io.py 51.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
S
sneaxiy 已提交
28 29
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
30
from . import core
31
from .. import compat as cpt
32 33

__all__ = [
T
tangwei12 已提交
34
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
35
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
36
] + reader.__all__
37

38 39 40 41
logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56 57 58
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
59
    """
60 61 62 63
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

77
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
78 79
            res = fluid.io.is_persistable(param)
    """
80
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
81 82
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
83
        return False
84 85 86 87 88 89 90 91
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
92
        dtype=var.dtype,
93 94 95 96 97
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


98 99 100 101 102
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
103
              filename=None):
104
    """
F
fengjiayi 已提交
105 106
    Save variables to the given directory by executor.

107 108 109 110
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
111
    are assigned, the `main_program` and the `predicate` will be ignored.
112

113 114 115
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
116
    use `filename` to specify it.
117

F
fengjiayi 已提交
118 119 120
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
121 122
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
123 124
                                    be used automatically.
                                    Default: None
125
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
126 127
                                   It has a higher priority than the `main_program`.
                                   Default: None
128 129 130 131
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
132 133
                                  `vars` is None).
                                  Default: None
134
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
135 136 137 138 139 140 141 142 143 144 145 146
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

147 148 149 150 151 152 153 154 155 156 157 158
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
159

160
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
161 162 163 164
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
165
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
166
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
167 168 169 170 171
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
172 173
            var_list = [w, b]
            path = "./my_paddle_vars"
174
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
175 176
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
177
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
178
    """
L
lujun 已提交
179
    save_dirname = os.path.normpath(dirname)
180
    if vars is None:
181
        if main_program is None:
Y
Yu Yang 已提交
182
            main_program = default_main_program()
183
        if not isinstance(main_program, Program):
184 185 186 187
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
188
            main_program=main_program,
L
lujun 已提交
189
            dirname=save_dirname,
190
            vars=list(filter(predicate, main_program.list_vars())),
191
            filename=filename)
192 193 194
    else:
        save_program = Program()
        save_block = save_program.global_block()
195

196 197 198 199 200
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

201
        save_var_map = {}
202
        for each_var in vars:
203 204 205
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
206
            new_var = _clone_var_in_block_(save_block, each_var)
207
            if filename is None:
208 209 210 211
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
212 213 214
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
215 216 217
            else:
                save_var_map[new_var.name] = new_var

218
        if filename is not None:
219 220 221 222
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

223
            save_block.append_op(
224 225
                type='save_combine',
                inputs={'X': save_var_list},
226
                outputs={},
L
lujun 已提交
227
                attrs={'file_path': os.path.join(save_dirname, filename)})
228

229 230 231
        executor.run(save_program)


232
def save_params(executor, dirname, main_program=None, filename=None):
233
    """
F
fengjiayi 已提交
234 235 236
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

237 238 239
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
240 241
    the file name.

242 243 244
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
F
fengjiayi 已提交
245 246 247 248 249 250 251 252 253
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
254 255
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
256 257 258 259 260 261 262 263 264 265 266 267
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
268
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
269
                                 main_program=None)
270 271 272 273
    """
    save_vars(
        executor,
        dirname=dirname,
274
        main_program=main_program,
275
        vars=None,
276
        predicate=is_parameter,
277
        filename=filename)
278 279


280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


460
def save_persistables(executor, dirname, main_program=None, filename=None):
461
    """
462 463
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
464 465
    or file `filename`.

466 467 468
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
469 470 471 472 473
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
474 475
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
476 477
                                    program will be used automatically.
                                    Default: None
478
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
479 480 481 482 483 484 485 486 487 488 489
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
490
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
491
            prog = fluid.default_main_program()
492
            fluid.io.save_persistables(executor=exe, dirname=param_path,
493
                                       main_program=prog)
494
    """
495 496 497 498 499 500 501 502 503 504 505 506 507

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
508 509


510 511 512 513 514
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
515
              filename=None):
516
    """
F
fengjiayi 已提交
517 518
    Load variables from the given directory by executor.

519 520 521 522
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
523 524
    are assigned, the `main_program` and the `predicate` will be ignored.

