nn.py 225.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
C
chengduo 已提交
57
    'sequence_expand_as',
F
fengjiayi 已提交
58
    'sequence_pad',
Y
ying 已提交
59 60 61 62 63
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
64
    'reduce_prod',
Y
ying 已提交
65 66 67 68
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
69 70
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
71 72
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
73
    'topk',
Y
ying 已提交
74 75
    'warpctc',
    'sequence_reshape',
76
    'transpose',
77
    'im2sequence',
78
    'nce',
W
weixing02 已提交
79
    'hsigmoid',
Q
Qiao Longfei 已提交
80
    'beam_search',
81
    'row_conv',
82
    'multiplex',
G
guosheng 已提交
83
    'layer_norm',
84 85
    'softmax_with_cross_entropy',
    'smooth_l1',
86
    'one_hot',
Y
Yu Yang 已提交
87
    'autoincreased_step_counter',
C
caoying03 已提交
88
    'reshape',
Y
Yibing Liu 已提交
89 90
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
91
    'lod_reset',
D
dragonwarrior 已提交
92
    'lrn',
G
guosheng 已提交
93
    'pad',
C
chengduo 已提交
94
    'pad_constant_like',
95
    'label_smooth',
96
    'roi_pool',
W
whs 已提交
97
    'dice_loss',
F
fengjiayi 已提交
98 99
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
100
    'resize_bilinear',
W
whs 已提交
101
    'gather',
102
    'scatter',
Q
Qingsheng Li 已提交
103
    'sequence_scatter',
104
    'random_crop',
Y
yuyang18 已提交
105 106 107
    'mean_iou',
    'relu',
    'log',
108
    'crop',
109
    'rank_loss',
J
jerrywgz 已提交
110
    'prelu',
111 112 113
    'brelu',
    'leaky_relu',
    'soft_relu',
114
    'flatten',
Q
qingqing01 已提交
115
    'sequence_mask',
S
sneaxiy 已提交
116
    'stack',
W
whs 已提交
117
    'pad2d',
D
dzhwinter 已提交
118
    'unstack',
119
    'sequence_enumerate',
W
whs 已提交
120
    'expand',
C
add api  
chengduoZH 已提交
121
    'sequence_concat',
Y
Yu Yang 已提交
122 123 124 125 126 127 128 129
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
130
       use_mkldnn=False,
Y
Yu Yang 已提交
131
       act=None,
J
Jacek Czaja 已提交
132
       is_test=False,
133
       name=None):
Y
Yu Yang 已提交
134
    """
135
    **Fully Connected Layer**
Y
Yu Yang 已提交
136

137 138 139 140 141 142 143 144
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
145
    to the output as well.
C
caoying03 已提交
146

C
caoying03 已提交
147
    This process can be formulated as follows:
148 149 150

    .. math::

151
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
152 153 154

    In the above equation:

C
caoying03 已提交
155 156 157 158
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
159
    * :math:`Act`: The activation function.
C
caoying03 已提交
160
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
161 162

    Args:
R
ranqiu 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
178 179
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
180
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
181
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
182 183
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
184
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
185

186
    Returns:
F
fengjiayi 已提交
187
        Variable: The transformation result.
188 189

    Raises:
C
caoying03 已提交
190
        ValueError: If rank of the input tensor is less than 2.
191 192 193 194

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
195
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
196
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
197
    """
C
caoying03 已提交
198

C
caoying03 已提交
199
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
200 201 202 203

    dtype = helper.input_dtype()

    mul_results = []
204 205
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
206 207 208
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
209

Y
Yu Yang 已提交
210
        w = helper.create_parameter(
211 212
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
213
        helper.append_op(
214 215 216
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
217
            outputs={"Out": tmp},
M
mozga-intel 已提交
218 219
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
220 221 222 223
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
224
    else:
225 226
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
227 228 229 230
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
231 232 233 234
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
235 236


237 238 239
def embedding(input,
              size,
              is_sparse=False,
240
              is_distributed=False,
241 242 243
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
244
    """
245 246
    **Embedding Layer**

247
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
248 249
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
250 251 252

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
253 254

    Args:
255 256 257 258 259
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
260
        is_distributed(bool): Whether to run lookup table from remote parameter server.
261 262
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
263
            with zeros whenever lookup encounters it in :attr:`input`. If
264
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
265 266
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
267
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
268

269 270 271
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
272

273 274
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
275

C
chengduoZH 已提交
276
          dict_size = len(dataset.ids)
277
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
278
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
279 280 281 282 283 284
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
285 286
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
287 288 289 290 291
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
292 293 294 295 296
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
297 298 299
    return tmp


Y
yi.wu 已提交
300
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
301 302
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
303 304
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
305 306 307 308 309 310 311
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
312 313
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
314
    """
Y
yi.wu 已提交
315
    ${comment}
Y
Yibing Liu 已提交
316 317

    Args:
Y
yi.wu 已提交
318 319
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
320 321 322 323 324 325 326
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

327
        param_attr(ParamAttr|None): The parameter attribute for the learnable
328
                               hidden-hidden weights.
Y
Yibing Liu 已提交
329 330 331

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
332 333
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
334
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
335 336 337
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
338

339
                              1. `use_peepholes = False`
Y
yi.wu 已提交
340 341
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
342
                              2. `use_peepholes = True`
Y
yi.wu 已提交
343
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
344
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
345
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
346 347 348 349 350 351 352 353
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
354 355

    Returns:
Y
Yibing Liu 已提交
356 357
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
358

Y
Yibing Liu 已提交
359
    Examples:
Y
Yibing Liu 已提交
360 361
        .. code-block:: python

Y
Yibing Liu 已提交
362 363
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
364
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
365 366
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
367
    """
368

Y
Yu Yang 已提交
369
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
370
    size = size // 4
Y
Yu Yang 已提交
371 372 373 374 375 376 377 378 379 380 381 382
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
383 384 385 386 387 388 389 390 391 392
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
393 394 395

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
396
        inputs=inputs,
Y
Yu Yang 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
413 414 415 416 417 418 419 420 421 422 423
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
424 425
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
426 427 428
    """
    **Dynamic LSTMP Layer**

429 430 431 432 433 434
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
435 436 437 438 439

    The formula is as follows:

    .. math::

440
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
441

442
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
443

444
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
445

446
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
447

448
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
449

450
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
451

452
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
453

Y
Yibing Liu 已提交
454 455 456 457 458 459
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
460
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
461
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
462
          bias vector).
Y
Yibing Liu 已提交
463 464 465
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
466
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
467
    * :math:`h`: The hidden state.
468
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
469 470
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
471
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
472
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
473
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
474 475
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
476 477 478 479

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
480

Y
Yibing Liu 已提交
481 482 483 484 485 486 487 488 489 490 491 492
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
493
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
494 495
                               hidden-hidden weight and projection weight.

