pybind.cc 103.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
37
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
38
#include "paddle/fluid/framework/executor.h"
39
#include "paddle/fluid/framework/executor_cache.h"
40
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
42
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
44
#include "paddle/fluid/framework/io/fs.h"
45
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
46
#include "paddle/fluid/framework/ir/cost_model.h"
47
#include "paddle/fluid/framework/ir/generate_pass.h"
48
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
51
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
52
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
53
#include "paddle/fluid/framework/op_info.h"
54
#include "paddle/fluid/framework/op_registry.h"
55
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
56
#include "paddle/fluid/framework/parallel_executor.h"
57
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
58
#include "paddle/fluid/framework/prune.h"
59
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
60
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
61
#include "paddle/fluid/framework/scope_pool.h"
62
#include "paddle/fluid/framework/selected_rows_utils.h"
63
#include "paddle/fluid/framework/tensor_util.h"
64
#include "paddle/fluid/framework/trainer.h"
65
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
66
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
67
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
68
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
69
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
J
Jiabin Yang 已提交
70
#include "paddle/fluid/prim/utils/utils.h"
71 72 73
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
74
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
75
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
76
#include "paddle/fluid/operators/common_infer_shape_functions.h"
77
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
78
#include "paddle/fluid/operators/py_func_op.h"
79
#include "paddle/fluid/platform/cpu_helper.h"
80
#include "paddle/fluid/platform/device/device_wrapper.h"
81
#include "paddle/fluid/platform/device_context.h"
82
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
83
#include "paddle/fluid/platform/enforce.h"
84
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
85
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
86 87
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
88 89 90
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
91
#include "paddle/fluid/pybind/cuda_streams_py.h"
92
#include "paddle/fluid/pybind/custom_device_py.h"
93
#include "paddle/fluid/pybind/distributed_py.h"
94
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
95
#include "paddle/fluid/pybind/imperative.h"
96
#include "paddle/fluid/pybind/io.h"
97
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
98
#include "paddle/fluid/pybind/xpu_streams_py.h"
99
#include "paddle/phi/backends/cpu/cpu_info.h"
100 101
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
102
#include "paddle/utils/none.h"
103 104 105
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
106
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
107
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
108
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
109
#include "paddle/fluid/pybind/box_helper_py.h"
110
#include "paddle/fluid/pybind/communication.h"
111
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
112
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
113
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
114
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
115
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
116
#include "paddle/fluid/pybind/generator_py.h"
117
#include "paddle/fluid/pybind/global_value_getter_setter.h"
118
#include "paddle/fluid/pybind/gloo_context_py.h"
119
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
121
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
122
#include "paddle/fluid/pybind/ir.h"
123
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
124
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
125
#include "paddle/fluid/pybind/pybind_variant_caster.h"
126
#include "paddle/phi/backends/device_manager.h"
127

128
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
129
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
130
#endif
131
#include "paddle/fluid/framework/data_type.h"
132 133
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
134 135
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
136
#include "paddle/fluid/pybind/reader_py.h"
137
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
138
#include "paddle/fluid/pybind/tensor_py.h"
139
#include "paddle/fluid/string/to_string.h"
140 141
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
142
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
143
#endif
144
#ifndef PADDLE_WITH_HIP
145
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
146
#endif
147
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
148 149
#endif

150
#ifdef PADDLE_WITH_ASCEND_CL
151
#include "paddle/fluid/platform/collective_helper.h"
152 153
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
154 155
#endif

156
#ifdef PADDLE_WITH_XPU
157
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
158
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
159 160
#endif

161
#ifdef PADDLE_WITH_CUSTOM_DEVICE
162
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
163 164 165
#include "paddle/phi/capi/capi.h"
#endif

166
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
167

J
jianghaicheng 已提交
168
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
169 170
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
171
#endif
172

173 174 175 176
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
177 178 179 180
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
181
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
182 183 184
#include "paddle/fluid/pybind/fleet_py.h"
#endif

185 186 187 188
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
189
#if defined(PADDLE_WITH_RPC)
190 191 192
#include "paddle/fluid/pybind/rpc.h"
#endif

193
#include "paddle/fluid/eager/api/utils/global_utils.h"
194
#include "paddle/fluid/imperative/layout_autotune.h"
195 196
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
197 198
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
199 200
#include "pybind11/stl.h"

