io.py 94.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
D
dzhwinter 已提交
17
import warnings
18
import six
19
import logging
Y
Yang Zhang 已提交
20
import pickle
H
hong 已提交
21
import contextlib
22
from functools import reduce
23
import sys
24
from io import BytesIO
25

H
hong 已提交
26
import numpy as np
27
import math
28
import paddle
29
from paddle.fluid import layers
H
hong 已提交
30
from paddle.fluid.executor import Executor, global_scope
31
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
33
    program_guard, dygraph_not_support, static_only
34 35
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45 46
from paddle.utils import deprecated
from paddle.fluid.framework import static_only
47

48 49
batch = paddle.batch

50
__all__ = [
51 52 53 54 55 56 57 58 59 60 61 62 63
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
64 65
    'get_program_parameter',
    'get_program_persistable_vars',
66
] + reader.__all__
67

68 69 70
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
71

72

73
class _open_buffer(object):
74

75 76 77 78 79 80 81 82
    def __init__(self, buffer):
        self.buffer = buffer

    def __enter__(self):
        return self.buffer


class _buffer_reader(_open_buffer):
83

84 85 86 87 88 89 90 91 92 93 94
    def __init__(self, buffer):
        super(_buffer_reader, self).__init__(buffer)
        self.initial_tell = self.buffer.tell()

    def __exit__(self, *args):
        # `args[0]` is type of exception. When the `read` is abnormal, the file pointer returns to the initial position.
        if args[0] is not None:
            self.buffer.seek(self.initial_tell)


class _buffer_writer(_open_buffer):
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    def __exit__(self, *args):
        self.buffer.flush()


def _is_file_path(path):
    return isinstance(path, str)


def _open_file_buffer(path_or_buffer, mode):

    if _is_file_path(path_or_buffer):
        return open(path_or_buffer, mode)
    else:
        if 'w' in mode:
            return _buffer_writer(path_or_buffer)
        elif 'r' in mode:
            return _buffer_reader(path_or_buffer)
        else:
114 115
            raise ValueError(
                "Expected 'r' or 'w' in mode but got {}".format(mode))
116 117 118 119 120 121


def _is_memory_buffer(buffer):
    return isinstance(buffer, BytesIO)


122
def is_parameter(var):
F
fengjiayi 已提交
123 124
    """
    Check whether the given variable is an instance of Parameter.
125 126

    Args:
F
fengjiayi 已提交
127
        var(Variable): The variable to be checked.
128 129

    Returns:
F
fengjiayi 已提交
130 131 132 133 134 135
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

136
            import paddle
137
            import paddle.fluid as fluid
138 139

            paddle.enable_static()
F
fengjiayi 已提交
140 141
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
142
    """
143 144 145 146
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

160
            import paddle
161
            import paddle.fluid as fluid
162 163

            paddle.enable_static()
164
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
165 166
            res = fluid.io.is_persistable(param)
    """
167
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
168 169
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
170
        return False
171 172 173
    return var.persistable


H
hong 已提交
174
def is_belong_to_optimizer(var):
175
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
176 177 178
        return is_persistable(var)

    return False
H
hong 已提交
179 180


181
@dygraph_not_support
H
hong 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

195
            import paddle
H
hong 已提交
196
            import paddle.fluid as fluid
197 198

            paddle.enable_static()
H
hong 已提交
199 200 201 202 203 204 205 206
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


207
@dygraph_not_support
H
hong 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220
def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

221
            import paddle
H
hong 已提交
222
            import paddle.fluid as fluid
223 224

            paddle.enable_static()
H
hong 已提交
225 226 227 228 229 230 231 232
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


233 234
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
235
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
236 237 238 239 240 241
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                lod_level=var.lod_level,
                                persistable=True)
242
    else:
243 244 245 246 247
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                persistable=True)
248 249


250
@signature_safe_contextmanager
H
hong 已提交
251 252 253 254 255 256 257
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
258 259
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
260 261


262
def _get_valid_program(main_program=None):
C
chengduo 已提交
263 264 265 266 267
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
268 269 270
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
271 272 273
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
274 275 276
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
277 278 279
    return main_program


280
@dygraph_not_support
281 282 283 284 285
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
286
              filename=None):
287
    """
288
    Save specific variables in the `Program` to files.
F
fengjiayi 已提交
289

290
    There are two ways to specify the variables to be saved: set variables in
291 292
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
293

294
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
295
    If you prefer to save variables in separate files in the `dirname` folder,
296
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
297
    use `filename` to specify it.
298

F
fengjiayi 已提交
299 300
    Args:
        executor(Executor): The executor to run for saving variables.
301 302
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
303
        main_program(Program, optional): The program whose variables will be saved.
304
                                    If it is None, the default main program will
F
fengjiayi 已提交
305 306
                                    be used automatically.
                                    Default: None
307 308 309
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
310
                                       `predicate(variable) == True`.
311 312
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
313
                                 use `filename` to specify it. Otherwise, let `filename` be None.
314
                                 Default: None
F
fengjiayi 已提交
315 316

    Returns:
317 318
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
319 320 321 322 323 324 325

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

326
            import paddle
327
            import paddle.fluid as fluid
328

329
            paddle.enable_static()
330 331 332 333 334 335 336 337 338 339 340
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
341

342
            # The first usage: use `vars` to set the saved variables.
343 344
            var_list = [w, b]
            path = "./my_paddle_vars"
345
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
346 347 348 349 350 351 352 353 354 355
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
356
    """
357 358 359 360
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
361
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
362

