Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
101f74cb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
101f74cb
编写于
6月 12, 2019
作者:
T
tangwei12
提交者:
GitHub
6月 12, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix save/load in fleet (#17675)
* fix save/load in Fleet * add UT framework of Fleet
上级
f1d458da
变更
15
隐藏空白更改
内联
并排
Showing
15 changed file
with
664 addition
and
37 deletion
+664
-37
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/distributed/request_handler_impl.cc
paddle/fluid/operators/distributed/request_handler_impl.cc
+1
-1
python/paddle/fluid/incubate/fleet/base/fleet_base.py
python/paddle/fluid/incubate/fleet/base/fleet_base.py
+6
-7
python/paddle/fluid/incubate/fleet/base/role_maker.py
python/paddle/fluid/incubate/fleet/base/role_maker.py
+3
-4
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+3
-3
python/paddle/fluid/incubate/fleet/parameter_server/distribute_transpiler/__init__.py
.../fleet/parameter_server/distribute_transpiler/__init__.py
+54
-13
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
...e/fluid/incubate/fleet/parameter_server/pslib/__init__.py
+5
-5
python/paddle/fluid/incubate/fleet/tests/fleet_deep_ctr.py
python/paddle/fluid/incubate/fleet/tests/fleet_deep_ctr.py
+1
-1
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+9
-1
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ctr_dataset_reader.py
python/paddle/fluid/tests/unittests/ctr_dataset_reader.py
+100
-0
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
+163
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
+263
-0
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
+53
-0
python/setup.py.in
python/setup.py.in
+1
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
101f74cb
...
...
@@ -53,7 +53,7 @@ paddle.fluid.io.save_persistables (ArgSpec(args=['executor', 'dirname', 'main_pr
paddle.fluid.io.load_vars (ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '1bb9454cf09d71f190bb51550c5a3ac9'))
paddle.fluid.io.load_params (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '944291120d37bdb037a689d2c86d0a6e'))
paddle.fluid.io.load_persistables (ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None)), ('document', '28df5bfe26ca7a077f91156abb0fe6d2'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'
], varargs=None, keywords=None, defaults=(None, None, None, True)), ('document', '89539e459eb959145f15c9c3e38fa97c
'))
paddle.fluid.io.save_inference_model (ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename', 'export_for_deployment'
, 'program_only'], varargs=None, keywords=None, defaults=(None, None, None, True, False)), ('document', 'fc82bfd137a9b1ab8ebd1651bd35b6e5
'))
paddle.fluid.io.load_inference_model (ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename', 'pserver_endpoints'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '2f54d7c206b62f8c10f4f9d78c731cfd'))
paddle.fluid.io.PyReader.__init__ (ArgSpec(args=['self', 'feed_list', 'capacity', 'use_double_buffer', 'iterable', 'return_list'], varargs=None, keywords=None, defaults=(None, None, True, True, False)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.io.PyReader.decorate_batch_generator (ArgSpec(args=['self', 'reader', 'places'], varargs=None, keywords=None, defaults=(None,)), ('document', '4a072de39998ee4e0de33fcec11325a6'))
...
...
paddle/fluid/operators/distributed/request_handler_impl.cc
浏览文件 @
101f74cb
...
...
@@ -104,7 +104,7 @@ bool RequestGetHandler::Handle(const std::string& varname,
}
else
{
if
(
varname
!=
FETCH_BARRIER_MESSAGE
&&
varname
!=
COMPLETE_MESSAGE
)
{
if
(
enable_dc_asgd_
)
{
// NOTE: the format is determined by distribute
d
_transpiler.py
// NOTE: the format is determined by distribute_transpiler.py
std
::
string
param_bak_name
=
string
::
Sprintf
(
"%s.trainer_%d_bak"
,
varname
,
trainer_id
);
VLOG
(
3
)
<<
"getting "
<<
param_bak_name
<<
" trainer_id "
<<
trainer_id
;
...
...
python/paddle/fluid/incubate/fleet/base/fleet_base.py
浏览文件 @
101f74cb
...
...