525 526 527
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
528
    use `filename` to specify it.
529

F
fengjiayi 已提交
530 531 532
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
533 534
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
535 536
                                    be used automatically.
                                    Default: None
537
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
538 539
                                   It has a higher priority than the `main_program`.
                                   Default: None
540 541 542 543
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
544 545
                                  `vars` is None).
                                  Default: None
546
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
547 548 549 550 551 552 553 554 555 556 557 558
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

559 560 561 562 563 564 565 566 567 568 569 570
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
571

572
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
573 574 575 576
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
577 578 579
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
580
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
581 582 583 584
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
585 586 587 588
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
589
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
590
                               filename="vars_file")
591 592
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
593
    """
L
lujun 已提交
594
    load_dirname = os.path.normpath(dirname)
595
    if vars is None:
596
        if main_program is None:
Y
Yu Yang 已提交
597
            main_program = default_main_program()
598
        if not isinstance(main_program, Program):
599 600 601 602
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
603
            dirname=load_dirname,
T
tangwei12 已提交
604
            main_program=main_program,
605
            vars=list(filter(predicate, main_program.list_vars())),
606
            filename=filename)
607 608 609
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
610

611 612 613 614 615
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

616
        load_var_map = {}
617 618
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
619 620
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
621
            new_var = _clone_var_in_block_(load_block, each_var)
622
            if filename is None:
623 624 625 626
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
627 628 629
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
630 631 632
            else:
                load_var_map[new_var.name] = new_var

633
        if filename is not None:
634 635 636 637
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

638
            load_block.append_op(
639
                type='load_combine',
640
                inputs={},
641
                outputs={"Out": load_var_list},
L
lujun 已提交
642
                attrs={'file_path': os.path.join(load_dirname, filename)})
643 644 645
        executor.run(load_prog)


646
def load_params(executor, dirname, main_program=None, filename=None):
647
    """
F
fengjiayi 已提交
648
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
649
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
650 651
    the file `filename`.

652 653 654
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
655 656
    `filename` to specify the file name.

657 658 659 660
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
F
fengjiayi 已提交
661 662 663 664 665 666 667 668

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
669
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
670 671 672 673 674 675 676 677 678 679 680 681
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
682
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
683
                                main_program=None)
684 685
    """
    load_vars(
686 687 688
        executor,
        dirname=dirname,
        main_program=main_program,
689
        predicate=is_parameter,
690
        filename=filename)
691 692


693
def load_persistables(executor, dirname, main_program=None, filename=None):
694
    """
695 696
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
697 698
    `dirname` or the file `filename`.

699 700 701
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
702 703 704 705 706
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
707 708
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
709 710
                                    program will be used automatically.
                                    Default: None
711
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
712 713 714 715 716 717 718 719 720 721 722 723
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
724
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
725
                                       main_program=None)
726
    """
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
805 806 807 808
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
858 859


860 861 862
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
863 864 865
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
866 867
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
868 869 870
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
871

872
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
873
        out = global_block.var(name)
W
Wu Yi 已提交
874
        global_block._prepend_op(
K
Kexin Zhao 已提交
875 876
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
877
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
878 879 880
            attrs={'col': i})


881 882 883
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
884 885
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
886 887 888
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
889

890
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
891 892 893 894 895 896 897
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


898 899 900 901
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
902
                         main_program=None,
903
                         model_filename=None,
904 905
                         params_filename=None,
                         export_for_deployment=True):
906
    """
F
fengjiayi 已提交
907 908 909 910 911
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
912
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
913
                                     during inference.
914
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
915 916
                                     results.
        executor(Executor): The executor that saves the inference model.
917 918
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
919 920
                                    the default main program will be used.
                                    Default: None.
921 922
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
923
                                  `__model__` will be used.
924 925
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
926
                                   in separate files .
X
Xin Pan 已提交
927 928 929 930 931
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
932

F
fengjiayi 已提交
933
    Returns:
F
flame 已提交
934
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
935 936 937 938 939 940 941

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
942

943 944
            import paddle.fluid as fluid

F
fengjiayi 已提交
945 946
            path = "./infer_model"

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
969
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
970
            # and parameters are going to be saved in separate files under folder
971
            # "./infer_model".
972 973

    """
M
minqiyang 已提交
974
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
975
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
976
    elif export_for_deployment:
Q
Qiao Longfei 已提交
977
        if len(feeded_var_names) > 0:
978
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
979
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
980
                    isinstance(name, six.string_types)
981
                    for name in feeded_var_names)):
M
minqiyang 已提交
982
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
983 984

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
985
        target_vars = [target_vars]
X
Xin Pan 已提交
986
    elif export_for_deployment:
987 988
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
989 990
            raise ValueError("'target_vars' should be a list of Variable.")