363
    if vars is None:
364 365 366 367 368
        return save_vars(executor,
                         main_program=main_program,
                         dirname=dirname,
                         vars=list(filter(predicate, main_program.list_vars())),
                         filename=filename)
369
    else:
石晓伟 已提交
370
        params_var_name = "saved_params"
371 372 373 374 375 376 377
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

378 379
        save_program = Program()
        save_block = save_program.global_block()
380 381

        save_var_map = {}
382
        for each_var in vars:
383 384 385
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
386
            new_var = _clone_var_in_block_(save_block, each_var)
387
            if filename is None and save_to_memory is False:
388 389
                save_file_path = os.path.join(os.path.normpath(dirname),
                                              new_var.name)
390 391 392 393
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
394
                    attrs={'file_path': os.path.normpath(save_file_path)})
395 396 397
            else:
                save_var_map[new_var.name] = new_var

398
        if filename is not None or save_to_memory:
399 400 401 402
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

403 404 405 406
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

407 408
            saved_params = save_block.create_var(type=core.VarDesc.VarType.RAW,
                                                 name=params_var_name)
409
            saved_params.desc.set_persistable(True)
410 411 412 413 414 415 416
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params},
                                 attrs={
                                     'file_path': save_path,
                                     'save_to_memory': save_to_memory
                                 })
417

418
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
419 420 421
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
422
        executor.run(save_program)
423 424
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
425 426


427
@dygraph_not_support
428
def save_params(executor, dirname, main_program=None, filename=None):
429
    """
430
    Save all parameters from the :code:`main_program` to
431
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
432
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
433

G
guofei 已提交
434 435 436
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
437 438
    the file name.

439
    Note:
G
guofei 已提交
440
        Some variables are not Parameter while they are necessary for
441
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
442 443
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
444 445 446
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
447 448
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
449 450

    Args:
451
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
452
                            refer to :ref:`api_guide_executor_en`.
453 454
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
455
        main_program(Program, optional): The program whose parameters will be
456 457
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
458 459 460 461 462 463 464
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
465 466

    Returns:
467 468
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
469 470 471 472

    Examples:
        .. code-block:: python

473
            import paddle
H
Huihuang Zheng 已提交
474
            import paddle.fluid as fluid
475

476 477

            paddle.enable_static()
G
guofei 已提交
478 479 480 481 482
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
483

G
guofei 已提交
484
            loss = fluid.layers.cross_entropy(input=predict, label=label)
485
            avg_loss = paddle.mean(loss)
486

F
fengjiayi 已提交
487
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
488 489
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
490 491
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
492
    """
493 494 495 496 497 498
    return save_vars(executor,
                     dirname=dirname,
                     main_program=main_program,
                     vars=None,
                     predicate=is_parameter,
                     filename=filename)
499 500


501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

523
            import paddle
524
            import paddle.fluid as fluid
525 526

            paddle.enable_static()
527 528 529 530 531 532 533 534 535 536
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
537
        receive params on pserver through rpc.
538 539 540 541 542 543 544 545 546 547
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
548 549 550 551 552 553 554
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
555 556 557

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
558
                slice = optimizer.slice
559 560 561
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
562 563 564
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
565 566
                endpoints[index] = endpoint

T
tangwei12 已提交
567 568 569 570 571
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

572 573 574 575 576 577 578 579 580 581
            block.append_op(type='recv_save',
                            attrs={
                                "trainer_id": 0,
                                "shape": origin.shape,
                                "slice_shapes": slice_shapes,
                                "slice_varnames": slice_varnames,
                                "remote_varnames": remote_varnames,
                                "endpoints": endpoints,
                                "file_path": os.path.join(dirname, origin.name)
                            })
T
tangwei12 已提交
582

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
603 604 605 606
        block.append_op(type='checkpoint_notify',
                        inputs={},
                        outputs={},
                        attrs=attrs)
607 608 609
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
610

611 612 613 614
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
615 616
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
617 618 619 620 621 622
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
623
        raise TypeError("'main_program' should be an instance of Program.")
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
645 646 647 648
    save_vars(executor,
              main_program=main_program,
              dirname=dirname,
              vars=local_vars)
649 650 651 652 653 654 655 656 657 658

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


659
@dygraph_not_support
660
def save_persistables(executor, dirname, main_program=None, filename=None):
661
    """
662 663
    Save all persistable variables from :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
664
    :ref:`api_guide_model_save_reader_en` for more details. And then
665 666
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
667

G
guofei 已提交
668
    The :code:`dirname` is used to specify the folder where persistable variables
669
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
670 671
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
672 673 674

    Args:
        executor(Executor): The executor to run for saving persistable variables.
675
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
676
                            more details.
677

678 679 680
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
681
                                         be saved. You can refer to
G
guofei 已提交
682
                                         :ref:`api_guide_Program_en` for more details.
683
                                         If it is None, the default main program will
G
guofei 已提交
684 685 686 687 688
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
689 690

    Returns:
691 692
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
693 694 695 696

    Examples:
        .. code-block:: python

697
            import paddle
H
Huihuang Zheng 已提交
698
            import paddle.fluid as fluid
699

700
            paddle.enable_static()
G
guofei 已提交
701 702 703 704 705
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
706

