2069 2070
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2071
#endif
P
peizhilin 已提交
2072
#endif
Y
Yu Yang 已提交
2073

2074 2075
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2076
  m.def("npu_finalize", []() {
2077 2078
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2079 2080 2081
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2082
      platform::NPUDeviceGuard guard(devices[i]);
2083 2084 2085 2086
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2107 2108 2109 2110
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2111 2112 2113 2114
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2115 2116 2117 2118 2119 2120
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2121 2122 2123 2124
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2125
      .value("kAll", platform::ProfilerState::kAll)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2137
  m.def("set_tracer_option", platform::SetTracerOption);
2138 2139
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2140
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2141
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2142
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2143
    PADDLE_ENFORCE_EQ(
2144 2145
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2146 2147 2148
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2149
    callable.inc_ref();
2150 2151 2152 2153 2154 2155 2156 2157
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2158
  });
2159
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2160 2161 2162
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2163

2164
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2165 2166
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2167 2168
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2169 2170
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2171 2172 2173 2174 2175 2176 2177 2178 2179
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2244 2245
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2246 2247 2248 2249
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2250 2251 2252 2253 2254
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2255 2256 2257
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2258 2259

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2260 2261
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2262
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2263
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2264 2265
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2266 2267 2268 2269 2270 2271
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2295 2296 2297 2298 2299 2300 2301 2302
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2321 2322 2323 2324 2325 2326
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2327

2328
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2329 2330
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2331 2332
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2333
#endif  // PADDLE_WITH_CUDA
2334 2335 2336 2337 2338 2339 2340 2341
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2342

J
jianghaicheng 已提交
2343 2344
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2345 2346 2347
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2348 2349 2350 2351 2352 2353 2354
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2355
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2356 2357
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2358
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2369 2370 2371 2372
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2395 2396
                         option.get_type(),
                         option_name));
2397 2398 2399 2400 2401 2402 2403
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2404 2405
                         option_name,
                         option.first.cast<std::string>(),
2406 2407
                         option.second.cast<std::uint64_t>());
                   }
2408 2409 2410 2411 2412 2413
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2414 2415 2416 2417 2418 2419 2420 2421 2422
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2459 2460
                           option.second.get_type(),
                           option_key));
2461
                     }
2462 2463
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2464 2465 2466 2467 2468 2469
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2470 2471
                     element.second.get_type(),
                     option_name));
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2502 2503
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2504 2505 2506
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2507 2508
#endif

2509 2510 2511 2512 2513 2514 2515 2516
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2517
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2518 2519 2520 2521 2522 2523 2524 2525 2526
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2527
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2528 2529 2530 2531 2532 2533 2534
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2535 2536
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2537

2538 2539
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2540

2541 2542
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2543

D
dongdaxiang 已提交
2544
  BindFleetWrapper(&m);
2545
  BindIO(&m);
2546 2547 2548
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2549

T
Thunderbrook 已提交
2550
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2551
  BindHeterWrapper(&m);
2552
  BindMetrics(&m);
T
Thunderbrook 已提交
2553
#endif
T
Thunderbrook 已提交
2554
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2555
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2556 2557 2558
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2559
#endif
2560
  BindGlooWrapper(&m);
H
hutuxian 已提交
2561
  BindBoxHelper(&m);
H
hutuxian 已提交
2562 2563 2564
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2565
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2566
  BindNCCLWrapper(&m);
2567 2568 2569
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2570
#endif
F
flame 已提交
2571 2572
  BindGraph(&m);
  BindNode(&m);
2573
  BindPass(&m);
F
flame 已提交
2574
  BindInferenceApi(&m);
2575
  BindCompatible(&m);
2576
  BindDataset(&m);
Y
yaoxuefeng 已提交
2577
  BindGenerator(&m);
2578
#ifndef PADDLE_NO_PYTHON
2579 2580
  BindDistributed(&m);
#endif
2581 2582 2583
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2584
  BindAscendDevice(&m);
2585
#endif
Y
Yanghello 已提交
2586 2587 2588
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2589

T
tangwei12 已提交
2590
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2591 2592
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2593
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2594 2595
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2596 2597 2598 2599 2600
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2601 2602 2603 2604
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2605
#ifdef PADDLE_WITH_HETERPS
2606 2607
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2608 2609 2610
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2611
#endif
X
Xinger 已提交
2612
#if defined(PADDLE_WITH_RPC)
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2625
}
2626
}  // namespace pybind
2627
}  // namespace paddle