991
    if main_program is None:
Y
Yu Yang 已提交
992
        main_program = default_main_program()
D
dzhwinter 已提交
993
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
994 995 996 997 998 999
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1000

1001 1002 1003 1004 1005
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1006
        for i, var in enumerate(target_vars):
1007
            if isinstance(var, Variable):
F
flame 已提交
1008 1009 1010
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1011
        target_vars = uniq_target_vars
F
flame 已提交
1012
    target_var_name_list = [var.name for var in target_vars]
1013

1014
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1015
    save_dirname = dirname
1016
    try:
L
lujun 已提交
1017 1018
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1019 1020 1021 1022
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1023 1024 1025 1026
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1027
    model_basename = os.path.join(save_dirname, model_basename)
1028

X
Xin Pan 已提交
1029 1030 1031 1032
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1033 1034 1035

    origin_program = main_program.clone()

X
Xin Pan 已提交
1036
    if export_for_deployment:
X
Xin Pan 已提交
1037 1038
        main_program = main_program.clone()
        global_block = main_program.global_block()
1039
        need_to_remove_op_index = []
X
Xin Pan 已提交
1040 1041 1042
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1043 1044 1045 1046 1047
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1048
        main_program.desc.flush()
X
Xin Pan 已提交
1049

X
Xin Pan 已提交
1050 1051
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1052 1053
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1054 1055 1056 1057 1058
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1059 1060 1061
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1062 1063
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1064

1065 1066
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1067 1068
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1069

L
lujun 已提交
1070
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1071
    return target_var_name_list
X
fix  
Xin Pan 已提交
1072

1073

1074 1075 1076
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1077 1078
                         params_filename=None,
                         pserver_endpoints=None):
1079 1080 1081
    """
    Load inference model from a directory

F
fengjiayi 已提交
1082 1083 1084 1085
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1086
                                  If it is None, the default filename
F
fengjiayi 已提交
1087 1088 1089
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1090 1091 1092
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1093
                                   files, set it as 'None'.
1094 1095 1096 1097
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1098 1099 1100

    Returns:
        tuple: The return of this function is a tuple with three elements:
1101 1102 1103 1104 1105
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1106 1107 1108 1109 1110 1111 1112 1113
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1127
            path = "./infer_model"
1128 1129 1130 1131
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
            [inference_program, feed_target_names, fetch_targets] = \
F
fengjiayi 已提交
1132 1133 1134 1135 1136
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1137 1138
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1139
            # if we need lookup table, we will use:
1140 1141 1142 1143
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = \
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
                                              pserver_endpoints=endpoints)
1144

1145
            # In this example, the inference program was saved in the
1146
            # "./infer_model/__model__" and parameters were saved in
1147
            # separate files in "./infer_model".
1148 1149
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1150
            # program to get the inference result.
1151
    """
L
lujun 已提交
1152 1153
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1154 1155
        raise ValueError("There is no directory named '%s'", dirname)

1156 1157
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1158
    else:
1159
        model_filename = "__model__"
L
lujun 已提交
1160
    model_filename = os.path.join(load_dirname, model_filename)
1161 1162 1163

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1164

1165
    with open(model_filename, "rb") as f:
1166 1167
        program_desc_str = f.read()

1168
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1169
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1170 1171 1172
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1173
    load_persistables(executor, load_dirname, program, params_filename)
1174

T
tangwei12 已提交
1175
    if pserver_endpoints:
T
tangwei12 已提交
1176
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1177

1178 1179
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1180 1181 1182 1183 1184
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1185 1186


T
tangwei12 已提交
1187 1188 1189
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1190 1191
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1192
    program._sync_with_cpp()
T
tangwei12 已提交
1193
    return program
T
tangwei12 已提交
1194 1195


X
xuwei06 已提交
1196 1197
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1209

F
fengjiayi 已提交
1210 1211
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1212

F
fengjiayi 已提交
1213 1214 1215
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1216

X
xuwei06 已提交
1217
    """
X
xuwei06 已提交
1218 1219
    assert is_parameter(para)

X
xuwei06 已提交
1220 1221 1222 1223 1224 1225 1226 1227
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1228
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1229

F
fengjiayi 已提交
1230 1231 1232 1233 1234 1235 1236
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1237

F
fengjiayi 已提交
1238 1239
    Returns:
        numpy.array: The parameter's values.
1240

F
fengjiayi 已提交
1241 1242 1243 1244 1245
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1246

F
fengjiayi 已提交
1247 1248 1249 1250 1251
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1252 1253
    """
    if program is None:
Y
Yu Yang 已提交
1254
        program = default_main_program()
X
xuwei06 已提交
1255 1256
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)