G
guofei 已提交
707 708
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
709
            avg_loss = paddle.mean(loss)
F
fengjiayi 已提交
710
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
711 712
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
713
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
714 715
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
716
    """
717
    if main_program and main_program._is_distributed:
718 719 720
        return _save_distributed_persistables(executor,
                                              dirname=dirname,
                                              main_program=main_program)
721
    else:
722 723 724 725 726 727
        return save_vars(executor,
                         dirname=dirname,
                         main_program=main_program,
                         vars=None,
                         predicate=is_persistable,
                         filename=filename)
728 729


730 731 732 733 734
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
735
              filename=None):
736
    """
737 738
    :api_attr: Static Graph

739
    This API loads variables from files by executor.
F
fengjiayi 已提交
740

741
    There are two ways to specify the variables to be loaded: the first way, set
742 743
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
744
    The first way has a higher priority.
F
fengjiayi 已提交
745

746
    The `dirname` is used to specify the folder where to load variables.
747
    If variables were saved in separate files in the folder `dirname`,
748
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
749
    use `filename` to specify it.
750

F
fengjiayi 已提交
751 752
    Args:
        executor(Executor): The executor to run for loading variables.
753 754
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
755
                                    If it is None, the default main program will
F
fengjiayi 已提交
756 757
                                    be used automatically.
                                    Default: None
758
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
759
                                   Default: None
760
        predicate(function, optional): The function selects variables that make
761 762 763 764 765
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
766 767 768 769 770 771 772

    Returns:
        None

    Examples:
        .. code-block:: python

773
            import paddle
774
            import paddle.fluid as fluid
775

776
            paddle.enable_static()
777 778 779 780 781 782 783 784 785 786 787
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
788

789 790 791 792 793 794 795 796 797 798 799
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
800
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
801 802 803
            def name_has_fc(var):
                res = "fc" in var.name
                return res
804 805 806
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
807
                               vars=None, predicate=name_has_fc)
808 809
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
810

811
    """
812 813 814 815 816
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
817

818
    if vars is None:
819
        if main_program is None:
Y
Yu Yang 已提交
820
            main_program = default_main_program()
821
        if not isinstance(main_program, Program):
822 823 824
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
825

826 827 828 829 830
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  vars=list(filter(predicate, main_program.list_vars())),
                  filename=filename)
831 832 833
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
834

835 836
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
837

838
        if not isinstance(main_program, Program):
839 840 841
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
842

T
tangwei12 已提交
843
        # save origin param shape
H
hong 已提交
844
        orig_para_shape = {}
845
        load_var_map = {}
846 847 848 849

        check_vars = []
        sparse_vars = []

850 851
        for each_var in vars:
            assert isinstance(each_var, Variable)
852

T
tangwei12 已提交
853 854
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
855 856

            if isinstance(each_var, Parameter):
857 858
                orig_para_shape[each_var.name] = tuple(
                    each_var.desc.get_shape())
859 860 861 862 863

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

864
            new_var = _clone_var_in_block_(load_block, each_var)
865 866
            check_vars.append(each_var)

867
            if filename is None:
868 869 870 871
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
872 873 874 875
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
876
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
877 878 879
            else:
                load_var_map[new_var.name] = new_var

880 881 882 883 884 885 886 887 888 889 890
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
891 892 893
                raise ValueError(
                    "SelectedRows var {} can not find at {}".format(
                        new_var.name, var_path))
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
911 912 913 914 915
                    slice = load_block.create_var(name=block,
                                                  type=new_var.type,
                                                  shape=new_var.shape,
                                                  dtype=new_var.dtype,
                                                  persistable=False)
916 917 918
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
919 920 921 922
                    load_block.append_op(type='load',
                                         inputs={},
                                         outputs={'Out': [slice]},
                                         attrs={'file_path': file_path})
923

924 925 926 927
                load_block.append_op(type='lookup_sparse_table_merge',
                                     inputs={'X': slices},
                                     outputs={'Out': new_var},
                                     attrs={})
928

929
        if filename is not None:
930 931 932 933
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

934 935 936
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

937 938 939 940 941 942 943
            load_block.append_op(type='load_combine',
                                 inputs={},
                                 outputs={"Out": load_var_list},
                                 attrs={
                                     'file_path': filename,
                                     'model_from_memory': vars_from_memory
                                 })
944 945
        executor.run(load_prog)

T
tangwei12 已提交
946
        # check var shape
947
        for each_var in check_vars:
H
hong 已提交
948 949 950 951 952
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
953
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
954 955 956
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
957
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
958 959
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({})."
                    .format(orig_shape, each_var.name, new_shape))
H
hong 已提交
960

961

962
@dygraph_not_support
963
def load_params(executor, dirname, main_program=None, filename=None):
964
    """
965 966
    :api_attr: Static Graph

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
986 987

    Args:
988 989
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
990
        dirname(str): The directory path.
991 992 993 994 995 996 997 998
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
999 1000 1001 1002 1003 1004 1005

    Returns:
        None

    Examples:
        .. code-block:: python

1006
            import paddle
1007
            import paddle.fluid as fluid
1008

1009
            paddle.enable_static()
F
fengjiayi 已提交
1010 1011 1012
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1013
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1014
                                main_program=None)
1015
    """
1016 1017 1018 1019 1020
    load_vars(executor,
              dirname=dirname,
              main_program=main_program,
              predicate=is_parameter,
              filename=filename)
1021 1022