@@ -15,23 +15,22 @@
from
__future__
import
print_function
import
abc
from
enum
import
Enum
import
paddle.fluid
as
fluid
from
paddle.fluid.executor
import
Executor
from
paddle.fluid.optimizer
import
SGD
from
role_maker
import
MPISymetricRoleMaker
from
role_maker
import
RoleMakerBase
from
role_maker
import
UserDefinedRoleMaker
from
paddle.fluid.incubate.fleet.base.
role_maker
import
MPISymetricRoleMaker
from
paddle.fluid.incubate.fleet.base.
role_maker
import
RoleMakerBase
from
paddle.fluid.incubate.fleet.base.
role_maker
import
UserDefinedRoleMaker
class
Mode
(
Enum
)
:
class
Mode
:
"""
There are various mode for fleet, each of them is designed for different model.
"""
TRANSPILER
=
1
,
PSLIB
=
2
,
TRANSPILER
=
1
PSLIB
=
2
COLLECTIVE
=
3
...
...
python/paddle/fluid/incubate/fleet/base/role_maker.py
浏览文件 @
101f74cb
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
from
__future__
import
print_function
from
enum
import
Enum
__all__
=
[
'Role'
,
'RoleMakerBase'
,
'MPISymetricRoleMaker'
,
'UserDefinedRoleMaker'
,
...
...
@@ -21,8 +20,8 @@ __all__ = [
]
class
Role
(
Enum
)
:
WORKER
=
1
,
class
Role
:
WORKER
=
1
SERVER
=
2
...
...
@@ -313,7 +312,7 @@ class UserDefinedRoleMaker(RoleMakerBase):
raise
ValueError
(
"current_id must be gather or equal 0"
)
self
.
_current_id
=
current_id
if
not
isinstance
(
role
,
Role
)
:
if
role
!=
Role
.
WORKER
and
role
!=
Role
.
SERVER
:
raise
TypeError
(
"role must be as Role"
)
else
:
self
.
_role
=
role
...
...
python/paddle/fluid/incubate/fleet/collective/__init__.py
浏览文件 @
101f74cb
...
...
@@ -17,9 +17,9 @@ import paddle.fluid as fluid
import
paddle.fluid.io
as
io
import
paddle.fluid.transpiler.distribute_transpiler
as
dist_transpiler
from
.
.base.fleet_base
import
Fleet
from
.
.base.fleet_base
import
Mode
from
.
.base.fleet_base
import
DistributedOptimizer
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Fleet
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Mode
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
DistributedOptimizer
class
Collective
(
Fleet
):
...
...
python/paddle/fluid/incubate/fleet/parameter_server/distribute
d
_transpiler/__init__.py
→
python/paddle/fluid/incubate/fleet/parameter_server/distribute_transpiler/__init__.py
浏览文件 @
101f74cb
...
...
@@ -15,14 +15,16 @@ import os
import
paddle.fluid.io
as
io
from
paddle.fluid.communicator
import
Communicator
from
paddle.fluid.framework
import
default_main_program
from
paddle.fluid.framework
import
default_startup_program
from
paddle.fluid.framework
import
Program
from
paddle.fluid.optimizer
import
Optimizer
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspiler
as
OriginTranspiler
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspilerConfig
from
..
.base.fleet_base
import
DistributedOptimizer
from
..
.base.fleet_base
import
Fleet
from
..
.base.fleet_base
import
Mode
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
DistributedOptimizer
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Fleet
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Mode
class
DistributedTranspiler
(
Fleet
):
...
...
@@ -34,6 +36,7 @@ class DistributedTranspiler(Fleet):
super
(
DistributedTranspiler
,
self
).
__init__
(
Mode
.
TRANSPILER
)
self
.
_transpile_config
=
None
self
.
_transpiler
=
None
self
.
_origin_program
=
None
self
.
startup_program
=
None
self
.
main_program
=
None
self
.
_communicator
=
None
...
...