496 497
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
498 499
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
500 501
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
502 503
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
504 505 506 507 508 509
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
510
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
511 512 513
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
514
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
515 516 517 518 519 520 521 522 523
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
524
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
525 526
                              default "tanh".
        proj_activation(str): The activation for projection output.
527
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
528 529
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
530 531
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
532 533

    Returns:
534 535 536 537
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
538 539

    Examples:
540

Y
Yibing Liu 已提交
541 542
        .. code-block:: python

543 544 545 546
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
547
            hidden_dim, proj_dim = 512, 256
548
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
549
                                     act=None, bias_attr=None)
550 551 552
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
553 554 555 556
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
557
    """
558

Y
Yibing Liu 已提交
559
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
560
    size = size // 4
Y
Yibing Liu 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
605 606 607 608 609 610 611 612 613
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
614
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
615

616
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
617
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
618

G
guosheng 已提交
619 620 621 622 623 624 625 626 627
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
628

G
guosheng 已提交
629
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
630

G
guosheng 已提交
631
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
632 633
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
634 635 636 637
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
638
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
639 640

    Args:
641 642
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
643
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
644
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
645 646
            is the hidden size.
        size(int): The dimension of the gru cell.
647
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
648 649
            hidden-hidden weight matrix. Note:

650
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
651
              :math:`D` is the hidden size.
652
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
653
              The first part are weights of the update gate and reset gate with
654
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
655
              candidate hidden state with shape :math:`(D \\times D)`.
656
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
657
            hidden-hidden bias.
658
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
659 660 661
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
662
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
663
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
664 665 666 667
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
668 669

    Returns:
G
guosheng 已提交
670
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
671
            and sequence length is the same with the input.
672

G
guosheng 已提交
673
    Examples:
674

G
guosheng 已提交
675 676
        .. code-block:: python

677 678 679 680
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
681
            hidden_dim = 512
682
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
683 684 685 686 687 688 689 690 691 692
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
693
    batch_size = input.shape[0]
G
guosheng 已提交
694 695 696
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
697 698 699
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
723 724 725
def gru_unit(input,
             hidden,
             size,
726 727
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
728
             activation='tanh',
729
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
730
    """
731
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
732

733 734
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
735

736
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
737

738
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
739

740
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
741 742

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
743 744 745
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
746 747
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

748 749
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
750 751 752
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
753 754 755 756 757

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
758 759
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
760 761 762 763
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
764

765 766 767 768 769 770
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
771

772
             # assuming we have x_t_data and prev_hidden of size=10
773
             x_t = fluid.layers.fc(input=x_t_data, size=30)
774 775
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
776 777 778 779 780 781 782 783 784 785 786 787

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
788
    size = size // 3
Y
Yu Yang 已提交
789 790

    # create weight
791 792
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
793

794 795 796 797
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
798
    # create bias
799
    if helper.bias_attr:
Y
Yu Yang 已提交
800 801 802
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
803
        inputs['Bias'] = bias
Y
Yu Yang 已提交
804 805 806

    helper.append_op(
        type='gru_unit',
807
        inputs=inputs,
Y
Yu Yang 已提交
808 809 810 811 812 813
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
814 815
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
816 817 818 819 820
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
821
@templatedoc()
822
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
823 824 825 826 827 828 829
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
830
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
831 832 833 834
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
835 836 837
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
838 839

    """
Y
Yu Yang 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
865
@templatedoc()
866
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
867 868 869 870 871
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
872

Y
yuyang18 已提交
873
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
874

Y
yuyang18 已提交
875 876 877
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
878
        Variable: ${viterbi_path_comment}
879

Y
yi.wu 已提交
880 881 882 883 884
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
885
    """
Y
Yu Yang 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
899
@templatedoc()
F
fengjiayi 已提交
900
def cos_sim(X, Y):
Y
Yu Yang 已提交
901
    """
Y
yi.wu 已提交
902 903 904
    ${comment}

    Args:
905 906
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
907

Y
yi.wu 已提交
908
    Returns:
909
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
910
    """
F
fengjiayi 已提交
911
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


925
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
926 927 928 929 930
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
931
    training. The dropout operator randomly sets (according to the given dropout
932 933 934 935
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
936 937
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
938 939 940 941 942 943 944
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
945 946

    Returns:
947
        Variable: A tensor variable is the shape with `x`.
948 949

    Examples:
950

951 952
        .. code-block:: python

953 954
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
955 956
    """

F
fengjiayi 已提交
957
    helper = LayerHelper('dropout', **locals())
958 959
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
960 961 962 963

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

964 965 966 967 968
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
969 970 971 972 973 974
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
975 976 977
    return out


978
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
979
    """
Y
Yibing Liu 已提交
980 981
    **Cross Entropy Layer**

982 983 984
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
985 986

    1) One-hot cross-entropy:
F
fengjiayi 已提交
987
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
988

Y
Yibing Liu 已提交
989
        .. math::
Y
yangyaming 已提交
990

Y
Yibing Liu 已提交
991 992 993
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
994 995
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
996 997 998 999 1000

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1001
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1002 1003 1004
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1005 1006
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1007
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1008

Y
Yibing Liu 已提交
1009
    Args:
Y
yangyaming 已提交
1010
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1011 1012 1013 1014
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1015
        label (Variable|list): the ground truth which is a 2-D tensor. When
1016 1017 1018 1019
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1020
        soft_label (bool): a flag indicating whether to
1021
                                           interpretate the given labels as soft
1022 1023 1024 1025
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1026 1027 1028 1029 1030

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1031 1032 1033 1034 1035
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1036 1037 1038 1039 1040 1041

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1042
    """
F
fengjiayi 已提交
1043
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1044 1045 1046 1047 1048 1049
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1050 1051
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1052 1053 1054
    return out


F
fengjiayi 已提交
1055
def square_error_cost(input, label):
Y
Yu Yang 已提交
1056
    """
1057 1058
    **Square error cost layer**

1059 1060
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1075 1076
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1077 1078

    Returns:
G
guosheng 已提交
1079
        Variable: The tensor variable storing the element-wise squared error \
1080
                  difference of input and label.
1081 1082 1083 1084 1085 1086 1087 1088

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1089
    """
F
fengjiayi 已提交
1090
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1100 1101
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1102 1103 1104
    return square_out


Y
yi.wu 已提交
1105
@templatedoc()
Y
Yu Yang 已提交
1106 1107 1108 1109
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1110
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1111
    """
Y
yi.wu 已提交
1112
    **Chunk Evaluator**
Y
yi.wu 已提交
1113

Y
yangyaming 已提交
1114
    This function computes and outputs the precision, recall and
1115
    F1-score of chunk detection.
Y
yi.wu 已提交
1116

Y
yi.wu 已提交
1117 1118 1119 1120 1121 1122 1123 1124
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1125

Y
yi.wu 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1151

Y
yi.wu 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1176
    Args:
1177 1178 1179 1180 1181
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1182

Y
yi.wu 已提交
1183
    Returns:
Y
update  
yi.wu 已提交
1184 1185 1186
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1187

Y
yi.wu 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1200
    """
F
fengjiayi 已提交
1201
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1202 1203 1204 1205 1206

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1207 1208 1209
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1210 1211 1212 1213 1214 1215 1216 1217

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1218 1219 1220 1221
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1222 1223 1224
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1225 1226
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1227
        })
1228 1229
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1230 1231


1232
@templatedoc()
Y
Yu Yang 已提交
1233 1234 1235 1236 1237 1238 1239
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1240
                  act=None):
Y
Yu Yang 已提交
1241 1242 1243 1244
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1255

