io.py 53.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
28
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
29 30
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
31
from . import core
32
from .. import compat as cpt
33 34

__all__ = [
T
tangwei12 已提交
35
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
36
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
37
] + reader.__all__
38

39 40
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
41

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56 57 58
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
59
    """
60 61 62 63
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

77
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
78 79
            res = fluid.io.is_persistable(param)
    """
80
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
81 82
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
83
        return False
84 85 86 87 88 89 90 91
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
92
        dtype=var.dtype,
93 94 95 96 97
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


98 99 100 101 102
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
103
              filename=None):
104
    """
F
fengjiayi 已提交
105 106
    Save variables to the given directory by executor.

107 108 109 110
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
111
    are assigned, the `main_program` and the `predicate` will be ignored.
112

113 114 115
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
116
    use `filename` to specify it.
117

F
fengjiayi 已提交
118 119 120
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
121 122
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
123 124
                                    be used automatically.
                                    Default: None
125
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
126 127
                                   It has a higher priority than the `main_program`.
                                   Default: None
128 129 130 131
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
132 133
                                  `vars` is None).
                                  Default: None
134
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
135 136 137 138 139 140 141 142 143 144 145 146
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

147 148 149 150 151 152 153 154 155 156 157 158
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
159

160
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
161 162 163 164
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
165
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
166
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
167 168 169 170 171
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
172 173
            var_list = [w, b]
            path = "./my_paddle_vars"
174
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
175 176
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
177
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
178
    """
L
lujun 已提交
179
    save_dirname = os.path.normpath(dirname)
180
    if vars is None:
181
        if main_program is None:
Y
Yu Yang 已提交
182
            main_program = default_main_program()
183
        if not isinstance(main_program, Program):
184 185 186 187
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
188
            main_program=main_program,
L
lujun 已提交
189
            dirname=save_dirname,
190
            vars=list(filter(predicate, main_program.list_vars())),
191
            filename=filename)
192 193 194
    else:
        save_program = Program()
        save_block = save_program.global_block()
195

196 197 198 199 200
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

201
        save_var_map = {}
202
        for each_var in vars:
203 204 205
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
206
            new_var = _clone_var_in_block_(save_block, each_var)
207
            if filename is None:
208 209 210 211
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
212 213 214
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
215 216 217
            else:
                save_var_map[new_var.name] = new_var

218
        if filename is not None:
219 220 221 222
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

223
            save_block.append_op(
224 225
                type='save_combine',
                inputs={'X': save_var_list},
226
                outputs={},
L
lujun 已提交
227
                attrs={'file_path': os.path.join(save_dirname, filename)})
228

229 230 231
        executor.run(save_program)


232
def save_params(executor, dirname, main_program=None, filename=None):
233
    """
F
fengjiayi 已提交
234 235 236
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

237 238 239
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
240 241
    the file name.

242 243 244
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
245 246 247
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
248 249 250 251 252 253 254 255

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
256 257
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
258 259 260 261 262 263 264 265 266
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
267 268
            import paddle.fluid as fluid

F
fengjiayi 已提交
269 270 271
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
272
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
273
                                 main_program=None)
274 275 276 277
    """
    save_vars(
        executor,
        dirname=dirname,
278
        main_program=main_program,
279
        vars=None,
280
        predicate=is_parameter,
281
        filename=filename)
282 283


284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


464
def save_persistables(executor, dirname, main_program=None, filename=None):
465
    """
466 467
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
468 469
    or file `filename`.

470 471 472
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
473 474 475 476 477
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
478 479
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
480 481
                                    program will be used automatically.
                                    Default: None
482
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
483 484 485 486 487 488 489 490 491
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
492 493
            import paddle.fluid as fluid

F
fengjiayi 已提交
494 495
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
496
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
497
            prog = fluid.default_main_program()
498
            fluid.io.save_persistables(executor=exe, dirname=param_path,
499
                                       main_program=prog)
500
    """
501 502 503 504 505 506 507 508 509 510 511 512 513

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
514 515


516 517 518 519 520
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
521
              filename=None):
522
    """
F
fengjiayi 已提交
523 524
    Load variables from the given directory by executor.

525 526 527 528
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
529 530
    are assigned, the `main_program` and the `predicate` will be ignored.