1023
@dygraph_not_support
1024
def load_persistables(executor, dirname, main_program=None, filename=None):
1025
    """
1026
    :api_attr: Static Graph
1027

1028 1029
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1030
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1031

1032 1033 1034 1035
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1036 1037

    Args:
1038 1039
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1040
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1041
        main_program(Program, optional): The program whose persistable variables will
1042 1043 1044 1045 1046 1047 1048
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1049 1050 1051 1052 1053 1054 1055

    Returns:
        None

    Examples:
        .. code-block:: python

1056
            import paddle
1057
            import paddle.fluid as fluid
1058

1059
            paddle.enable_static()
F
fengjiayi 已提交
1060 1061 1062
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1063
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1064
                                       main_program=None)
1065
    """
1066 1067

    if main_program and main_program._is_distributed:
1068 1069 1070
        _load_distributed_persistables(executor,
                                       dirname=dirname,
                                       main_program=main_program)
1071
    else:
1072 1073 1074 1075 1076
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  predicate=is_persistable,
                  filename=filename)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1097
            import paddle
1098
            import paddle.fluid as fluid
1099 1100

            paddle.enable_static()
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                slice = load_block.create_var(name=slice_var.name,
                                              type=slice_var.type,
                                              shape=slice_var.shape,
                                              dtype=slice_var.dtype,
                                              persistable=True)

                load_block.append_op(type='load',
                                     inputs={},
                                     outputs={'Out': [slice]},
                                     attrs={
                                         'file_path':
                                         os.path.join(dirname, origin_var.name),
                                         'seek':
                                         offset,
                                         'shape':
                                         slice.shape
                                     })
1143
            else:
1144 1145 1146 1147 1148 1149
                origin = load_block.create_var(name="{}".format(
                    origin_var.name),
                                               type=origin_var.type,
                                               shape=origin_var.shape,
                                               dtype=origin_var.dtype,
                                               persistable=True)
1150 1151 1152 1153
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
1154
                    attrs={'file_path': os.path.join(dirname, origin_var.name)})
1155 1156 1157

        load_block.append_op(
            type='delete_var',
1158 1159
            inputs={'X': need_delete_vars},
        )
1160 1161 1162 1163

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1164
        raise TypeError("'main_program' should be an instance of Program.")
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1179 1180


1181 1182 1183
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1184 1185 1186
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1187
    global_block = inference_program.global_block()
1188 1189 1190
    feed_var = global_block.create_var(name=feed_holder_name,
                                       type=core.VarDesc.VarType.FEED_MINIBATCH,
                                       persistable=True)
K
Kexin Zhao 已提交
1191

1192
    for i, name in enumerate(feed_target_names):
1193 1194 1195 1196 1197
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
1198
                format(i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1199
        out = global_block.var(name)
1200 1201 1202 1203
        global_block._prepend_op(type='feed',
                                 inputs={'X': [feed_var]},
                                 outputs={'Out': [out]},
                                 attrs={'col': i})
K
Kexin Zhao 已提交
1204 1205


1206 1207 1208
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1209
    global_block = inference_program.global_block()
1210 1211 1212
    fetch_var = global_block.create_var(name=fetch_holder_name,
                                        type=core.VarDesc.VarType.FETCH_LIST,
                                        persistable=True)
K
Kexin Zhao 已提交
1213

1214
    for i, name in enumerate(fetch_target_names):
1215 1216 1217 1218
        global_block.append_op(type='fetch',
                               inputs={'X': [name]},
                               outputs={'Out': [fetch_var]},
                               attrs={'col': i})
K
Kexin Zhao 已提交
1219 1220


1221 1222
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.save_inference_model")
1223 1224 1225 1226
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1227
                         main_program=None,
1228
                         model_filename=None,
1229
                         params_filename=None,
T
tangwei12 已提交
1230
                         export_for_deployment=True,
1231
                         program_only=False,
1232
                         clip_extra=True):
1233
    """
F
fengjiayi 已提交
1234
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1235
    and then save it and all related parameters to given `dirname` .
1236
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1237 1238
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1239

G
guofei 已提交
1240
    Note:
1241
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1242
        structure and parameters are going to be saved. If you would like to save params of
1243
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1244
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1245 1246 1247

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1248
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1249
                                     data during inference.
1250
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1251
                                     inference results.
1252
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1253 1254
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1255
                                         build the inference model. If is set None,
G
guofei 已提交
1256 1257 1258
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1259
                                       itself. If is set None, a default filename
G
guofei 已提交
1260 1261
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1262
                                        If it is set None, parameters will be saved
G
guofei 已提交
1263
                                        in separate files .
1264
        export_for_deployment(bool, optional): If True, programs are modified to only support
X
Xin Pan 已提交
1265 1266 1267 1268
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1269
                                     Default: True.
1270
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1271 1272
                                      save params of Program.
                                      Default: False.
1273

F
fengjiayi 已提交
1274
    Returns:
1275
        list, The fetch variables' name list.
F
fengjiayi 已提交
1276 1277 1278

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1279

1280
            import paddle
1281 1282
            import paddle.fluid as fluid

1283
            paddle.enable_static()
F
fengjiayi 已提交
1284 1285
            path = "./infer_model"