1256 1257
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1276
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1277 1278 1279 1280 1281 1282
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1283
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1284 1285 1286
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1287
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1306
        library is installed. Default: False
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1330
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1331
    """
1332
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1333
    has the same shape as the input.
Q
qiaolongfei 已提交
1334

1335 1336 1337 1338 1339 1340
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1341
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1342 1343 1344 1345 1346 1347 1348

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1349
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1384 1385 1386
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1387 1388
           stride=1,
           padding=0,
1389
           dilation=1,
Y
Yu Yang 已提交
1390 1391 1392
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1393
           use_cudnn=True,
1394
           use_mkldnn=False,
1395 1396
           act=None,
           name=None):
Y
Yu Yang 已提交
1397
    """
C
chengduoZH 已提交
1398
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1399 1400
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1401
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1402 1403 1404 1405 1406 1407 1408
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1409 1410 1411
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1412

1413
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1414

C
chengduoZH 已提交
1415 1416
    .. math::

C
refine  
chengduoZH 已提交
1417
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1418

T
tensor-tang 已提交
1419
    Where:
C
chengduoZH 已提交
1420

1421 1422 1423 1424 1425
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1426
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1427 1428 1429

    Example:

1430 1431
        - Input:

W
weixing02 已提交
1432
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1433

W
weixing02 已提交
1434
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1435

1436
        - Output:
T
tensor-tang 已提交
1437

W
weixing02 已提交
1438
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1439

C
chengduoZH 已提交
1440
        Where
1441 1442

        .. math::
C
chengduoZH 已提交
1443

W
weixing02 已提交
1444 1445
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1446 1447

    Args:
1448
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1449
        num_filters(int): The number of filter. It is as same as the output
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1472 1473
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1474 1475 1476
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1477 1478

    Returns:
G
guosheng 已提交
1479
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1480 1481
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1482
    Raises:
1483 1484
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1485

C
chengduoZH 已提交
1486 1487 1488
    Examples:
        .. code-block:: python

1489 1490
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1491 1492 1493
    """

    num_channels = input.shape[1]
1494 1495

    l_type = 'conv2d'
X
xzl 已提交
1496 1497
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1498
        l_type = 'depthwise_conv2d'
1499 1500 1501 1502

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1503 1504 1505 1506 1507
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1508
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1509

C
chengduoZH 已提交
1510 1511 1512
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1513
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1514

C
chengduoZH 已提交
1515 1516
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1517 1518

    input_shape = input.shape
M
minqiyang 已提交
1519
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1534
        type=l_type,
Y
Yu Yang 已提交
1535 1536 1537 1538 1539
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1540 1541 1542
        attrs={
            'strides': stride,
            'paddings': padding,
1543
            'dilations': dilation,
C
chengduoZH 已提交
1544
            'groups': groups,
1545 1546
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1547
        })
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1572 1573 1574 1575 1576 1577
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1587 1588
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1589 1590 1591
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1592
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1618
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1619 1620
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1621
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1622 1623
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1624
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1625 1626
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1627
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1654 1655
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1670
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1711
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1712 1713 1714 1715

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1716
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1717
    """
Y
yangyaming 已提交
1718 1719 1720
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1732
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1733 1734 1735 1736 1737
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1738
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1739 1740 1741 1742 1743 1744 1745

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1746 1747
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1748

L
Luo Tao 已提交
1749 1750
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1751
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1752 1753 1754 1755 1756 1757 1758 1759
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1760

Y
yangyaming 已提交
1761
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1762 1763 1764 1765 1766
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1767 1768
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1769
    """
F
fengjiayi 已提交
1770
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1782 1783 1784 1785 1786
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1787 1788 1789
    return pool_out


C
add doc  
chengduoZH 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1815
def sequence_first_step(input):
L
Luo Tao 已提交
1816
    """
L
Luo Tao 已提交
1817
    This function gets the first step of sequence.
L
Luo Tao 已提交
1818 1819 1820 1821

    .. code-block:: text

       x is a 1-level LoDTensor:
1822
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1823 1824 1825 1826 1827
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1828
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1829
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1830

L
Luo Tao 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1840

Y
yangyaming 已提交
1841
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1842 1843 1844
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1845 1846 1847
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1848
def sequence_last_step(input):
L
Luo Tao 已提交
1849
    """
L
Luo Tao 已提交
1850
    This function gets the last step of sequence.
L
Luo Tao 已提交
1851 1852 1853 1854

    .. code-block:: text

       x is a 1-level LoDTensor:
1855
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1856 1857 1858 1859 1860
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1861
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1862
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1863

L
Luo Tao 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1873

Y
yangyaming 已提交
1874
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1875 1876 1877
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1878 1879 1880
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1881
@templatedoc()
Y
Yu Yang 已提交
1882
def pool2d(input,
C
chengduoZH 已提交
1883 1884
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1885 1886
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1887
           global_pooling=False,
C
chengduoZH 已提交
1888
           use_cudnn=True,
1889
           ceil_mode=False,
1890
           use_mkldnn=False,
C
caoying03 已提交
1891
           name=None):
Y
Yu Yang 已提交
1892
    """
F
fengjiayi 已提交
1893
    ${comment}
1894 1895

    Args:
1896 1897 1898
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1899
                          feature, and W is the width of the feature.
1900
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1901
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1902
        pool_type: ${pooling_type_comment}
1903 1904
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1905 1906 1907 1908
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1909
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1910 1911
                        layer will be named automatically.

1912
    Returns:
F
fengjiayi 已提交
1913
        Variable: The pooling result.
F
fengjiayi 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1927 1928 1929 1930
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1931
                            global_pooling=False)
Y
Yu Yang 已提交
1932 1933 1934 1935 1936
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1937

C
chengduoZH 已提交
1938 1939 1940 1941 1942
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1943 1944 1945 1946
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1947 1948
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1949

C
Add doc  
chengduoZH 已提交
1950
    l_type = 'pool2d'
1951 1952

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1953 1954 1955 1956
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1986
    pooling configurations mentioned in input parameters.
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2000

2001
    Returns:
2002
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2003 2004 2005 2006 2007
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2008

C
chengduoZH 已提交
2009 2010 2011 2012 2013
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2014 2015 2016
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2017

C
chengduoZH 已提交
2018 2019
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2020

2021 2022
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2023 2024 2025 2026
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2027
        type=l_type,
Y
Yu Yang 已提交
2028 2029 2030 2031 2032 2033 2034
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2035
            "paddings": pool_padding,
2036
            "use_cudnn": use_cudnn,
2037 2038
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2051
               data_layout='NCHW',
Y
Yang Yang 已提交
2052
               in_place=False,
2053
               use_mkldnn=False,
2054 2055
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2056
               moving_variance_name=None,
2057 2058
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2059
    """
Q
qiaolongfei 已提交
2060 2061 2062 2063
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2064

Q
qiaolongfei 已提交
2065
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2066

Q
qiaolongfei 已提交
2067 2068
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2069 2070 2071
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2084 2085

    Args:
Q
qiaolongfei 已提交
2086
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2087 2088 2089 2090
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2091 2092 2093
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2094
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2095 2096 2097 2098 2099
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2100
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2101
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2102 2103

    Returns:
Q
qiaolongfei 已提交
2104
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2105 2106 2107 2108 2109 2110 2111

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2135
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2136