@@ -75,8 +78,7 @@ class DistributedTranspiler(Fleet):
if
not
os
.
path
.
isdir
(
model_dir
):
raise
ValueError
(
"There is no directory named '%s'"
,
model_dir
)
io
.
load_persistables
(
self
.
_executor
,
model_dir
,
self
.
startup_program
)
io
.
load_persistables
(
self
.
_executor
,
model_dir
,
self
.
main_program
)
def
run_server
(
self
):
"""
...
...
@@ -137,9 +139,31 @@ class DistributedTranspiler(Fleet):
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
"""
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
main_program
,
None
,
None
,
export_for_deployment
)
if
main_program
is
not
None
:
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
main_program
,
None
,
None
,
export_for_deployment
)
else
:
io
.
save_inference_model
(
dirname
,
feeded_var_names
,
target_vars
,
executor
,
self
.
_origin_program
,
None
,
None
,
export_for_deployment
,
model_only
=
True
)
model_basename
=
"__model__"
model_filename
=
os
.
path
.
join
(
dirname
,
model_basename
)
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
program
=
Program
.
parse_from_string
(
program_desc_str
)
program
.
_copy_dist_param_info_from
(
self
.
main_program
)
self
.
save_persistables
(
executor
,
dirname
,
program
)
def
save_persistables
(
self
,
executor
,
dirname
,
main_program
=
None
):
"""
...
...
@@ -152,6 +176,14 @@ class DistributedTranspiler(Fleet):
files, set `filename` None; if you would like to save all variables in a
single file, use `filename` to specify the file name.
"""
if
main_program
is
None
:
main_program
=
self
.
main_program
if
not
main_program
.
_is_distributed
:
raise
ValueError
(
"main_program is for local, may not use fleet.save_persistables"
)
io
.
save_persistables
(
executor
,
dirname
,
main_program
,
None
)
def
_transpile
(
self
,
config
):
...
...
@@ -162,18 +194,27 @@ class DistributedTranspiler(Fleet):
if
not
config
.
sync_mode
:
config
.
runtime_split_send_recv
=
True
# _origin_program is a deep copy for default_main_program, for inference
self
.
_origin_program
=
default_main_program
().
clone
(
for_test
=
False
)
self
.
_transpile_config
=
config
self
.
_transpiler
=
OriginTranspiler
(
config
)
self
.
_transpiler
.
transpile
(
trainer_id
=
fleet
.
worker_index
(),
pservers
=
fleet
.
server_endpoints
(
to_string
=
True
),
trainers
=
fleet
.
worker_num
(),
sync_mode
=
config
.
sync_mode
)
if
self
.
is_worker
():
self
.
_transpiler
.
transpile
(
trainer_id
=
fleet
.
worker_index
(),
pservers
=
fleet
.
server_endpoints
(
to_string
=
True
),
trainers
=
fleet
.
worker_num
(),
sync_mode
=
config
.
sync_mode
)
self
.
main_program
=
self
.
_transpiler
.
get_trainer_program
()
self
.
startup_program
=
default_startup_program
()
else
:
self
.
_transpiler
.
transpile
(
trainer_id
=
fleet
.
worker_index
(),
pservers
=
fleet
.
server_endpoints
(
to_string
=
True
),
trainers
=
fleet
.
worker_num
(),
sync_mode
=
config
.
sync_mode
,
current_endpoint
=
self
.
server_endpoints
()[
self
.
server_index
()])
self
.
main_program
,
self
.
startup_program
=
\
self
.
_transpiler
.
get_pserver_programs
(
self
.
server_endpoints
()[
self
.
server_index
()])
...
...
python/paddle/fluid/incubate/fleet/parameter_server/pslib/__init__.py
浏览文件 @
101f74cb
...
...
@@ -12,16 +12,16 @@
# See the License for the specific language governing permissions and
import
sys
from
.
optimizer_factory
import
*
from
optimizer_factory
import
*
from
google.protobuf
import
text_format
import
paddle.fluid
as
fluid
from
paddle.fluid.framework
import
Program
from
..
.base.fleet_base
import
Fleet
from
..