531 532 533
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
534
    use `filename` to specify it.
535

F
fengjiayi 已提交
536 537 538
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
539 540
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
541 542
                                    be used automatically.
                                    Default: None
543
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
544 545
                                   It has a higher priority than the `main_program`.
                                   Default: None
546 547 548 549
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
550 551
                                  `vars` is None).
                                  Default: None
552
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
553 554 555 556 557 558 559 560 561 562 563 564
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

565 566 567 568 569 570 571 572 573 574 575 576
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
577

578
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
579 580 581 582
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
583 584 585
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
586
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
587 588 589 590
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
591 592 593 594
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
595
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
596
                               filename="vars_file")
597 598
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
599
    """
L
lujun 已提交
600
    load_dirname = os.path.normpath(dirname)
601
    if vars is None:
602
        if main_program is None:
Y
Yu Yang 已提交
603
            main_program = default_main_program()
604
        if not isinstance(main_program, Program):
605 606 607 608
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
609
            dirname=load_dirname,
T
tangwei12 已提交
610
            main_program=main_program,
611
            vars=list(filter(predicate, main_program.list_vars())),
612
            filename=filename)
613 614 615
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
616

617 618 619 620 621
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

622
        load_var_map = {}
623 624
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
625 626
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
627
            new_var = _clone_var_in_block_(load_block, each_var)
628
            if filename is None:
629 630 631 632
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
633 634 635
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
636 637 638
            else:
                load_var_map[new_var.name] = new_var

639
        if filename is not None:
640 641 642 643
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

644
            load_block.append_op(
645
                type='load_combine',
646
                inputs={},
647
                outputs={"Out": load_var_list},
L
lujun 已提交
648
                attrs={'file_path': os.path.join(load_dirname, filename)})
649 650 651
        executor.run(load_prog)


652
def load_params(executor, dirname, main_program=None, filename=None):
653
    """
F
fengjiayi 已提交
654
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
655
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
656 657
    the file `filename`.

658 659 660
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
661 662
    `filename` to specify the file name.

663 664 665 666
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
667 668 669
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
670 671 672 673 674 675 676 677

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
678
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
679 680 681 682 683 684 685 686 687 688 689 690
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
691
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
692
                                main_program=None)
693 694
    """
    load_vars(
695 696 697
        executor,
        dirname=dirname,
        main_program=main_program,
698
        predicate=is_parameter,
699
        filename=filename)
700 701


702
def load_persistables(executor, dirname, main_program=None, filename=None):
703
    """
704 705
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
706 707
    `dirname` or the file `filename`.

708 709 710
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
711 712 713 714 715
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
716 717
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
718 719
                                    program will be used automatically.
                                    Default: None
720
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
721 722 723 724 725 726 727 728 729 730 731 732
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
733
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
734
                                       main_program=None)
735
    """
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
814 815 816 817
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
867 868


869 870 871
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
872 873 874
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
875 876
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
877 878 879
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
880

881
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
882
        out = global_block.var(name)
W
Wu Yi 已提交
883
        global_block._prepend_op(
K
Kexin Zhao 已提交
884 885
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
886
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
887 888 889
            attrs={'col': i})


890 891 892
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
893 894
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
895 896 897
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
898

899
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
900 901 902 903 904 905 906
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


907 908 909 910
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
911
                         main_program=None,
912
                         model_filename=None,
913
                         params_filename=None,
T
tangwei12 已提交
914 915
                         export_for_deployment=True,
                         program_only=False):
916
    """
F
fengjiayi 已提交
917 918
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
919 920 921 922
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
923 924 925

    Args:
        dirname(str): The directory path to save the inference model.
926
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
927
                                     during inference.
928
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
929 930
                                     results.
        executor(Executor): The executor that saves the inference model.
931 932
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
933 934
                                    the default main program will be used.
                                    Default: None.
935 936
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
937
                                  `__model__` will be used.
938 939
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
940
                                   in separate files .
X
Xin Pan 已提交
941 942 943 944 945
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
946
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
947

F
fengjiayi 已提交
948
    Returns:
F
flame 已提交
949
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
950 951 952 953 954 955 956

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
957

958 959
            import paddle.fluid as fluid

F
fengjiayi 已提交
960 961
            path = "./infer_model"

962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
984
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
985
            # and parameters are going to be saved in separate files under folder
986
            # "./infer_model".
987 988

    """
M
minqiyang 已提交
989
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
990
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
991
    elif export_for_deployment:
Q
Qiao Longfei 已提交
992
        if len(feeded_var_names) > 0:
993
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
994
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
995
                    isinstance(name, six.string_types)
996
                    for name in feeded_var_names)):
M
minqiyang 已提交
997
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
998 999

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1000
        target_vars = [target_vars]
X
Xin Pan 已提交
1001
    elif export_for_deployment:
1002 1003
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1004 1005
            raise ValueError("'target_vars' should be a list of Variable.")