2137 2138
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2139 2140 2141
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2142
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2143
        shape=param_shape,
2144 2145 2146 2147 2148 2149 2150
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2151
            trainable=False,
W
wanghaoshuang 已提交
2152
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2153
        shape=param_shape,
2154 2155
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2156 2157 2158 2159 2160 2161

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2162 2163
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2164

2165
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2183 2184 2185 2186
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2187 2188
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2189
        })
Y
Yu Yang 已提交
2190 2191 2192 2193

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2194
@templatedoc()
G
guosheng 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2205
    ${comment}
G
guosheng 已提交
2206 2207 2208

    The formula is as follows:

Y
yuyang18 已提交
2209
    ..  math::
G
guosheng 已提交
2210 2211 2212 2213 2214 2215 2216

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2217 2218 2219 2220 2221 2222 2223 2224
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2225

G
guosheng 已提交
2226 2227
    Args:
        input(Variable): The input tensor variable.
2228
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2229
            normalization.
2230
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2231
            normalization.
2232
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2233
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2234
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2235 2236 2237 2238 2239 2240
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2241
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2242 2243

    Returns:
Y
yuyang18 已提交
2244
        ${y_comment}
G
guosheng 已提交
2245 2246 2247

    Examples:

Y
yuyang18 已提交
2248 2249 2250
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2266
    if shift:
G
guosheng 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2291 2292 2293 2294
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2295 2296 2297
                     padding=0,
                     stride=1,
                     dilation=1,
2298
                     groups=None,
C
caoying03 已提交
2299
                     param_attr=None,
2300
                     bias_attr=None,
C
chengduoZH 已提交
2301
                     use_cudnn=True,
2302
                     act=None,
C
caoying03 已提交
2303
                     name=None):
Y
Yu Yang 已提交
2304
    """
2305 2306 2307 2308 2309 2310 2311 2312
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2313 2314
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2315 2316 2317
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2318 2319 2320 2321 2322

    For each input :math:`X`, the equation is:

    .. math::

2323
        Out = \sigma (W \\ast X + b)
2324

2325
    Where:
2326 2327 2328

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2329 2330 2331 2332
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2333

2334 2335 2336 2337
    Example:

        - Input:

2338
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2339

2340
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2341 2342 2343

        - Output:

2344
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2345 2346

        Where
Y
Yu Yang 已提交
2347

2348 2349
        .. math::

2350 2351 2352 2353
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2354 2355

    Args:
2356 2357 2358 2359
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2360 2361 2362 2363
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2391 2392

    Returns:
2393
        Variable: The tensor variable storing the convolution transpose result.
2394 2395

    Raises:
2396 2397
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2398 2399 2400 2401

    Examples:
       .. code-block:: python

2402 2403
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2404
    """
2405 2406 2407 2408 2409 2410 2411 2412 2413

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2414 2415 2416
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2417 2418 2419
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2420

C
chengduoZH 已提交
2421 2422
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2423

Y
Yu Yang 已提交
2424 2425 2426 2427 2428
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2429

Y
Yu Yang 已提交
2430 2431
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2432

C
chengduoZH 已提交
2433
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2434
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2435
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2436
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2437
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2438 2439 2440
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2441 2442 2443 2444 2445 2446 2447
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2448
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2449
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2450 2451 2452
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2453
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2454
    helper.append_op(
2455
        type=op_type,
Y
Yu Yang 已提交
2456 2457
        inputs={'Input': [input],
                'Filter': [img_filter]},
2458
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2459
        attrs={
2460
            'output_size': output_size,
2461 2462 2463 2464 2465
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2466 2467
        })

2468 2469 2470
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2471 2472


2473
def conv3d_transpose(input,
Y
Yu Yang 已提交
2474 2475 2476
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2477 2478 2479
                     padding=0,
                     stride=1,
                     dilation=1,
2480
                     groups=None,
C
caoying03 已提交
2481
                     param_attr=None,
2482
                     bias_attr=None,
C
chengduoZH 已提交
2483
                     use_cudnn=True,
2484
                     act=None,
C
caoying03 已提交
2485
                     name=None):
Y
Yu Yang 已提交
2486
    """
2487
    **Convlution3D transpose layer**
2488

2489
    The convolution3D transpose layer calculates the output based on the input,
2490
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2491 2492 2493 2494 2495 2496
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2497 2498 2499
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2500 2501 2502 2503 2504

    For each input :math:`X`, the equation is:

    .. math::

2505
        Out = \sigma (W \\ast X + b)
2506 2507 2508

    In the above equation:

2509 2510
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2511 2512 2513 2514
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2515

2516 2517 2518 2519
    Example:

        - Input:

2520
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2521

2522
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2523 2524 2525

        - Output:

2526
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2527 2528

        Where
Y
Yu Yang 已提交
2529

2530 2531
        .. math::

2532 2533 2534
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2535 2536

    Args:
2537
        input(Variable): The input image with [N, C, D, H, W] format.
2538 2539 2540
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2541
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2542 2543
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2544
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2545 2546 2547
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2548 2549
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2550
        stride(int|tuple): The stride size. If stride is a tuple, it must
2551 2552
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2553
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2554 2555 2556
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2557 2558 2559 2560 2561
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2562 2563 2564
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2565 2566 2567 2568 2569
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2570 2571

    Returns:
2572
        Variable: The tensor variable storing the convolution transpose result.
2573 2574

    Raises:
2575 2576
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2577 2578 2579 2580

    Examples:
       .. code-block:: python

2581 2582
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2583
    """
2584 2585
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2586
    if not isinstance(input, Variable):
2587
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2588 2589
    input_channel = input.shape[1]

2590 2591 2592
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2593

C
chengduoZH 已提交
2594 2595 2596
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2597 2598 2599 2600 2601 2602
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2603 2604 2605
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2606

2607
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2608
                         padding[0] - 1) // dilation[0] + 1
2609
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2610
                         padding[1] - 1) // dilation[1] + 1
2611
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2612
                         padding[2] - 1) // dilation[2] + 1
2613
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2614
    else:
2615 2616
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2617

2618
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2619
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2620 2621 2622
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2623
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2624
    helper.append_op(
2625
        type=l_type,
Y
Yu Yang 已提交
2626 2627
        inputs={'Input': [input],
                'Filter': [img_filter]},
2628
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2629 2630 2631 2632
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2633
            'groups': groups,
C
chengduoZH 已提交
2634 2635
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2636

2637 2638
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2639
    return out
Y
yangyaming 已提交
2640 2641


Y
yangyaming 已提交
2642
def sequence_expand(x, y, ref_level=-1, name=None):
2643
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2644 2645 2646 2647
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2648 2649 2650 2651 2652

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2653
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2654
                x.data = [[a], [b], [c], [d]]
2655 2656 2657
                x.dims = [4, 1]

            y is a LoDTensor:
2658 2659
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2660