.base.fleet_base
import
Mode
from
...base.role_maker
import
MPISymetricRoleMak
er
from
...base.fleet_base
import
DistributedOptimiz
er
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Fleet
from
paddle.fluid.incubate.fleet
.base.fleet_base
import
Mode
from
paddle.fluid.incubate.fleet.base.fleet_base
import
DistributedOptimiz
er
from
paddle.fluid.incubate.fleet.base.role_maker
import
MPISymetricRoleMak
er
class
PSLib
(
Fleet
):
...
...
python/paddle/fluid/incubate/fleet/tests/fleet_deep_ctr.py
浏览文件 @
101f74cb
...
...
@@ -18,7 +18,7 @@ import time
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute
d
_transpiler
import
fleet
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspilerConfig
from
paddle.fluid.log_helper
import
get_logger
...
...
python/paddle/fluid/io.py
浏览文件 @
101f74cb
...
...
@@ -907,7 +907,8 @@ def save_inference_model(dirname,
main_program
=
None
,
model_filename
=
None
,
params_filename
=
None
,
export_for_deployment
=
True
):
export_for_deployment
=
True
,
program_only
=
False
):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
...
...
@@ -938,6 +939,7 @@ def save_inference_model(dirname,
more information will be stored for flexible
optimization and re-training. Currently, only
True is supported.
program_only(bool): If True, It will save inference program only, and do not save params of Program.
Returns:
target_var_name_list(list): The fetch variables' name list
...
...
@@ -1071,6 +1073,12 @@ def save_inference_model(dirname,
with
open
(
model_basename
+
".main_program"
,
"wb"
)
as
f
:
f
.
write
(
main_program
.
desc
.
serialize_to_string
())
if
program_only
:
warnings
.
warn
(
"save_inference_model specified the param `program_only` to True, It will not save params of Program."
)
return
target_var_name_list
main_program
.
_copy_dist_param_info_from
(
origin_program
)
if
params_filename
is
not
None
:
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
101f74cb
...
...
@@ -17,6 +17,7 @@ if(NOT WITH_DISTRIBUTE)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_text_classification
)
LIST
(
REMOVE_ITEM TEST_OPS test_nce_remote_table_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_hsigmoid_remote_table_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_fleet_ctr
)
endif
(
NOT WITH_DISTRIBUTE
)
LIST
(
REMOVE_ITEM TEST_OPS test_launch
)
...
...
python/paddle/fluid/tests/unittests/ctr_dataset_reader.py
0 → 100644
浏览文件 @
101f74cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
logging
import
tarfile
import
os
import
paddle
import
paddle.fluid.incubate.data_generator
as
data_generator
logging
.
basicConfig
()
logger
=
logging
.
getLogger
(
"paddle"
)
logger
.
setLevel
(
logging
.
INFO
)
DATA_URL
=
"http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz"
DATA_MD5
=
"c11df99fbd14e53cd4bfa6567344b26e"
"""
avazu_ctr_data/train.txt
avazu_ctr_data/infer.txt
avazu_ctr_data/test.txt
avazu_ctr_data/data.meta.txt
"""
def
download_file
():
file_name
=
"avazu_ctr_data"
path
=
paddle
.
dataset
.
common
.
download
(
DATA_URL
,
file_name
,
DATA_MD5
)
dir_name
=
os
.
path
.
dirname
(
path
)
text_file_dir_name
=
os
.
path
.
join
(
dir_name
,
file_name
)
if
not
os
.
path
.
exists
(
text_file_dir_name
):
tar
=
tarfile
.
open
(
path
,
"r:gz"
)
tar
.
extractall
(
dir_name
)
return
text_file_dir_name
def
load_dnn_input_record
(
sent
):
return
list
(
map
(
int
,
sent
.
split
()))
def
load_lr_input_record
(
sent
):
res
=
[]
for
_
in
[
x
.
split
(
':'
)
for
x
in
sent
.
split
()]:
res
.
append
(
int
(
_
[
0
]))
return
res
class
DatasetCtrReader
(
data_generator
.