201
DECLARE_bool(use_mkldnn);
202

Q
Qiao Longfei 已提交
203 204
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
205 206 207
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
208

209
namespace paddle {
210
namespace pybind {
211

0
0x45f 已提交
212
PyTypeObject *g_framework_scope_pytype = nullptr;
213
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
214
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
215

216 217 218 219 220 221 222 223
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

224
bool IsCompiledWithCUDA() {
225 226 227 228 229 230 231
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

232 233 234 235 236 237 238 239
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

257 258
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
259 260 261 262 263 264
  return false;
#else
  return true;
#endif
}

265 266 267 268 269 270 271 272
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

273 274 275 276 277 278 279 280
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

281 282 283 284 285 286 287 288
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
303 304 305 306 307 308 309 310
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

311 312 313 314 315 316 317 318
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

319 320 321 322 323 324 325 326
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

327 328 329 330 331 332 333 334
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

335 336 337 338 339 340 341 342
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

343 344 345 346
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
347
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
348 349 350 351 352 353
    return true;
  else
    return false;
#endif
}

354 355 356 357
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
358
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
359 360 361 362 363 364
    return true;
  else
    return false;
#endif
}

365 366 367 368
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
369 370
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
371 372 373 374 375 376 377
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
378 379
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
380 381 382
#endif
}

383
bool IsCompiledWithBrpc() {
384
#ifndef PADDLE_WITH_DISTRIBUTE
385
  return false;
386
#else
387
  return true;
388
#endif
389 390
}

Y
update  
Yancey1989 已提交
391
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
392
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
393 394 395 396 397 398
  return true;
#else
  return false;
#endif
}

399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
467 468
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
469 470
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
471 472 473 474 475 476 477 478 479 480 481 482 483
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
484 485
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
486 487
    }
    vec_res.emplace_back(
488
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
489 490 491 492 493 494 495 496 497 498 499 500
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
501 502
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
503 504 505 506 507 508 509 510 511 512 513 514
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
515 516 517
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
518 519 520 521
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
522 523
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
524 525 526 527
  }
  return vec_res;
}

O
OccupyMars2025 已提交
528
static void inline CreateVariableIfNotExist(
529 530
    const py::handle &py_handle,
    const framework::Scope &scope,
531 532 533 534 535 536
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
537 538
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
552 553 554
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
555 556 557 558 559
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
560 561 562 563 564
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
565 566
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
567
        PADDLE_ENFORCE_NOT_NULL(
568 569 570
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
571 572 573
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
574
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
575
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
576 577
        tensor_temp->mutable_data(
            exe->GetPlace(),
578
            framework::TransToPhiDataType(var_desc.GetDataType()));
579 580 581
      }
    }
  } else {
582 583
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
584 585 586 587 588
  }

  return;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
605 606
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
607 608 609 610 611 612 613
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
614 615 616 617
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
618
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
619 620 621 622 623 624 625 626
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

627
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
628
  BindImperative(&m);
629
  BindEager(&m);
J
Jack Zhou 已提交
630
  BindEagerStringTensor(&m);
631
  BindCudaStream(&m);
J
james 已提交
632
  BindXpuStream(&m);
633
  BindJit(&m);
634
  BindCustomDevicePy(&m);
635

Y
Yu Yang 已提交
636
  // Not used, just make sure cpu_info.cc is linked.
637
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
638

Y
Refine  
Yu Yang 已提交
639
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
640

641 642
  AssertStaticGraphAndDygraphGradMakerNoDiff();

643
  m.doc() = "C++ core of PaddlePaddle";
644

645 646 647 648
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

649
  BindException(&m);
Y
Yu Yang 已提交
650

651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

666 667 668 669 670 671 672 673 674 675
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
676 677
  m.def("set_num_threads", &platform::SetNumThreads);

678 679
  m.def("disable_signal_handler", &DisableSignalHandler);

680 681 682 683 684 685 686 687
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

688
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
689
  m.def("cudnn_version", &platform::DnnVersion);
690 691 692 693 694 695
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
696
#endif
697

Z
Zeng Jinle 已提交
698 699 700 701
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