Y
yangyaming 已提交
2661
            ref_level: 0
2662

Y
yangyaming 已提交
2663
            then output is a 1-level LoDTensor:
2664
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2665
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2666 2667 2668 2669
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2670
                x.data = [[a], [b], [c]]
2671 2672 2673
                x.dims = [3, 1]

            y is a LoDTensor:
2674
                y.lod = [[2, 0, 3]]
2675

Y
yangyaming 已提交
2676
            ref_level: -1
2677

Y
yangyaming 已提交
2678 2679 2680
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2681 2682 2683
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2684 2685
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2686
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2687
                        will be named automatically.
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2698
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2699
    """
Y
yangyaming 已提交
2700
    helper = LayerHelper('sequence_expand', input=x, **locals())
2701 2702 2703
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2704 2705 2706 2707 2708
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2709
    return tmp
2710 2711


C
chengduo 已提交
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
2795 2796
        Variable: The padded sequence batch and the original lengths before 
                  padding. All sequences has the same length.
F
fengjiayi 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2812 2813 2814 2815 2816
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2817 2818 2819 2820 2821 2822
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2823 2824
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2825
        attrs={'padded_length': maxlen})
2826
    return out, length
F
fengjiayi 已提交
2827 2828


2829 2830 2831 2832 2833 2834 2835 2836 2837
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2838 2839
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2840 2841 2842

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2843 2844

    This layer does the search in beams for one time step. Specifically, it
2845 2846 2847 2848 2849 2850
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2851

2852 2853 2854 2855 2856 2857 2858 2859
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2860

2861
    Args:
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2887

2888
    Returns:
2889 2890
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2891 2892 2893 2894

    Examples:
        .. code-block:: python

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2923
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2941 2942 2943 2944 2945 2946 2947
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2958

2959 2960 2961 2962 2963 2964
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2991 2992 2993 2994
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2995
              param_attr=None,
C
caoying03 已提交
2996 2997
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2998 2999 3000 3001
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3002
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3003

3004
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3005

3006
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3007

3008
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3009 3010 3011

            h_t & = o_t tanh(c_t)

3012 3013 3014 3015 3016 3017
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3018 3019 3020

        .. math::

3021
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3022 3023 3024 3025 3026 3027 3028 3029

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3030
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3031 3032

    Args:
Y
yangyaming 已提交
3033 3034 3035 3036 3037 3038
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3039
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3040 3041
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3042 3043
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3044 3045
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3046 3047

    Returns:
Y
yangyaming 已提交
3048
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3049 3050

    Raises:
3051 3052 3053 3054
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3055 3056 3057 3058 3059 3060

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3061
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3062
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3063
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3080
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3081 3082 3083 3084
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3085 3086
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3087 3088 3089
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3090
    size = cell_t_prev.shape[1]
3091
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3092 3093
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3094
                param_attr=param_attr,
3095
                bias_attr=bias_attr)
Y
yangyaming 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3108
    return h, c
G
guosheng 已提交
3109 3110


C
caoying03 已提交
3111
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3112
    """
Y
yangyaming 已提交
3113
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3114 3115 3116

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3117
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3118 3119
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3120 3121
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3122
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3123
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3124
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3125 3126
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3127 3128 3129

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3130

G
guosheng 已提交
3131 3132 3133 3134 3135 3136
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3137
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3138 3139 3140 3141
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3142 3143 3144 3145

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3146
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3147 3148 3149
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3150 3151 3152
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3153 3154
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3155 3156 3157 3158 3159
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3160
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3161 3162 3163 3164
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3165 3166


C
caoying03 已提交
3167
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3168
    """
Y
Yibing Liu 已提交
3169
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3170 3171 3172

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3173 3174 3175
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3176
            must be in the range :math:`[-rank(input), rank(input))`. If
3177
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3178
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3179 3180
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3181
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3182
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3183
                       will be named automatically.
G
guosheng 已提交
3184 3185

    Returns:
Y
Yibing Liu 已提交
3186
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3187

G
guosheng 已提交
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3198 3199
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3200 3201 3202 3203 3204 3205 3206

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3207 3208 3209
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3210 3211
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3212 3213 3214 3215 3216
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3217
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3218 3219 3220 3221
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3222 3223


C
caoying03 已提交
3224
def reduce_max(input, dim=None, keep_dim=False, name=None):
3225
    """
Y
yangyaming 已提交
3226
    Computes the maximum of tensor elements over the given dimension.
3227 3228 3229

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3230
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3231 3232 3233
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3234
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3235 3236
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3237
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3238 3239
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3240 3241 3242

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3243

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3255 3256 3257 3258 3259 3260 3261

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3262 3263 3264
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3265 3266
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3267 3268 3269 3270 3271
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3272
            'dim': dim if dim != None else [0],
3273 3274 3275 3276 3277 3278
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3279
def reduce_min(input, dim=None, keep_dim=False, name=None):
3280
    """
Y
yangyaming 已提交
3281
    Computes the minimum of tensor elements over the given dimension.
3282 3283 3284

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3285
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3286 3287 3288
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3289
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3290 3291
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3292
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3293 3294
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3295 3296 3297

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3298

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3310 3311 3312 3313 3314 3315 3316

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3317 3318 3319
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3320 3321
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3322 3323 3324 3325 3326
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3327
            'dim': dim if dim != None else [0],
3328 3329 3330 3331
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3332 3333


3334 3335 3336 3337 3338 3339
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3340
        dim (list|int|None): The dimensions along which the product is performed. If
3341 3342
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3343 3344
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3345 3346 3347
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3348
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3349
            layer will be named automatically.
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3364
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3365
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3366 3367 3368 3369 3370 3371 3372

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3373 3374 3375
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3376 3377
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3378 3379 3380 3381 3382
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3383
            'dim': dim if dim != None else [0],
3384 3385 3386 3387 3388 3389
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3390
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3391
    """
C
caoying03 已提交
3392
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3393 3394 3395

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3396 3397 3398 3399 3400
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3401
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3402
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3403
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3404 3405
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3406 3407

    Returns:
D
dzhwinter 已提交
3408
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3418 3419
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3458
    .. math::
3459 3460

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3461 3462 3463 3464 3465

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3466
        x(Variable|list): The input tensor to l2_normalize layer.
3467
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3468 3469
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3470
        epsilon(float): The epsilon value is used to avoid division by zero, \
3471
            the defalut value is 1e-10.
3472
        name(str|None): A name for this layer(optional). If set None, the layer \
3473
            will be named automatically.
C
caoying03 已提交
3474 3475

    Returns:
3476
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3477 3478

    Examples:
3479

C
caoying03 已提交
3480 3481
        .. code-block:: python

3482 3483 3484 3485
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3486 3487
    """

F
fengjiayi 已提交
3488 3489
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3490 3491
    helper = LayerHelper("l2_normalize", **locals())

3492 3493
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3494
    helper.append_op(
3495 3496 3497 3498
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3499
        attrs={
3500 3501
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3502 3503
        })
    return out
3504 3505


S
sneaxiy 已提交
3506
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3507
    """
Y
ying 已提交
3508 3509 3510 3511
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3512

C
chengduoZH 已提交
3513
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3514
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3515

3516 3517 3518 3519 3520
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3521
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3522

C
chengduoZH 已提交
3523
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3524
      performs in the following way.
G
guosheng 已提交
3525

3526
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3527
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3528
        last two dimensions and a batched matrix multiply supporting broadcast
3529
        applies on the two tensors.
G
guosheng 已提交
3530

Y
ying 已提交
3531 3532
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3533
    removed after matrix multiplication.
G
guosheng 已提交
3534 3535 3536