T
tianshuo78520a 已提交
1286
            # User defined network, here a softmax regession example
G
guofei 已提交
1287 1288
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1289 1290 1291 1292
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
1293
            avg_loss = paddle.mean(loss)
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1306
            # In this example, the save_inference_mode inference will prune the default
1307
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1308
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1309
            # and parameters are going to be saved in separate files under folder
1310
            # "./infer_model".
1311 1312

    """
M
minqiyang 已提交
1313
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1314
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1315
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1316
        if len(feeded_var_names) > 0:
1317
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1318
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1319
                    isinstance(name, six.string_types)
1320
                    for name in feeded_var_names)):
M
minqiyang 已提交
1321
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1322 1323

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1324
        target_vars = [target_vars]
X
Xin Pan 已提交
1325
    elif export_for_deployment:
1326 1327
        if not (bool(target_vars)
                and all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1328 1329
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1330
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1331

1332
    # remind user to set auc_states to zeros if the program contains auc op
1333 1334
    all_ops = main_program.global_block().ops
    for op in all_ops:
1335 1336 1337
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1338 1339 1340 1341 1342 1343
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1344 1345
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1346 1347
        for i, var in enumerate(target_vars):
            uniq_target_vars.append(var)
1348
        target_vars = uniq_target_vars
F
flame 已提交
1349
    target_var_name_list = [var.name for var in target_vars]
1350

1351
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1352
    save_dirname = dirname
1353
    try:
L
lujun 已提交
1354 1355
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1356 1357 1358 1359
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1360 1361 1362 1363
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1364
    model_basename = os.path.join(save_dirname, model_basename)
1365

X
Xin Pan 已提交
1366 1367 1368 1369
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1370 1371 1372

    origin_program = main_program.clone()

X
Xin Pan 已提交
1373
    if export_for_deployment:
X
Xin Pan 已提交
1374 1375
        main_program = main_program.clone()
        global_block = main_program.global_block()
1376
        need_to_remove_op_index = []
X
Xin Pan 已提交
1377 1378 1379
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1380 1381 1382 1383 1384
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1385
        main_program.desc.flush()
X
Xin Pan 已提交
1386

1387 1388
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1389
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1390 1391
        fetch_var_names = [v.name for v in target_vars]

1392 1393 1394 1395 1396
        for target_v in target_vars:
            if not main_program.global_block().has_var(target_v.name):
                main_program.global_block().create_var(
                    name=target_v.name,
                    shape=target_v.shape,
1397 1398
                    dtype=target_v.dtype,
                    persistable=target_v.persistable)
1399

X
Xin Pan 已提交
1400 1401 1402
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1403
        main_program.desc._set_version()
1404
        paddle.fluid.core.save_op_version_info(main_program.desc)
X
Xin Pan 已提交
1405
        with open(model_basename, "wb") as f:
1406
            f.write(
1407 1408
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
X
Xin Pan 已提交
1409 1410 1411
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1412
        with open(model_basename + ".main_program", "wb") as f:
1413
            f.write(
1414 1415
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
T
tangwei12 已提交
1416

T
tangwei12 已提交
1417 1418 1419 1420 1421 1422
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1423 1424
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1425 1426
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1427

L
lujun 已提交
1428
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1429
    return target_var_name_list
X
fix  
Xin Pan 已提交
1430

1431

1432 1433
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.load_inference_model")
1434 1435 1436
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1437 1438
                         params_filename=None,
                         pserver_endpoints=None):
1439
    """
1440 1441 1442
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1443
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1444

F
fengjiayi 已提交
1445
    Args:
1446 1447 1448
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1449
        executor(Executor): The executor to run for loading inference model.
1450
                            See :ref:`api_guide_executor_en` for more details about it.
1451 1452 1453 1454 1455 1456 1457
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
1458
          - The name of file to load all parameters.
1459 1460 1461
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1462 1463 1464 1465

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1466
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1467 1468

    Returns:
1469
        list: The return of this API is a list with three elements:
1470
        (program, feed_target_names, fetch_targets). The `program` is a
1471 1472 1473 1474 1475
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1476 1477 1478 1479 1480


    Examples:
        .. code-block:: python

1481
            import paddle
1482 1483
            import paddle.fluid as fluid
            import numpy as np
1484

1485
            paddle.enable_static()
1486
            # Build the model
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1498 1499

            # Save the inference model
F
fengjiayi 已提交
1500
            path = "./infer_model"
1501 1502
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1503 1504 1505

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1506 1507
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1508
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1509 1510 1511 1512
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1513 1514 1515
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1516
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1517
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1518 1519
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1520
                                              pserver_endpoints=endpoints))
1521

1522
            # In this example, the inference program was saved in the file
1523
            # "./infer_model/__model__" and parameters were saved in
1524 1525 1526 1527
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1528
    """
1529 1530 1531 1532
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1533
            raise ValueError("There is no directory named '%s'" % dirname)
1534

1535 1536
        if model_filename is None:
            model_filename = '__model__'
1537

1538 1539
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1555

1556
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1557
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1558 1559 1560
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1561
    load_persistables(executor, load_dirname, program, params_filename)
1562

T
tangwei12 已提交
1563
    if pserver_endpoints:
T
tangwei12 已提交
1564
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1565

1566 1567
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1568 1569 1570 1571 1572
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1573 1574


T
tangwei12 已提交
1575 1576 1577
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1578 1579
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1580
    program._sync_with_cpp()
T
tangwei12 已提交
1581
    return program
T
tangwei12 已提交
1582 1583


X
xuwei06 已提交
1584 1585
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1597