702 703
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
704
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
705 706 707 708 709 710
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
711
      .def_static("gen_new_memory_pool_id",
712 713 714 715 716
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
717 718
#endif

Z
Zeng Jinle 已提交
719 720 721 722
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
723 724 725
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
726 727

    PADDLE_ENFORCE_NOT_NULL(
728 729 730 731
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
732

6
633WHU 已提交
733 734
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
735
    phi::DenseTensor tensor;
6
633WHU 已提交
736

S
Siming Dai 已提交
737
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
738
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
739
    }
740
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
741
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
742
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
743 744 745 746
    }
#endif
    return tensor;
  });
H
hong 已提交
747

748
  m.def("_create_loaded_parameter",
749 750
        [](const py::handle &vec_var_list,
           const Scope &scope,
751
           const Executor *executor) {
O
OccupyMars2025 已提交
752
          CreateVariableIfNotExist(vec_var_list, scope, executor);
753 754
        });

755 756 757 758 759 760
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
761 762
  });

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

788 789 790 791 792 793
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
794

S
sneaxiy 已提交
795
  m.def(
S
sneaxiy 已提交
796
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
797 798 799 800
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
801 802 803
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
820
            }
821
            all_kernels_info.emplace(op_type, kernel_types);
822
          }
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
839
                }
840 841
              } else {
                kernel_types.emplace_back(kernel_type_str);
842
              }
843
            }
844 845 846
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
847
          }
848
        }
849

850 851 852 853
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
854 855 856
           Return the registered kernels in paddle.

           Args:
857
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
858
           )DOC");
859

860 861 862 863 864 865
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
866 867 868 869 870
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
871

S
sneaxiy 已提交
872 873 874
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
875
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
876

877
  m.def("_set_fuse_parameter_group_size",
878
        &paddle::framework::ir::SetFuseParameterGroupsSize);
879
  m.def("_set_fuse_parameter_memory_size",
880
        &paddle::framework::ir::SetFuseParameterMemorySize);
881

S
sneaxiy 已提交
882 883 884
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

885 886
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
887 888
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

889 890 891
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
933 934 935 936 937 938 939 940 941 942 943 944 945
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
946 947 948 949 950
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
951

952
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
953 954 955

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
956
      .def(py::init<>())
957
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
958
      .def("set_int",
959 960
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
961 962 963 964 965 966 967
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
968 969
      .def(
          "get_tensor",
970 971
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
972 973
          },
          py::return_value_policy::reference)
974 975
      .def("get_bytes",
           [](Variable &self) {
976 977 978 979 980 981
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
982
           })
S
Steffy-zxf 已提交
983
      .def("set_string_list",
984
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
985 986
             *self.GetMutable<Strings>() = str_list;
           })
987
      .def("set_vocab",
988 989
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
990 991
             *self.GetMutable<Vocab>() = vocab;
           })
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1018
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1019 1020 1021 1022 1023 1024
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1025
#endif
1026 1027 1028
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1029 1030
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1041 1042
                scope_vec->size(),
                0,
1043 1044 1045 1046 1047
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1048 1049 1050 1051
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1052

S
sneaxiy 已提交
1053
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1054

0
0x45f 已提交
1055
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1069
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1070 1071 1072 1073 1074
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1075 1076 1077
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1078 1079
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1080 1081 1082 1083 1084 1085 1086
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1087
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1088

1089
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1090
           current scope, the variable would be created. Otherwise,
1091
           return the existing variable.
S
sneaxiy 已提交
1092 1093

           Args:
1094 1095
               name (str): the variable name.

S
sneaxiy 已提交
1096
           Returns:
1097
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1098
           )DOC",
1099
          py::return_value_policy::reference)
1100 1101 1102
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1103
           R"DOC(
1104
           Find variable named :code:`name` in the current scope or
1105
           its parent scope. Return None if not found.
1106

S
sneaxiy 已提交
1107 1108
           Args:
               name (str): the variable name.
1109

S
sneaxiy 已提交
1110
           Returns:
1111
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1112
           )DOC",
1113
           py::return_value_policy::reference)
1114
      .def("size", &Scope::Size)
1115 1116 1117
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1118 1119
           R"DOC(
           Find variable named :code:`name` in the current scope or
1120
           its parent scope. Return None if not found.
1121 1122 1123 1124 1125 1126 1127 1128