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3537 3538 3539
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3540
        alpha (float): The scale of output. Default 1.0.
3541
        name(str|None): A name for this layer(optional). If set None, the layer
3542
            will be named automatically.
G
guosheng 已提交
3543 3544

    Returns:
3545
        Variable: The product Tensor variable.
G
guosheng 已提交
3546

G
guosheng 已提交
3547 3548 3549
    Examples:
        .. code-block:: python

3550
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3551 3552
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3553

3554 3555
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3556

3557 3558
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3559

3560 3561
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3562 3563 3564 3565

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3566 3567
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3568

Y
ying 已提交
3569
            # x: [M], y: [N]
3570
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3571
    """
Y
ying 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3584
            y_shape = y_shape + [1]
Y
ying 已提交
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3601
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3602
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3603
    helper.append_op(
3604 3605 3606 3607
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3608 3609 3610
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3611
            'alpha': alpha,
S
sneaxiy 已提交
3612
        })
3613
    return out
3614 3615


3616
def topk(input, k, name=None):
Q
qingqing01 已提交
3617 3618 3619 3620
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3621
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3622 3623 3624 3625 3626 3627
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3649 3650 3651
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3652
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3653
                 of input.
3654
        name(str|None): A name for this layer(optional). If set None, the layer
3655
                       will be named automatically.
F
fengjiayi 已提交
3656
                       Default: None
Q
qingqing01 已提交
3657 3658

    Returns:
3659 3660 3661
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3662
        within the last dimension of input.
Q
qingqing01 已提交
3663

F
fengjiayi 已提交
3664 3665
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3686
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3687
    """
Y
ying 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3697

Y
ying 已提交
3698
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3699

3700
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3701 3702
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3703
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3704

3705
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3706 3707
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3708

3709 3710 3711
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3712
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3713
                          the length of reference string.
3714
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3715
                                     calculating edit distance.
3716
        name (str): The name of this layer. It is optional.
3717

W
wanghaoshuang 已提交
3718
    Returns:
W
wanghaoshuang 已提交
3719
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3720 3721 3722 3723 3724

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3725
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3726
            cost = fluid.layers.edit_distance(input=x,label=y)
3727
    """
3728
    helper = LayerHelper("edit_distance", **locals())
3729

3730
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3731
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3732 3733 3734 3735 3736 3737 3738
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3739
            attrs={"tokens": ignored_tokens})
3740 3741 3742 3743 3744
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3745
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3746
            attrs={"tokens": ignored_tokens})
3747 3748
        label = erased_label

3749 3750
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3751
    sequence_num = helper.create_tmp_variable(dtype="int64")
3752 3753 3754 3755
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3756 3757
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3758 3759
        attrs={"normalized": normalized})

3760
    return edit_distance_out, sequence_num
3761 3762 3763 3764 3765


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3766

Y
ying 已提交
3767 3768 3769 3770
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3788
        input.lod = [[4, 4]]
3789 3790 3791 3792 3793 3794 3795

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3796
        output.lod = [[2, 1]]
3797 3798 3799

    Args:

Y
ying 已提交
3800 3801 3802 3803 3804 3805 3806 3807 3808
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3809
        name (str): The name of this layer. It is optional.
3810 3811

    Returns:
3812
        Variable: CTC greedy decode result. If all the sequences in result were
3813
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3814 3815 3816 3817 3818

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3819

3820
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3821
    """
3822
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3823
    _, topk_indices = topk(input, k=1)
3824 3825 3826 3827 3828 3829

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3830
        outputs={"Output": [ctc_out]},
3831 3832
        attrs={"merge_repeated": True,
               "blank": blank})
3833
    return ctc_out
3834 3835


F
fengjiayi 已提交
3836
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3837
    """
3838 3839
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3840
    to compute Connectionist Temporal Classification (CTC) loss.
3841 3842
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3843 3844 3845
    input tensor.

    Args:
3846
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3847 3848 3849 3850
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3851
       label (Variable): The ground truth of variable-length sequence,
3852 3853 3854
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3855 3856
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3857 3858 3859
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3860
         follewed by a mean_op.
W
wanghaoshuang 已提交
3861 3862

    Returns:
3863 3864
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3865 3866

    Examples:
3867

W
wanghaoshuang 已提交
3868
        .. code-block:: python
3869

3870 3871 3872
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3873 3874

    """
F
fengjiayi 已提交
3875
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3902 3903 3904
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3905 3906 3907 3908 3909
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3910

3911
            out.lod  = [[0, 1, 3]]
3912 3913 3914 3915

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3916 3917 3918 3919 3920 3921 3922
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3923 3924 3925

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3926 3927

    Returns:
3928

3929 3930 3931 3932 3933
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3934
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3935
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3936 3937 3938 3939 3940 3941 3942 3943 3944
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3945 3946


3947 3948 3949 3950
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3951 3952 3953 3954 3955 3956 3957
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3958 3959 3960 3961 3962 3963 3964
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3965 3966
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3967
            sample is 1.0.
3968 3969 3970
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3971

3972
    Returns:
Y
Yibing Liu 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4000
    """
Y
Yang Yu 已提交
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4020 4021 4022 4023 4024 4025 4026 4027 4028
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4045
    return cost / (num_neg_samples + 1)
4046 4047


G
guosheng 已提交
4048
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4049 4050
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4051
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4061

W
weixing02 已提交
4062
    Args:
M
minqiyang 已提交
4063
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4064 4065 4066 4067 4068
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4069 4070
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4071
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4072 4073
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4074 4075 4076 4077 4078 4079 4080 4081

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4082 4083 4084
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4085 4086 4087 4088 4089 4090 4091 4092
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4093
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4094 4095 4096 4097 4098
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4099 4100 4101 4102 4103 4104 4105 4106
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4107 4108
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4109
        inputs=inputs,
W
weixing02 已提交
4110 4111 4112 4113 4114 4115
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4116
def transpose(x, perm, name=None):
Y
ying 已提交
4117 4118 4119 4120 4121 4122 4123
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4124 4125 4126
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4127 4128 4129 4130 4131 4132 4133 4134

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4135
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4136 4137
    """

Y
fix ci.  
ying 已提交
4138
    if len(perm) != len(x.shape):
Y
ying 已提交
4139 4140 4141
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4142 4143 4144 4145 4146 4147
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4148 4149

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4150
    out = helper.create_tmp_variable(x.dtype)
4151
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4152
    helper.append_op(
4153
        type='transpose2',
Y
fix ci.  
ying 已提交
4154
        inputs={'X': [x]},
4155 4156
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4157 4158
        attrs={'axis': perm})
    return out
4159 4160


4161 4162 4163 4164 4165 4166 4167
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4168
    """
4169 4170 4171 4172 4173 4174 4175
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4204 4205 4206 4207 4208 4209 4210 4211 4212
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4213 4214 4215
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4216 4217 4218 4219 4220
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4248 4249 4250
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4263
            output.dims = {8, 8}
4264

4265
            output.lod = [[4, 4]]
4266

D
dzhwinter 已提交
4267
     Examples:
4268 4269 4270

        .. code-block:: python

4271 4272
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4273 4274

    """
W
wanghaoshuang 已提交
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4285 4286 4287 4288 4289 4290 4291
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4292
    helper = LayerHelper('im2sequence', **locals())
4293 4294
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4295
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4296
    return out
4297 4298