MultiSlotDataGenerator
):
def
generate_sample
(
self
,
line
):
def
iter
():
fs
=
line
.
strip
().
split
(
'
\t
'
)
dnn_input
=
load_dnn_input_record
(
fs
[
0
])
lr_input
=
load_lr_input_record
(
fs
[
1
])
click
=
[
int
(
fs
[
2
])]
yield
(
"dnn_data"
,
dnn_input
),
\
(
"lr_data"
,
lr_input
),
\
(
"click"
,
click
)
return
iter
def
prepare_data
():
"""
load data meta info from path, return (dnn_input_dim, lr_input_dim)
"""
file_dir_name
=
download_file
()
meta_file_path
=
os
.
path
.
join
(
file_dir_name
,
'data.meta.txt'
)
train_file_path
=
os
.
path
.
join
(
file_dir_name
,
'train.txt'
)
with
open
(
meta_file_path
,
"r"
)
as
f
:
lines
=
f
.
readlines
()
err_info
=
"wrong meta format"
assert
len
(
lines
)
==
2
,
err_info
assert
'dnn_input_dim:'
in
lines
[
0
]
and
'lr_input_dim:'
in
lines
[
1
],
err_info
res
=
map
(
int
,
[
_
.
split
(
':'
)[
1
]
for
_
in
lines
])
res
=
list
(
res
)
dnn_input_dim
=
res
[
0
]
lr_input_dim
=
res
[
1
]
logger
.
info
(
'dnn input dim: %d'
%
dnn_input_dim
)
logger
.
info
(
'lr input dim: %d'
%
lr_input_dim
)
return
dnn_input_dim
,
lr_input_dim
,
train_file_path
if
__name__
==
"__main__"
:
pairwise_reader
=
DatasetCtrReader
()
pairwise_reader
.
run_from_stdin
()
python/paddle/fluid/tests/unittests/dist_fleet_ctr.py
0 → 100644
浏览文件 @
101f74cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
shutil
import
tempfile
import
time
import
paddle.fluid
as
fluid
import
os
import
ctr_dataset_reader
from
test_dist_fleet_base
import
runtime_main
,
FleetDistRunnerBase
# Fix seed for test
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
class
TestDistCTR2x2
(
FleetDistRunnerBase
):
def
net
(
self
,
batch_size
=
4
,
lr
=
0.01
):
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
""" network definition """
dnn_data
=
fluid
.
layers
.
data
(
name
=
"dnn_data"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
,
append_batch_size
=
False
)
lr_data
=
fluid
.
layers
.
data
(
name
=
"lr_data"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
,
append_batch_size
=
False
)
label
=
fluid
.
layers
.
data
(
name
=
"click"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
0
,
append_batch_size
=
False
)
datas
=
[
dnn_data
,
lr_data
,
label
]
# build dnn model
dnn_layer_dims
=
[
128
,
64
,
32
,
1
]
dnn_embedding
=
fluid
.
layers
.
embedding
(
is_distributed
=
False
,
input
=
dnn_data
,
size
=
[
dnn_input_dim
,
dnn_layer_dims
[
0
]],
param_attr
=
fluid
.
ParamAttr
(
name
=
"deep_embedding"
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)),
is_sparse
=
True
)
dnn_pool
=
fluid
.
layers
.
sequence_pool
(
input
=
dnn_embedding
,
pool_type
=
"sum"
)
dnn_out
=
dnn_pool
for
i
,
dim
in
enumerate
(
dnn_layer_dims
[
1
:]):
fc
=
fluid
.
layers
.
fc
(
input
=
dnn_out
,
size
=
dim
,
act
=
"relu"
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)),
name
=
'dnn-fc-%d'
%
i
)
dnn_out
=
fc
# build lr model
lr_embbding
=
fluid
.
layers
.
embedding
(
is_distributed
=
False
,
input
=
lr_data
,
size
=
[
lr_input_dim
,
1
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"wide_embedding"
,
initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.01
)),
is_sparse
=
True
)
lr_pool
=
fluid
.
layers
.