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1129
      .def(
1130 1131
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1132
          R"DOC(
S
sneaxiy 已提交
1133 1134 1135 1136 1137
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1138
          py::return_value_policy::reference)
1139 1140
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1141 1142
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1143
           )DOC")
1144 1145
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1146

1147 1148 1149 1150 1151 1152 1153 1154
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1155
        Create a new scope.
1156

S
sneaxiy 已提交
1157 1158 1159
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1160
      py::return_value_policy::reference);
S
sneaxiy 已提交
1161

Y
Yu Yang 已提交
1162 1163
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1164 1165
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1166 1167 1168 1169
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1170
        PADDLE_ENFORCE_EQ(
1171 1172
            info.Proto().SerializeToString(&str),
            true,
1173 1174
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1175 1176 1177
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1178 1179
    return ret_values;
  });
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1218 1219 1220 1221 1222 1223 1224 1225
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1226
              res = op_checker->GetDefaultAttrsMap();
1227 1228 1229 1230
            }
          }
          return res;
        });
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1247 1248 1249 1250 1251
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1252 1253 1254

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1255
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1256 1257 1258 1259 1260 1261 1262

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1263
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1264 1265 1266 1267 1268 1269 1270 1271
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1272
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1273 1274
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1275
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1276 1277
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1278
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
J
Jiabin Yang 已提交
1279
            if (grad_comp_op_maker != nullptr) {
1280
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1303 1304 1305 1306 1307 1308 1309 1310
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1311 1312 1313
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1314 1315 1316 1317 1318
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1319 1320 1321
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1322
  m.def("infer_no_need_buffer_slots",
1323 1324
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1352 1353 1354 1355 1356 1357
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1358 1359
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1360

1361
            Args:
1362 1363 1364
                   program (ProgramDesc): The original program.

             Returns:
1365
                   tuple(ProgramDesc, map<int, int>): The first part is
1366 1367 1368 1369
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1370 1371 1372 1373
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1374 1375
    VLOG(4) << s;
    return s;
1376 1377 1378 1379 1380 1381
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1382
  });
1383 1384 1385 1386
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1387 1388 1389
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1390 1391
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1392

Y
Yu Yang 已提交
1393
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1394
      .def_static("create",
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1410 1411 1412 1413
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1414
                    return context;
Q
qijun 已提交
1415
                  })
1416 1417 1418 1419
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1420
#ifndef PADDLE_WITH_XPU
1421 1422 1423
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1424
#else
W
Wilber 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1438 1439 1440 1441
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1442
      return context;
1443
#endif
1444 1445 1446 1447 1448
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1449
#ifndef PADDLE_WITH_MLU
1450 1451 1452
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1453 1454
#else
                    return new paddle::platform::MLUDeviceContext(place);
1455
#endif
1456 1457 1458 1459 1460
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1461
#ifndef PADDLE_WITH_ASCEND_CL
1462 1463 1464
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1465 1466
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1467
#endif
1468 1469 1470 1471
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1472
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1473 1474 1475 1476
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1477 1478
#else
                return new paddle::platform::CustomDeviceContext(place);
1479
#endif
1480 1481 1482 1483 1484
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1485
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1486 1487 1488
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1489
#else
L
Leo Chen 已提交
1490
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1503 1504 1505 1506
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1507 1508 1509 1510
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1511 1512
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1513
#endif
1514 1515 1516 1517 1518
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1519
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1520 1521 1522
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1523 1524 1525
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1526
          });
1527
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1528 1529
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1530 1531 1532
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1533
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1534
#else
R
ronnywang 已提交
1535
          VLOG(1) << string::Sprintf(
1536 1537 1538 1539
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1540
              "PaddlePaddle by: pip install paddlepaddle\n");
1541 1542 1543 1544 1545 1546
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1547
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1548
#else
R
ronnywang 已提交
1549
          VLOG(1) << string::Sprintf(
1550 1551 1552 1553
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1554
              "PaddlePaddle by: pip install paddlepaddle\n");
1555 1556 1557 1558 1559 1560
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1561
    devices = phi::DeviceManager::GetAllDeviceList();
1562
#else
R
ronnywang 已提交
1563
          VLOG(1) << string::Sprintf(
1564 1565 1566 1567
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1568
              "PaddlePaddle by: pip install paddlepaddle\n");
1569 1570 1571 1572 1573 1574
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1575
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1576
#else
R
ronnywang 已提交
1577
          VLOG(1) << string::Sprintf(
1578 1579 1580 1581 1582 1583
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1584
              "PaddlePaddle by: pip install paddlepaddle\n");
1585 1586 1587
#endif
    return devices;
  });
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1607