Y
yuyang18 已提交
4299
@templatedoc()
4300
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4301 4302
    """
    ${comment}
4303 4304

    Args:
Y
yuyang18 已提交
4305
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4306 4307
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4308 4309 4310 4311 4312
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4313
        ${out_comment}.
4314 4315

    Examples:
Y
yuyang18 已提交
4316 4317 4318 4319
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4332
    return helper.append_activation(out)
4333 4334


Y
yuyang18 已提交
4335
@templatedoc()
4336 4337
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4338 4339 4340 4341 4342 4343 4344
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4345 4346

    Args:
Y
yuyang18 已提交
4347 4348
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4349 4350

    Returns:
Y
yuyang18 已提交
4351
        ${out_comment}.
4352 4353
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4354 4355 4356 4357 4358 4359

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4360 4361 4362 4363 4364 4365
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4366 4367


4368 4369 4370 4371
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4372 4373
    """
    **Softmax With Cross Entropy Operator.**
4374

4375 4376 4377 4378
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4379

4380 4381 4382
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4383

4384 4385 4386
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4387

4388
    The equation is as follows:
4389

4390
    1) Hard label (one-hot label, so every sample has exactly one class)
4391

4392 4393 4394 4395
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4396

4397 4398 4399
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4400

4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4413 4414 4415 4416
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4417 4418 4419 4420 4421 4422 4423 4424 4425
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4426 4427
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4438 4439
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4440 4441 4442 4443 4444
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4445 4446
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4447
    For each instance, it computes the smooth L1 loss element by element first
4448
    and then sums all the losses. So the shape of ouput Variable is
4449
    [batch_size, 1].
4450

4451 4452
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4453
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4454
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4455
            L1 loss op with same shape as :attr:`x`.
4456
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4457 4458
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4459
            by this tensor element by element.
4460
        outside_weight (Variable|None): A tensor with rank at least 2. This
4461 4462
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4463
            element by element.
4464
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4465 4466
           scalar with default value 1.0.

4467
    Returns:
4468
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4469 4470 4471 4472 4473

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4474 4475
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4476
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4477
            out = fluid.layers.smooth_l1(x=fc, y=label)
4478
    """
4479

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4495 4496 4497 4498


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4499
    This layer creates the one-hot representations for input indices.
4500 4501

    Args:
Y
Yibing Liu 已提交
4502 4503
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4504 4505

    Returns:
Y
Yibing Liu 已提交
4506
        Variable: The one-hot representations of input.
4507 4508

    Examples:
C
caoying03 已提交
4509
        .. code-block:: python
4510

Y
Yibing Liu 已提交
4511 4512
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4513 4514 4515 4516 4517 4518 4519 4520 4521
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4522 4523


Y
Yu Yang 已提交
4524
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4525
    """
Y
yi.wu 已提交
4526 4527 4528
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4529 4530 4531 4532 4533 4534

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4535 4536
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4537 4538 4539 4540 4541 4542

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4543 4544
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4545 4546
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4547 4548 4549 4550 4551
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4552
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4553
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4554 4555
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4556 4557
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4558 4559 4560
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4561 4562


4563
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4564
    """
C
caoying03 已提交
4565 4566
    Gives a new shape to the input Tensor without changing its data.

4567 4568 4569 4570 4571
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4572

4573
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4574

4575 4576 4577 4578
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4579
    2. 0 means the actual dimension value is going to be copied from the
4580 4581 4582 4583
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4584 4585

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4586
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4587
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4588

4589
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4590 4591
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4592 4593
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4594
    dimensions.
C
caoying03 已提交
4595

4596
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4597 4598 4599 4600
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4601 4602

    Args:
4603
        x(variable): The input tensor.
C
caoying03 已提交
4604 4605
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4606 4607 4608 4609 4610
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4611
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4612 4613 4614 4615
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4616
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4617

4618 4619
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4620

X
Xin Pan 已提交
4621 4622 4623
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4624 4625
    Examples:
        .. code-block:: python
G
guosheng 已提交
4626

4627
            data = fluid.layers.data(
4628
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4629
            reshaped = fluid.layers.reshape(
4630
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4631 4632 4633
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4634
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4635 4636 4637 4638 4639
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4640

4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4656
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4657
    out = helper.create_tmp_variable(dtype=x.dtype)
4658
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4659
    helper.append_op(
4660
        type="reshape2",
X
Xin Pan 已提交
4661
        inputs=inputs,
D
dzhwinter 已提交
4662
        attrs={"shape": shape},
4663 4664
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4665

D
dzhwinter 已提交
4666
    return helper.append_activation(out)
4667

4668

4669
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4693
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4694
        axes (list): List of integers, indicating the dimensions to be squeezed.
4695
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4696 4697 4698 4699 4700 4701 4702 4703

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4704
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4705 4706
    """
    helper = LayerHelper("squeeze", **locals())
4707
    out = helper.create_tmp_variable(dtype=input.dtype)
4708
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4709
    helper.append_op(
4710
        type="squeeze2",
4711
        inputs={"X": input},
Y
Yibing Liu 已提交
4712
        attrs={"axes": axes},
4713 4714
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4715

4716 4717 4718
    return out


4719
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4730
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4731
        axes (list): List of integers, indicating the dimensions to be inserted.
4732
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4733 4734 4735 4736 4737 4738 4739 4740

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4741
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4742 4743
    """
    helper = LayerHelper("unsqueeze", **locals())
4744
    out = helper.create_tmp_variable(dtype=input.dtype)
4745
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4746
    helper.append_op(
4747
        type="unsqueeze2",
4748
        inputs={"X": input},
Y
Yibing Liu 已提交
4749
        attrs={"axes": axes},
4750 4751
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4752

4753 4754
    return out

4755

Y
yangyaming 已提交
4756
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4757
    """
Y
Yibing Liu 已提交
4758
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4759 4760 4761 4762
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4763
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4764 4765 4766 4767 4768 4769

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4770
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4771 4772 4773
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4774
            target_lod: [4, 2]
Y
yangyaming 已提交
4775 4776

            then we get a 1-level LoDTensor:
4777
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4778 4779 4780 4781 4782 4783
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4784
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4785 4786 4787 4788
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4789
                y.data = [[2, 4]]
Y
yangyaming 已提交
4790 4791 4792
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4793
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4794 4795 4796 4797 4798 4799
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4800
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4801 4802 4803 4804
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4805
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4806 4807 4808 4809
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4810
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4811 4812 4813 4814 4815
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4816
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4817
                           from :attr:`y`.
Y
yangyaming 已提交
4818
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4819
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4820 4821

    Returns:
Y
Yibing Liu 已提交
4822
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4823 4824

    Raises:
Y
Yibing Liu 已提交
4825
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4861
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4890 4891
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4919 4920 4921 4922


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4923
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4924
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4925

G
guosheng 已提交
4926 4927 4928 4929
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4952
                         The length of :attr:paddings must be
G
guosheng 已提交
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4963

G
guosheng 已提交
4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4978 4979


C
chengduo 已提交
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5060 5061 5062 5063 5064 5065 5066
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5067 5068
    called label-smoothing regularization (LSR).