F
fengjiayi 已提交
1598 1599
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1600

1601
            import paddle
1602
            import paddle.fluid as fluid
1603 1604

            paddle.enable_static()
F
fengjiayi 已提交
1605 1606 1607
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1608

X
xuwei06 已提交
1609
    """
1610
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1611

X
xuwei06 已提交
1612 1613 1614 1615 1616 1617 1618 1619
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1620
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1621

F
fengjiayi 已提交
1622 1623 1624 1625 1626 1627 1628
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1629

F
fengjiayi 已提交
1630 1631
    Returns:
        numpy.array: The parameter's values.
1632

F
fengjiayi 已提交
1633 1634 1635
    Examples:
        .. code-block:: python

1636
            import paddle
1637
            import paddle.fluid as fluid
1638 1639

            paddle.enable_static()
F
fengjiayi 已提交
1640 1641
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1642 1643
    """
    if program is None:
Y
Yu Yang 已提交
1644
        program = default_main_program()
X
xuwei06 已提交
1645 1646
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
1662
        name = node.name()
1663 1664 1665 1666 1667 1668 1669 1670
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1671
                        var_desc.type() == core.VarDesc.VarType.READER:
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
1697
        name = node.name()
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1710
                        var_desc.type() == core.VarDesc.VarType.READER:
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1724 1725


W
WeiXin 已提交
1726
def _unpack_saved_dict(saved_obj, protocol):
1727 1728
    temp_saved_obj = {}
    unpack_infor = {}
W
WeiXin 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    # When pickle protocol=2 or protocol=3 the serialized object cannot be larger than 4G.
    if 1 < protocol < 4:
        if isinstance(saved_obj, dict):
            for key, value in saved_obj.items():
                if isinstance(value, np.ndarray):
                    MAX_NUMBER_OF_ELEMENT = int(
                        (2**30 - 1) / value.dtype.itemsize)
                    num_element = np.prod(value.shape)
                    if num_element > MAX_NUMBER_OF_ELEMENT:
                        unpack_infor[key] = {}
                        unpack_infor[key]["OriginShape"] = value.shape
                        unpack_infor[key]["slices"] = []
                        value = value.flatten()
                        for i in range(
                                int(
                                    math.ceil(num_element * 1.0 /
                                              MAX_NUMBER_OF_ELEMENT))):
                            part_name = key + "@@." + str(i)
                            unpack_infor[key]["slices"].append(part_name)
                            temp_saved_obj[part_name] = value[
1749 1750 1751
                                i *
                                MAX_NUMBER_OF_ELEMENT:MAX_NUMBER_OF_ELEMENT *
                                (i + 1)]
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

    if unpack_infor:
        for key, value in unpack_infor.items():
            if key in saved_obj:
                saved_obj.pop(key)
                for part in value['slices']:
                    saved_obj[part] = temp_saved_obj[part]
        saved_obj['UnpackBigParamInfor@@'] = unpack_infor
    return saved_obj


def _pack_loaded_dict(load_obj):
W
WeiXin 已提交
1764 1765 1766 1767 1768 1769
    if isinstance(load_obj, dict):
        unpack_info = 'UnpackBigParamInfor@@'
        if unpack_info in load_obj:
            removes = []
            for key, value in load_obj[unpack_info].items():
                slices = [load_obj[part] for part in value["slices"]]
1770 1771
                load_obj[key] = np.concatenate(slices).reshape(
                    value["OriginShape"])
W
WeiXin 已提交
1772 1773 1774 1775 1776
                removes += value["slices"]
            for key in removes:
                load_obj.pop(key)
            load_obj.pop(unpack_info)

1777 1778 1779
    return load_obj


1780
@static_only
1781
def _legacy_save(param_dict, model_path, protocol=2):
1782

1783
    def get_tensor(var):
J
Jiabin Yang 已提交
1784
        if isinstance(var, (core.VarBase, core.eager.Tensor)):
1785 1786 1787 1788 1789 1790 1791 1792
            return var.numpy()
        elif isinstance(var, core.LoDTensor):
            return np.array(var)
        return var

    param_dict = {name: get_tensor(param_dict[name]) for name in param_dict}

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
1793 1794 1795
    if _is_file_path(
            model_path
    ) and sys.platform == 'darwin' and sys.version_info.major == 3:
1796 1797 1798 1799 1800 1801
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
        with open(model_path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
1802
        with _open_file_buffer(model_path, 'wb') as f:
1803 1804 1805 1806
            pickle.dump(param_dict, f, protocol=protocol)


@static_only
1807
def save(program, model_path, protocol=4, **configs):
H
hong 已提交
1808
    """
1809

1810
    This function save parameters, optimizer information and network description to model_path.
H
hong 已提交
1811

1812 1813
    The parameters contains all the trainable Tensor, will save to a file with suffix ".pdparams".
    The optimizer information contains all the Tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no Tensor need to save (like SGD), the fill will not generated).
H
hong 已提交
1814
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1815

H
hong 已提交
1816 1817 1818
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
1819
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
1820
                                 Default: 4
1821
        configs(dict, optional) : optional keyword arguments.
H
hong 已提交
1822 1823 1824 1825 1826 1827 1828

    Returns:
        None

    Examples:
        .. code-block:: python

1829
            import paddle
1830
            import paddle.static as static
H
hong 已提交
1831