Y
Yu Yang 已提交
1608
  py::class_<OperatorBase>(m, "Operator")
1609 1610 1611 1612 1613 1614 1615
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1616 1617
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1618 1619 1620 1621 1622 1623
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1624
      .def("run",
1625 1626
           [](OperatorBase &self,
              const Scope &scope,
1627 1628 1629 1630
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1631
      .def("run",
1632 1633
           [](OperatorBase &self,
              const Scope &scope,
1634 1635 1636 1637
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1638
      .def("run",
1639 1640
           [](OperatorBase &self,
              const Scope &scope,
1641 1642 1643 1644
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1645
      .def("run",
1646 1647
           [](OperatorBase &self,
              const Scope &scope,
1648 1649 1650 1651
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1652
      .def("run",
1653 1654
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1655
              const platform::CUDAPinnedPlace &place) {
1656
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1657 1658
             self.Run(scope, place);
           })
1659
      .def("run",
1660 1661
           [](OperatorBase &self,
              const Scope &scope,
1662 1663 1664 1665
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1666
      .def("run",
1667 1668
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1669 1670 1671 1672
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1673 1674 1675 1676 1677
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1678 1679
             return op.Outputs();
           })
Q
qijun 已提交
1680 1681
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1682
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1683
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1684 1685 1686 1687
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1688

1689 1690 1691
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1692 1693
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1694 1695 1696 1697 1698 1699
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1700 1701
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1702

1703 1704
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1705
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1706
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1707
      .def("close", &Executor::Close)
1708 1709
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1710
           py::call_guard<py::gil_scoped_release>())
1711 1712
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1713
           py::call_guard<py::gil_scoped_release>())
1714
      .def("init_for_dataset",
1715 1716 1717 1718
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1719
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1720
             pybind11::gil_scoped_release release;
1721 1722 1723 1724 1725 1726 1727
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1728
      .def("run_prepared_ctx",
1729 1730 1731
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1732
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1733
              std::map<std::string, FetchType *> *fetch_targets,
1734 1735
              bool create_local_scope = true,
              bool create_vars = true,
1736 1737 1738
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1739 1740 1741 1742 1743 1744 1745 1746
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1747
           })
1748
      .def("run_prepared_ctx",
1749 1750 1751 1752 1753
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1754 1755
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1756 1757
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1758
           })
1759
      .def("prepare",
1760 1761 1762
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1763 1764 1765 1766
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1767 1768
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1769 1770
           })
      .def("create_variables", &Executor::CreateVariables)
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1787

1788
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1789
      .def(py::init<>())
1790 1791 1792 1793 1794
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1795

1796
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1797
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1798
      .def("run",
1799
           [](StandaloneExecutor &self,
1800
              Scope *scope,
1801
              std::vector<std::string> feed_names,
1802 1803 1804 1805
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1806
               ret = self.Run(scope, feed_names, fetch_names);
1807 1808 1809
             }
             return py::cast(std::move(ret));
           })
1810 1811
      .def("dry_run",
           [](StandaloneExecutor &self,
1812
              Scope *scope,
1813
              const std::unordered_map<std::string, py::array> &input_dict) {
1814
             std::vector<phi::DenseTensor> feed_tensors;
1815 1816 1817
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1818
               phi::DenseTensor t;
1819 1820 1821 1822 1823 1824
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1825
             framework::interpreter::CostInfo cost_info;
1826 1827
             {
               pybind11::gil_scoped_release release;
1828
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1829 1830
             }
             return cost_info;
H
hong 已提交
1831 1832
           });