5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5092
                              be :math:`(1, class\_num)`.
5093 5094
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5095
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5123 5124


Y
yi.wu 已提交
5125
@templatedoc()
5126 5127
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5128
    ${comment}
5129 5130

    Args:
Y
yi.wu 已提交
5131 5132
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5133 5134 5135
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5136 5137

    Returns:
Y
update  
yi.wu 已提交
5138
        Variable: ${out_comment}.
5139 5140

    Examples:
5141 5142
        .. code-block:: python

5143
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5189 5190
        .. code-block:: python

W
whs 已提交
5191 5192 5193 5194
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5195
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5196 5197 5198 5199 5200 5201
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5202 5203


5204 5205 5206 5207 5208
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5209
    """
Q
qiaolongfei 已提交
5210
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5211

5212
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5213 5214 5215
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5216

5217
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5218

5219
    Args:
5220
        input (Variable): The input tensor of image resize layer,
5221 5222
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5223
        out_shape(list|tuple|Variable|None): Output shape of image resize
5224 5225
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5226
        scale(float|None): The multiplier for the input height or width.
5227 5228 5229
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5230 5231
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5232 5233
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5234 5235

    Returns:
Q
update  
qiaolongfei 已提交
5236 5237
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5238

5239 5240 5241
    Examples:
        .. code-block:: python

5242
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5243
    """
5244 5245 5246 5247
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5248 5249
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5250 5251
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5252 5253 5254 5255

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5256 5257 5258
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5259
    if out_shape is not None:
B
baiyf 已提交
5260 5261 5262
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5263 5264 5265 5266 5267 5268
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5269 5270 5271 5272
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5273 5274
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5275
        type=resample_methods[resample],
5276
        inputs=inputs,
5277 5278 5279 5280
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5281 5282


Y
yuyang18 已提交
5283
@templatedoc(op_type="bilinear_interp")
5284 5285
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5286 5287 5288 5289 5290 5291
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5292

Y
yuyang18 已提交
5293 5294 5295 5296 5297 5298 5299 5300
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5301 5302 5303 5304 5305 5306 5307
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5308 5309 5310
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5311 5312 5313 5314 5315 5316 5317
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5318
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5319

5320
    Returns:
Q
update  
qiaolongfei 已提交
5321
        Variable: The output is a 4-D tensor of the shape
5322
        (num_batches, channls, out_h, out_w).
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5333 5334 5335
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5336 5337 5338
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5339 5340
def gather(input, index):
    """
Q
qiaolongfei 已提交
5341 5342
    **Gather Layer**

5343
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5344 5345 5346 5347
    of X indexed by `index` and concatenate them together.

    .. math::

5348
        Out = X[Index]
W
whs 已提交
5349 5350 5351 5352 5353 5354 5355


    .. code-block:: text


                Given:

5356 5357
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5358 5359 5360 5361 5362 5363 5364 5365 5366 5367
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5368
        input (Variable): The source input with rank>=1.
W
whs 已提交
5369 5370 5371 5372 5373 5374
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5375

W
whs 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5505

5506 5507 5508
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5509
    """
F
stash  
fengjiayi 已提交
5510
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5511
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5512
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5513
    if seed is None:
5514
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5515
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5516
    if isinstance(seed, int):
F
fengjiayi 已提交
5517 5518 5519 5520 5521
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5522 5523 5524 5525
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5526
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5527 5528
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5529 5530
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5531
    return out
W
whs 已提交
5532 5533


5534
def log(x, name=None):
W
wanghaoshuang 已提交
5535 5536 5537 5538 5539
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5540
        Out = \\ln(x)
W
wanghaoshuang 已提交
5541 5542

    Args:
5543
        x (Variable): Input tensor.
5544 5545
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5546 5547 5548 5549 5550 5551 5552 5553

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5554
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5555 5556
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5557
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5558
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5559
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5560 5561 5562
    return out


5563
def relu(x, name=None):
W
wanghaoshuang 已提交
5564 5565
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5566
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5567 5568 5569 5570
    the tensor elementwise.

    .. math::

5571
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5572 5573

    Args:
5574
        x (Variable): The input tensor.
5575 5576
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5577 5578 5579 5580 5581 5582 5583 5584

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5585
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5586 5587
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5588
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5589
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5590
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5591
    return out
5592 5593


W
whs 已提交
5594 5595 5596
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5597 5598 5599 5600
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5601
    .. math::
5602 5603

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5604

5605
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5606 5607 5608 5609 5610
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5611
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5612
                           Its shape should be the same as input.
5613
        num_classes (int): The possible number of labels.
W
whs 已提交
5614 5615 5616 5617

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5618
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5619 5620 5621 5622

    Examples:

        .. code-block:: python
5623

W
whs 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5633 5634
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5635
        outputs={
W
whs 已提交
5636 5637 5638
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5639 5640 5641
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5716
                    isinstance(shape, Variable)):
5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5750

5751 5752
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5753

5754 5755 5756 5757
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5758

5759 5760 5761 5762 5763
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5764 5765 5766

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5811 5812


W
whs 已提交
5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5915 5916
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6035

6036 6037 6038 6039 6040 6041 6042 6043 6044 6045
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6046 6047
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6063
        ValueError: If axis is not in range [0, rank(x)].
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6081
    x_shape = helper.create_tmp_variable(x.dtype)
6082
    helper.append_op(
6083
        type='flatten2',
6084
        inputs={"X": x},
6085 6086
        outputs={'Out': out,
                 'XShape': x_shape},
6087 6088
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6089 6090


C
chenweihang 已提交
6091
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6092
    """
C
chenweihang 已提交
6093
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
6094 6095 6096
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
6097 6098 6099 6100 6101
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6102
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6103 6104 6105 6106 6107 6108
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6109
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6110 6111 6112
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6113 6114 6115
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6127
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6128 6129 6130 6131 6132 6133
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6134

6135

S
sneaxiy 已提交
6136 6137 6138 6139 6140 6141 6142 6143 6144
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6145

S
sneaxiy 已提交
6146
    .. math::
6147

S
sneaxiy 已提交
6148 6149 6150
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6151
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6152 6153 6154 6155
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6156 6157 6158
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6159 6160
    Returns:
        Variable: The output sequence mask.
6161

S
sneaxiy 已提交
6162 6163
    """

Q
qingqing01 已提交
6164
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6165 6166 6167 6168 6169
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6170 6171 6172
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6173 6174
        outputs={'Y': out},
        attrs={
6175
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6176 6177 6178
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6179 6180


X
Xin Pan 已提交
6181
def stack(x, axis=0):
S
sneaxiy 已提交
6182 6183 6184 6185
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6186 6187 6188 6189 6190 6191 6192

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6193
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6194
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6195 6196

    Args:
6197
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6198
        axis (int|None): The axis along which all inputs are stacked.
6199

S
sneaxiy 已提交
6200 6201
    Returns:
        Variable: The stacked variable.
6202

S
sneaxiy 已提交
6203 6204
    """

X
Xin Pan 已提交
6205 6206 6207 6208 6209 6210 6211 6212
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6213 6214
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6215

X
Xin Pan 已提交
6216
    return out
D
dzhwinter 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
        
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
        
        Attr(expand_times):  [1, 2, 2]
        
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
        
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
        
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out