sequence_pool
(
input
=
lr_embbding
,
pool_type
=
"sum"
)
merge_layer
=
fluid
.
layers
.
concat
(
input
=
[
dnn_out
,
lr_pool
],
axis
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
merge_layer
,
size
=
2
,
act
=
'softmax'
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
auc_var
,
batch_auc_var
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
predict
,
label
=
label
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
self
.
feeds
=
datas
self
.
train_file_path
=
train_file_path
self
.
avg_cost
=
avg_cost
self
.
predict
=
predict
return
avg_cost
def
check_model_right
(
self
,
dirname
):
model_filename
=
os
.
path
.
join
(
dirname
,
"__model__"
)
with
open
(
model_filename
,
"rb"
)
as
f
:
program_desc_str
=
f
.
read
()
program
=
fluid
.
Program
.
parse_from_string
(
program_desc_str
)
with
open
(
os
.
path
.
join
(
dirname
,
"__model__.proto"
),
"w"
)
as
wn
:
wn
.
write
(
str
(
program
))
def
do_training
(
self
,
fleet
):
dnn_input_dim
,
lr_input_dim
,
train_file_path
=
ctr_dataset_reader
.
prepare_data
(
)
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
fleet
.
init_worker
()
exe
.
run
(
fleet
.
startup_program
)
thread_num
=
2
filelist
=
[]
for
_
in
range
(
thread_num
):
filelist
.
append
(
train_file_path
)
# config dataset
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
128
)
dataset
.
set_use_var
(
self
.
feeds
)
pipe_command
=
'python ctr_dataset_reader.py'
dataset
.
set_pipe_command
(
pipe_command
)
dataset
.
set_filelist
(
filelist
)
dataset
.
set_thread
(
thread_num
)
for
epoch_id
in
range
(
2
):
pass_start
=
time
.
time
()
dataset
.
set_filelist
(
filelist
)
exe
.
train_from_dataset
(
program
=
fleet
.
main_program
,
dataset
=
dataset
,
fetch_list
=
[
self
.
avg_cost
],
fetch_info
=
[
"cost"
],
print_period
=
100
,
debug
=
False
)
pass_time
=
time
.
time
()
-
pass_start
model_dir
=
tempfile
.
mkdtemp
()
fleet
.
save_inference_model
(
exe
,
model_dir
,
[
feed
.
name
for
feed
in
self
.
feeds
],
self
.
avg_cost
)
self
.
check_model_right
(
model_dir
)
shutil
.
rmtree
(
model_dir
)
fleet
.
stop_worker
()
if
__name__
==
"__main__"
:
runtime_main
(
TestDistCTR2x2
)
python/paddle/fluid/tests/unittests/test_dist_fleet_base.py
0 → 100644
浏览文件 @
101f74cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
argparse
import
os
import
pickle
import
subprocess
import
sys
import
time
import
traceback
import
math
import
collections
import
socket
from
contextlib
import
closing
import
six
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.incubate.fleet.base.role_maker
as
role_maker
from
paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler
import
fleet
from
paddle.fluid.transpiler.distribute_transpiler
import
DistributeTranspilerConfig
RUN_STEP
=
5
LEARNING_RATE
=
0.01
class
FleetDistRunnerBase
(
object
):
def
run_pserver
(
self
,
args
):
if
args
.
role
.
upper
()
!=
"PSERVER"
:
raise
ValueError
(
"args role must be PSERVER"
)
role
=
role_maker
.
UserDefinedRoleMaker
(
current_id
=
args
.
current_id
,
role
=
role_maker
.
Role
.
SERVER
,
worker_num
=
args
.
trainers
,
server_endpoints
=
args
.
endpoints
.
split
(
","
))
fleet
.
init
(
role
)
strategy
=
DistributeTranspilerConfig
()
strategy
.
sync_mode
=
args
.
sync_mode
avg_cost
=
self
.
net
()
optimizer
=
fluid
.
optimizer
.