D
dzhwinter 已提交
1833
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1834
  m.def("init_glog", framework::InitGLOG);
1835 1836 1837 1838
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1839 1840 1841 1842 1843 1844 1845 1846
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1847 1848
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1849
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1850
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1851
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1852
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1853
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
1854
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
1855
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1856
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1857
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1858
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1859 1860
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1861
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1862
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1863
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1864
  m.def("supports_bfloat16", SupportsBfloat16);
1865
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1866 1867
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1868
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1869
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1870
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1871 1872 1873
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1893 1894 1895
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1896 1897
  m.def(
      "run_cmd",
1898 1899
      [](const std::string &cmd,
         int time_out = -1,
1900
         int sleep_inter = -1) -> const std::string {
1901 1902
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1903
      },
1904 1905 1906
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1907 1908
  m.def(
      "shell_execute_cmd",
1909 1910 1911
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1912
         bool redirect_stderr = false) -> std::vector<std::string> {
1913 1914
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1915
      },
1916 1917 1918
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1919
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1920

1921
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1922 1923
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1924
    return platform::GetGPUComputeCapability(place.device) >= 53;
1925
  });
1926 1927 1928 1929
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1930
#endif
1931

S
Steffy-zxf 已提交
1932
  m.def("set_feed_variable",
1933 1934
        static_cast<void (*)(  // NOLINT
            Scope *,
1935
            const phi::DenseTensor &,
1936 1937
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1938
  m.def("set_feed_variable",
1939 1940
        static_cast<void (*)(  // NOLINT
            Scope *,
1941
            const std::vector<std::string> &,
1942 1943
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1944
  m.def("get_fetch_variable",
1945 1946
        [](const Scope &scope,
           const std::string &var_name,
1947 1948 1949
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1950
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1951
          } else {
R
Ruibiao Chen 已提交
1952
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1953 1954
          }
        });
1955
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1956

X
Xin Pan 已提交
1957 1958
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1959 1960 1961 1962
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1963
  BindCostModel(&m);
1964
  BindConstValue(&m);
1965
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1966
  BindFleetExecutor(&m);
1967
  BindTCPStore(&m);
1968
  BindCommContextManager(&m);
1969
  BindAutoParallel(&m);
1970
  BindJitProperty(&m);
Y
Yu Yang 已提交
1971

Y
Yu Yang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1981
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1982
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1983 1984 1985

    Examples:
        .. code-block:: python
1986

Z
Zeng Jinle 已提交
1987 1988 1989
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1990 1991 1992 1993
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1994 1995
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1996 1997 1998 1999
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2000 2001
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2002
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2003 2004
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2005 2006 2007
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2008 2009 2010
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2011 2012
      .def(
          "append",
2013
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2014 2015 2016 2017
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2018 2019
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2020
             Append a LoDensor to LoDTensorArray.
2021

2022 2023 2024 2025 2026
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2038
           )DOC")
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2050

2051
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2052
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2053
        )DOC")
2054 2055 2056 2057 2058 2059
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2060
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2061
                res[i] = py::cast(std::move(data));
2062 2063 2064
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2065
              } else {
R
Ruibiao Chen 已提交
2066
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2078

2079 2080
      .def(
          "append",
2081
          [](FetchList &self, const phi::DenseTensor &t) {
2082
            self.emplace_back();
2083
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2084 2085 2086 2087 2088 2089 2090 2091 2092
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2093
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2094 2095 2096 2097 2098 2099
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2100 2101

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2102
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2103
        )DOC")
2104 2105 2106 2107 2108 2109 2110 2111
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2112
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2113 2114
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2115
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2130

Y
Yu Yang 已提交
2131
  m.def("op_support_gpu", OpSupportGPU);
2132
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2133
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2134
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2135 2136 2137 2138 2139 2140 2141 2142
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2143 2144 2145 2146 2147 2148
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2149 2150

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2176
      });
D
dangqingqing 已提交
2177

2178
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2179 2180 2181
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2182 2183 2184
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2185 2186 2187
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2188
#endif
P
peizhilin 已提交
2189
#endif
Y
Yu Yang 已提交
2190