1832
            paddle.enable_static()
H
hong 已提交
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
H
hong 已提交
1844 1845 1846 1847
    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1848
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
1849 1850 1851 1852 1853
    if 'pickle_protocol' in configs:
        protocol = configs['pickle_protocol']
        warnings.warn(
            "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
        )
H
hong 已提交
1854

1855
    if not isinstance(protocol, int):
W
WeiXin 已提交
1856
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
1857
            type(protocol)))
W
WeiXin 已提交
1858

1859
    if protocol < 2 or protocol > 4:
1860 1861 1862
        raise ValueError(
            "Expected 1<'protocol'<5, but received protocol={}".format(
                protocol))
W
WeiXin 已提交
1863

1864 1865 1866 1867
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1868 1869 1870 1871
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1872
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1873
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
W
WeiXin 已提交
1874

1875
    param_dict = _unpack_saved_dict(param_dict, protocol)
1876

1877 1878 1879
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
1880 1881 1882 1883 1884 1885
        with open(model_path + ".pdparams", 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
        with open(model_path + ".pdparams", 'wb') as f:
1886
            pickle.dump(param_dict, f, protocol=protocol)
H
hong 已提交
1887 1888 1889 1890

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1891 1892
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1893
        pickle.dump(opt_dict, f, protocol=protocol)
H
hong 已提交
1894 1895 1896 1897

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
1898
    paddle.fluid.core.save_op_version_info(program.desc)
H
hong 已提交
1899 1900 1901 1902 1903

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1904 1905 1906 1907 1908 1909
def _pickle_loads_mac(path, f):
    pickle_bytes = bytearray(0)
    file_size = os.path.getsize(path)
    max_bytes = 2**30
    for _ in range(0, file_size, max_bytes):
        pickle_bytes += f.read(max_bytes)
T
tianshuo78520a 已提交
1910
    load_result = pickle.loads(pickle_bytes, encoding='latin1')
1911 1912 1913
    return load_result


1914
@static_only
H
hong 已提交
1915
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1916
    """
1917 1918
    :api_attr: Static Graph

H
hong 已提交
1919
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1920
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1921

1922 1923
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1924 1925
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1926
    Args:
1927 1928
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1929
        executor(Executor, optional): The executor used for initialize the parameter
1930
                                      When startup program is not run.
1931
        var_list(list|tuple, optional): The Tensor list/tuple to load single model file saved with
1932
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1933
                                  Default: None
H
hong 已提交
1934 1935 1936

    Returns:
        None
1937

H
hong 已提交
1938 1939 1940
     Examples:
        .. code-block:: python

1941
            import paddle
1942
            import paddle.static as static
H
hong 已提交
1943

1944
            paddle.enable_static()
H
hong 已提交
1945

1946 1947 1948
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
H
hong 已提交
1949

1950 1951 1952 1953 1954 1955 1956
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
            static.load(prog, "./temp")
H
hong 已提交
1957 1958
    """

1959 1960
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1974
        _logger.debug(
1975 1976
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
1977 1978 1979 1980
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
1981 1982 1983 1984 1985 1986

        if var_list is not None:
            var_list_names = [var.name for var in var_list]
        else:
            var_list_names = None

H
hong 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
1997 1998
                load_condition = var_list_names is None or var.name in var_list_names
                if var_path in binary_file_set and load_condition:
H
hong 已提交
1999 2000 2001 2002 2003 2004 2005
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
2006 2007 2008
                load_vars(executor=executor,
                          dirname=model_path,
                          vars=loaded_var_list)
H
hong 已提交
2009 2010 2011 2012 2013
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
2014
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
2030
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
2031 2032 2033

            dir_name, file_name = os.path.split(model_path)
            try:
2034 2035 2036 2037
                load_vars(executor=executor,
                          dirname=dir_name,
                          vars=var_list,
                          filename=file_name)
H
hong 已提交
2038 2039 2040 2041
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
2042 2043 2044
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
2045 2046

            return
Y
Yang Zhang 已提交
2047 2048 2049 2050 2051 2052 2053 2054

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
2055 2056 2057 2058
        elif p.is_xpu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.XPUPlace(p.xpu_device_id())
2059 2060 2061 2062
        elif p.is_npu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.NPUPlace(p.npu_device_id())
2063 2064 2065 2066
        elif p.is_mlu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.MLUPlace(p.mlu_device_id())
Y
Yang Zhang 已提交
2067 2068 2069 2070 2071 2072
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
2073 2074

    parameter_list = list(filter(is_parameter, program.list_vars()))
2075 2076 2077 2078 2079

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
2080
    with open(parameter_file_name, 'rb') as f:
2081 2082 2083 2084 2085

        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            load_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2086
            load_dict = pickle.load(f, encoding='latin1')
2087
        load_dict = _pack_loaded_dict(load_dict)
Y
Yang Zhang 已提交
2088 2089 2090 2091 2092
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
2093 2094 2095 2096 2097

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
2098
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
2099
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
2100
            "Optimizer file [{}] not exits".format(opt_file_name)
2101 2102 2103 2104

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
2105 2106

        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2107
            load_dict = pickle.load(f, encoding='latin1')
Y
Yang Zhang 已提交
2108 2109 2110 2111 2112
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
2113 2114


H
hong 已提交
2115
def load_program_state(model_path, var_list=None):
2116
    """
2117