1006
    if main_program is None:
Y
Yu Yang 已提交
1007
        main_program = default_main_program()
D
dzhwinter 已提交
1008
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1009 1010 1011 1012 1013 1014
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1015

1016 1017 1018 1019 1020
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1021
        for i, var in enumerate(target_vars):
1022
            if isinstance(var, Variable):
F
flame 已提交
1023 1024 1025
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1026
        target_vars = uniq_target_vars
F
flame 已提交
1027
    target_var_name_list = [var.name for var in target_vars]
1028

1029
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1030
    save_dirname = dirname
1031
    try:
L
lujun 已提交
1032 1033
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1034 1035 1036 1037
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1038 1039 1040 1041
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1042
    model_basename = os.path.join(save_dirname, model_basename)
1043

X
Xin Pan 已提交
1044 1045 1046 1047
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1048 1049 1050

    origin_program = main_program.clone()

X
Xin Pan 已提交
1051
    if export_for_deployment:
X
Xin Pan 已提交
1052 1053
        main_program = main_program.clone()
        global_block = main_program.global_block()
1054
        need_to_remove_op_index = []
X
Xin Pan 已提交
1055 1056 1057
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1058 1059 1060 1061 1062
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1063
        main_program.desc.flush()
X
Xin Pan 已提交
1064

X
Xin Pan 已提交
1065 1066
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1067 1068
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1069 1070 1071 1072 1073
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1074 1075 1076
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1077 1078
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1079

T
tangwei12 已提交
1080 1081 1082 1083 1084 1085
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1086 1087
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1088 1089
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1090

L
lujun 已提交
1091
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1092
    return target_var_name_list
X
fix  
Xin Pan 已提交
1093

1094

1095 1096 1097
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1098 1099
                         params_filename=None,
                         pserver_endpoints=None):
1100
    """
1101 1102 1103 1104
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1105

F
fengjiayi 已提交
1106 1107 1108 1109
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1110
                                  If it is None, the default filename
F
fengjiayi 已提交
1111 1112 1113
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1114 1115 1116
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1117
                                   files, set it as 'None'.
1118 1119 1120 1121
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1122 1123 1124

    Returns:
        tuple: The return of this function is a tuple with three elements:
1125 1126 1127 1128 1129
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1130 1131 1132 1133 1134 1135 1136 1137
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1151
            path = "./infer_model"
1152 1153 1154
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1155 1156
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1157 1158 1159 1160
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1161 1162
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1163
            # if we need lookup table, we will use:
1164
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1165 1166
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1167
                                              pserver_endpoints=endpoints))
1168

1169
            # In this example, the inference program was saved in the
1170
            # "./infer_model/__model__" and parameters were saved in
1171
            # separate files in "./infer_model".
1172 1173
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1174
            # program to get the inference result.
1175
    """
L
lujun 已提交
1176 1177
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1178 1179
        raise ValueError("There is no directory named '%s'", dirname)

1180 1181
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1182
    else:
1183
        model_filename = "__model__"
L
lujun 已提交
1184
    model_filename = os.path.join(load_dirname, model_filename)
1185 1186 1187

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1188

1189
    with open(model_filename, "rb") as f:
1190 1191
        program_desc_str = f.read()

1192
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1193
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1194 1195 1196
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1197
    load_persistables(executor, load_dirname, program, params_filename)
1198

T
tangwei12 已提交
1199
    if pserver_endpoints:
T
tangwei12 已提交
1200
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1201

1202 1203
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1204 1205 1206 1207 1208
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1209 1210


T
tangwei12 已提交
1211 1212 1213
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1214 1215
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1216
    program._sync_with_cpp()
T
tangwei12 已提交
1217
    return program
T
tangwei12 已提交
1218 1219


X
xuwei06 已提交
1220 1221
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1233

F
fengjiayi 已提交
1234 1235
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1236

F
fengjiayi 已提交
1237 1238 1239
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1240

X
xuwei06 已提交
1241
    """
X
xuwei06 已提交
1242 1243
    assert is_parameter(para)

X
xuwei06 已提交
1244 1245 1246 1247 1248 1249 1250 1251
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1252
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1253

F
fengjiayi 已提交
1254 1255 1256 1257 1258 1259 1260
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1261

F
fengjiayi 已提交
1262 1263
    Returns:
        numpy.array: The parameter's values.
1264

F
fengjiayi 已提交
1265 1266 1267 1268 1269
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1270

F
fengjiayi 已提交
1271 1272 1273 1274 1275
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1276 1277
    """
    if program is None:
Y
Yu Yang 已提交
1278
        program = default_main_program()
X
xuwei06 已提交
1279 1280
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)