2191 2192
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2193
  m.def("npu_finalize", []() {
2194 2195
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2196 2197 2198
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2199
      platform::NPUDeviceGuard guard(devices[i]);
2200 2201 2202 2203
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2224 2225 2226 2227
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2228 2229 2230 2231
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2232 2233 2234 2235 2236 2237
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2238 2239 2240 2241
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2242
      .value("kAll", platform::ProfilerState::kAll)
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2254
  m.def("set_tracer_option", platform::SetTracerOption);
2255 2256
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2257
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2258
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2259
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2260
    PADDLE_ENFORCE_EQ(
2261 2262
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2263 2264 2265
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2266
    callable.inc_ref();
2267 2268 2269 2270 2271 2272 2273 2274
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2275
  });
2276
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2277 2278 2279
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2280

2281
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2282 2283
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2284 2285
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2286 2287
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2288 2289 2290 2291 2292 2293 2294 2295 2296
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2297

2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2361 2362
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2363 2364 2365 2366
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2367 2368 2369
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2370 2371 2372 2373 2374
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2375 2376 2377
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2378 2379

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2380 2381
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2382
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2383
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2384 2385
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2386 2387 2388 2389 2390 2391
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2415 2416 2417 2418 2419 2420 2421 2422
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2441 2442
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2443 2444
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2445

2446
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2447 2448
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2449 2450
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2451
#endif  // PADDLE_WITH_CUDA
2452 2453 2454 2455 2456 2457 2458 2459
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2460

J
jianghaicheng 已提交
2461 2462
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2463 2464 2465
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2466 2467 2468 2469 2470 2471 2472
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2473
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2474 2475
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2476
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2487 2488 2489 2490
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2513 2514
                         option.get_type(),
                         option_name));
2515 2516 2517 2518 2519 2520 2521
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2522 2523
                         option_name,
                         option.first.cast<std::string>(),
2524 2525
                         option.second.cast<std::uint64_t>());
                   }
2526 2527 2528 2529 2530 2531
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2577 2578
                           option.second.get_type(),
                           option_key));
2579
                     }
2580 2581
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2582 2583 2584 2585 2586 2587
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2588 2589
                     element.second.get_type(),
                     option_name));
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2620 2621
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2622 2623 2624
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2625 2626
#endif

2627 2628 2629 2630 2631 2632 2633 2634
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2635
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2636 2637 2638 2639 2640 2641 2642
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2643
  m.def("get_low_precision_op_list", [] {
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2655 2656
  });

2657 2658
  m.def("autotune_status", [] {
    py::dict res;
2659
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2660 2661 2662 2663 2664 2665 2666
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2667 2668
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2669

2670 2671
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2672

2673 2674
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2675 2676 2677
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2678

D
dongdaxiang 已提交
2679
  BindFleetWrapper(&m);
2680
  BindIO(&m);
2681 2682 2683
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2684

T
Thunderbrook 已提交
2685
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2686
  BindHeterWrapper(&m);
2687
  BindMetrics(&m);
T
Thunderbrook 已提交
2688
#endif
T
Thunderbrook 已提交
2689
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2690
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2691 2692 2693
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2694
#endif
2695
  BindGlooWrapper(&m);
H
hutuxian 已提交
2696
  BindBoxHelper(&m);
H
hutuxian 已提交
2697 2698 2699
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2700
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2701
  BindNCCLWrapper(&m);
2702 2703 2704
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2705
#endif
F
flame 已提交
2706 2707
  BindGraph(&m);
  BindNode(&m);
2708
  BindPass(&m);
F
flame 已提交
2709
  BindInferenceApi(&m);
2710
  BindCompatible(&m);
2711
  BindDataset(&m);
Y
yaoxuefeng 已提交
2712
  BindGenerator(&m);
2713
#ifndef PADDLE_NO_PYTHON
2714 2715
  BindDistributed(&m);
#endif
2716 2717 2718
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2719
  BindAscendDevice(&m);
2720
#endif
Y
Yanghello 已提交
2721 2722 2723
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2724

T
tangwei12 已提交
2725
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2726 2727
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2728
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2729 2730
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2731 2732 2733 2734 2735
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2736 2737 2738 2739
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2740
#ifdef PADDLE_WITH_HETERPS
2741 2742
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2743 2744 2745
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2746
#endif
X
Xinger 已提交
2747
#if defined(PADDLE_WITH_RPC)
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2760
}
2761
}  // namespace pybind
2762
}  // namespace paddle