SGD
(
LEARNING_RATE
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
optimizer
.
minimize
(
avg_cost
)
fleet
.
init_server
()
fleet
.
run_server
()
def
run_trainer
(
self
,
args
):
if
args
.
role
.
upper
()
!=
"TRAINER"
:
raise
ValueError
(
"args role must be TRAINER"
)
role
=
role_maker
.
UserDefinedRoleMaker
(
current_id
=
args
.
current_id
,
role
=
role_maker
.
Role
.
WORKER
,
worker_num
=
args
.
trainers
,
server_endpoints
=
args
.
endpoints
.
split
(
","
))
fleet
.
init
(
role
)
strategy
=
DistributeTranspilerConfig
()
strategy
.
sync_mode
=
args
.
sync_mode
avg_cost
=
self
.
net
()
optimizer
=
fluid
.
optimizer
.
SGD
(
LEARNING_RATE
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
)
optimizer
.
minimize
(
avg_cost
)
self
.
do_training
(
fleet
)
out
=
self
.
do_training
(
fleet
)
def
net
(
self
,
batch_size
=
4
,
lr
=
0.01
):
raise
NotImplementedError
(
"get_model should be implemented by child classes."
)
def
do_training
(
self
,
fleet
):
raise
NotImplementedError
(
"do_training should be implemented by child classes."
)
class
TestFleetBase
(
unittest
.
TestCase
):
def
_setup_config
(
self
):
raise
NotImplementedError
(
"tests should have _setup_config implemented"
)
def
setUp
(
self
):
self
.
_sync_mode
=
True
self
.
_trainers
=
2
self
.
_pservers
=
2
self
.
_port_set
=
set
()
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
())
self
.
_python_interp
=
sys
.
executable
self
.
_setup_config
()
def
_find_free_port
(
self
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
))
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
while
True
:
port
=
__free_port
()
if
port
not
in
self
.
_port_set
:
self
.
_port_set
.
add
(
port
)
return
port
def
_start_pserver
(
self
,
cmd
,
required_envs
):
ps0_cmd
,
ps1_cmd
=
cmd
.
format
(
0
),
cmd
.
format
(
1
)
ps0_pipe
=
open
(
"/tmp/ps0_err.log"
,
"wb+"
)
ps1_pipe
=
open
(
"/tmp/ps1_err.log"
,
"wb+"
)
ps0_proc
=
subprocess
.
Popen
(
ps0_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps0_pipe
,
env
=
required_envs
)
ps1_proc
=
subprocess
.
Popen
(
ps1_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps1_pipe
,
env
=
required_envs
)
return
ps0_proc
,
ps1_proc
,
ps0_pipe
,
ps1_pipe
def
_start_trainer
(
self
,
cmd
,
required_envs
):
tr0_cmd
,
tr1_cmd
=
cmd
.
format
(
0
),
cmd
.
format
(
1
)
tr0_pipe
=
open
(
"/tmp/tr0_err.log"
,
"wb+"
)
tr1_pipe
=
open
(
"/tmp/tr1_err.log"
,
"wb+"
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
required_envs
)
tr1_proc
=
subprocess
.
Popen
(
tr1_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
required_envs
)
return
tr0_proc
,
tr1_proc
,
tr0_pipe
,
tr1_pipe
def
_run_cluster
(
self
,
model
,
envs
):
env
=
{
'CPU_NUM'
:
'1'
}
env
.
update
(
envs
)
tr_cmd
=
"{0} {1} --role trainer --endpoints {2} --current_id {{}} --trainers {3}"
.
format
(
self
.
_python_interp
,
model
,
self
.
_ps_endpoints
,
self
.
_trainers
)
ps_cmd
=
"{0} {1} --role pserver --endpoints {2} --current_id {{}} --trainers {3}"
.
format
(
self
.
_python_interp
,
model
,
self
.
_ps_endpoints
,
self
.
_trainers
)
if
self
.
_sync_mode
:
tr_cmd
+=
" --sync_mode"
ps_cmd
+=
" --sync_mode"
# Run dist train to compare with local results
ps0
,
ps1
,
ps0_pipe
,
ps1_pipe
=
self
.