2118
    Load program state from local file
2119

2120 2121
    Args:
        model_path(str): The file prefix store the program
2122
        var_list(list|tuple, optional): The Tensor list/tuple to load saved with
2123
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
2124
                                  Default: None.
2125
                                  The var_list is only used to get name,
H
hong 已提交
2126
                                  will not be modified.
2127 2128 2129 2130
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
2131

2132 2133
        .. code-block:: python

2134
            import paddle
2135
            import paddle.static as static
2136 2137

            paddle.enable_static()
2138

2139 2140 2141
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2142

2143 2144 2145 2146
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2147

2148 2149
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
2150
    """
H
hong 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2163
        _logger.debug(
2164 2165
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
2191 2192
                    lod_level=var.lod_level if var.desc.type()
                    == core.VarDesc.VarType.LOD_TENSOR else None,
H
hong 已提交
2193 2194
                    persistable=True)

2195 2196 2197 2198 2199 2200
            def _load_vars_with_try_catch(exe,
                                          dirname,
                                          vars,
                                          filename,
                                          raise_error=True):
                try:
2201 2202 2203 2204
                    load_vars(executor=exe,
                              dirname=dirname,
                              vars=vars,
                              filename=filename)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
                    return True
                except:
                    error_str = "Failed to load model/variables `%s`, please make sure " \
                                "model/variables file is saved with the following APIs: " \
                                "save_params, save_persistables, save_vars."
                    filenames = [var.name for var in vars
                                 ] if filename is None else filename
                    if raise_error:
                        raise RuntimeError(error_str % filenames)
                    else:
                        warnings.warn(error_str % filenames, RuntimeWarning)
                return False

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

H
hong 已提交
2221 2222
            loaded_var_list = []

2223 2224 2225
            if os.path.isfile(model_path):
                # when model_path is file, var_list cannot be None
                dir_name, file_name = os.path.split(model_path)
H
hong 已提交
2226 2227
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
2228 2229
                _load_vars_with_try_catch(exe, dir_name, loaded_var_list,
                                          file_name)
H
hong 已提交
2230
            else:
2231 2232 2233 2234 2235 2236 2237
                # var_list can be None or not None
                if var_list is not None:
                    for var in var_list:
                        loaded_var_list.append(
                            clone_var_to_block(load_block, var))
                    _load_vars_with_try_catch(exe, model_path, loaded_var_list,
                                              None)
H
hong 已提交
2238
                else:
2239
                    for var_name in var_name_list:
2240 2241 2242 2243
                        # NOTE(chenweihang): If identify which files the user wants
                        # to load from the disk, we load these variables one by one.
                        # If a file does not exist, we only warn the user that the
                        # file may be an irrelevant file, but does not throw an error
2244
                        # to ensure that other legal variables can be loaded.
2245 2246
                        temp_var = load_block.create_var(name=var_name,
                                                         persistable=True)
2247 2248 2249 2250
                        if _load_vars_with_try_catch(exe, model_path,
                                                     [temp_var], None, False):
                            loaded_var_list.append(temp_var)

H
hong 已提交
2251 2252
            res_dict = {}
            for var in loaded_var_list:
2253 2254
                res_dict[var.name] = np.asarray(
                    paddle.fluid.global_scope().find_var(var.name).get_tensor())
H
hong 已提交
2255 2256 2257

            return res_dict

2258
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2259
        "Parameter file [{}] not exits".format(parameter_file_name)
2260 2261

    with open(parameter_file_name, 'rb') as f:
2262 2263 2264 2265
        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            para_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2266
            para_dict = pickle.load(f, encoding='latin1')
2267
    para_dict = _pack_loaded_dict(para_dict)
2268

H
hong 已提交
2269
    opt_file_name = model_prefix + ".pdopt"
2270 2271
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2272
            opti_dict = pickle.load(f, encoding='latin1')
2273 2274 2275 2276 2277 2278

        para_dict.update(opti_dict)

    return para_dict


2279
@static_only
2280 2281 2282 2283
def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

2284
    An exception will throw if shape or dtype of the parameters is not match.
2285 2286 2287 2288 2289 2290

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2291
    Returns:
2292
        None
2293

2294 2295
    Examples:
        .. code-block:: python
2296

2297
            import paddle
2298
            import paddle.static as static
2299 2300

            paddle.enable_static()
2301

2302 2303 2304
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2305

2306 2307 2308 2309
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2310

2311 2312
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
H
hong 已提交
2313

2314
            static.set_program_state(prog, program_state)
2315
    """
2316
    state_dict = _pack_loaded_dict(state_dict)
2317 2318 2319 2320 2321 2322
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2323
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2324 2325 2326 2327
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2328
            assert orig_para_np.shape == new_para_np.shape, \
2329
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2330
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2331
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2332
            assert orig_para_np.dtype == new_para_np.dtype, \
2333
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2334
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2335 2336 2337 2338 2339
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

Q
QingshuChen 已提交
2340 2341
            #assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
            #    "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2342 2343 2344 2345 2346 2347 2348
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
Q
QingshuChen 已提交
2349 2350 2351 2352
            elif ten_place.is_xpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.XPUPlace(p.xpu_device_id())
2353 2354 2355 2356
            elif ten_place.is_npu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.NPUPlace(p.npu_device_id())
2357 2358 2359 2360
            elif ten_place.is_mlu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.MLUPlace(p.mlu_device_id())
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
2372 2373
            "This list is not set, Because of Paramerter not found in program. There are: {}"
            .format(" ".join(unused_para_list)))