_start_pserver
(
ps_cmd
,
env
)
tr0
,
tr1
,
tr0_pipe
,
tr1_pipe
=
self
.
_start_trainer
(
tr_cmd
,
env
)
# Wait until trainer process terminate
while
True
:
stat0
=
tr0
.
poll
()
time
.
sleep
(
0.1
)
if
stat0
is
not
None
:
break
while
True
:
stat1
=
tr1
.
poll
()
time
.
sleep
(
0.1
)
if
stat1
is
not
None
:
break
tr0_out
,
tr0_err
=
tr0
.
communicate
()
tr1_out
,
tr1_err
=
tr1
.
communicate
()
# close trainer file
tr0_pipe
.
close
()
tr1_pipe
.
close
()
ps0_pipe
.
close
()
ps1_pipe
.
close
()
ps0
.
terminate
()
ps1
.
terminate
()
with
open
(
"/tmp/tr0_out.log"
,
"wb+"
)
as
wn
:
wn
.
write
(
tr0_out
)
with
open
(
"/tmp/tr1_out.log"
,
"wb+"
)
as
wn
:
wn
.
write
(
tr1_out
)
# print server log
with
open
(
"/tmp/ps0_err.log"
,
"r"
)
as
fn
:
sys
.
stderr
.
write
(
"ps0 stderr: %s
\n
"
%
fn
.
read
())
with
open
(
"/tmp/ps1_err.log"
,
"r"
)
as
fn
:
sys
.
stderr
.
write
(
"ps1 stderr: %s
\n
"
%
fn
.
read
())
# print log
with
open
(
"/tmp/tr0_err.log"
,
"r"
)
as
fn
:
sys
.
stderr
.
write
(
'trainer 0 stderr: %s
\n
'
%
fn
.
read
())
with
open
(
"/tmp/tr1_err.log"
,
"r"
)
as
fn
:
sys
.
stderr
.
write
(
'trainer 1 stderr: %s
\n
'
%
fn
.
read
())
return
0
,
0
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"5000"
,
# 5sec to fail fast
"http_proxy"
:
""
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
runtime_main
(
test_class
):
parser
=
argparse
.
ArgumentParser
(
description
=
'Run Fleet test.'
)
parser
.
add_argument
(
'--role'
,
type
=
str
,
required
=
True
,
choices
=
[
'pserver'
,
'trainer'
])
parser
.
add_argument
(
'--endpoints'
,
type
=
str
,
required
=
False
,
default
=
""
)
parser
.
add_argument
(
'--current_id'
,
type
=
int
,
required
=
False
,
default
=
0
)
parser
.
add_argument
(
'--trainers'
,
type
=
int
,
required
=
False
,
default
=
1
)
parser
.
add_argument
(
'--sync_mode'
,
action
=
'store_true'
)
args
=
parser
.
parse_args
()
model
=
test_class
()
if
args
.
role
==
"pserver"
:
model
.
run_pserver
(
args
)
else
:
model
.
run_trainer
(
args
)
python/paddle/fluid/tests/unittests/test_dist_fleet_ctr.py
0 → 100644
浏览文件 @
101f74cb
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
from
test_dist_fleet_base
import
TestFleetBase
class
TestDistMnist2x2
(
TestFleetBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"FLAGS_rpc_deadline"
:
"5000"
,
# 5sec to fail fast
"http_proxy"
:
""
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_losses
,
tr1_losses
=
self
.
_run_cluster
(
model_file
,
required_envs
)
def
test_dist_train
(
self
):
self
.
check_with_place
(
"dist_fleet_ctr.py"
,
delta
=
1e-5
,
check_error_log
=
False
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/setup.py.in
浏览文件 @
101f74cb
...
...
@@ -131,7 +131,7 @@ packages=['paddle',
'paddle.fluid.incubate.fleet',
'paddle.fluid.incubate.fleet.base',
'paddle.fluid.incubate.fleet.parameter_server',
'paddle.fluid.incubate.fleet.parameter_server.distribute
d
_transpiler',
'paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective']
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录