io.py 75.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34 35
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
36
from paddle.fluid.compiler import CompiledProgram
37
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
38 39
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
40
from . import core
41
from .. import compat as cpt
42

43 44
batch = paddle.batch

45
__all__ = [
46 47 48 49 50 51 52 53 54 55 56 57 58
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
59 60
    'get_program_parameter',
    'get_program_persistable_vars',
61
] + reader.__all__ + paddle.reader.__all__
62

63 64
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
65

66 67

def is_parameter(var):
F
fengjiayi 已提交
68 69
    """
    Check whether the given variable is an instance of Parameter.
70 71

    Args:
F
fengjiayi 已提交
72
        var(Variable): The variable to be checked.
73 74

    Returns:
F
fengjiayi 已提交
75 76 77 78 79 80
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

81
            import paddle.fluid as fluid
F
fengjiayi 已提交
82 83
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
84
    """
85 86 87 88
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

102
            import paddle.fluid as fluid
103
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
104 105
            res = fluid.io.is_persistable(param)
    """
106
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
107 108
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
109
        return False
110 111 112
    return var.persistable


H
hong 已提交
113
def is_belong_to_optimizer(var):
114
    if not isinstance(var, Parameter) or var.desc.need_check_feed():
115 116 117
        return is_persistable(var)

    return False
H
hong 已提交
118 119


H
hong 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


164 165
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
181 182


H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193
@contextlib.contextmanager
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


208 209 210 211 212
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
213
              filename=None):
214
    """
215
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
216

217 218 219
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
220

221 222 223
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
224
    use `filename` to specify it.
225

F
fengjiayi 已提交
226 227
    Args:
        executor(Executor): The executor to run for saving variables.
228 229
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
230
                                    If it is None, the default main program will
F
fengjiayi 已提交
231 232
                                    be used automatically.
                                    Default: None
233 234 235 236 237 238 239 240
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
241 242 243 244 245 246 247 248 249 250

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

251
            import paddle.fluid as fluid
252

253 254 255 256 257 258 259 260 261 262 263
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
264

265
            # The first usage: use `vars` to set the saved variables.
266 267
            var_list = [w, b]
            path = "./my_paddle_vars"
268
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
269 270 271 272 273 274 275 276 277 278
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
279
    """
L
lujun 已提交
280
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
281
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
282

283 284 285
    if vars is None:
        save_vars(
            executor,
286
            main_program=main_program,
L
lujun 已提交
287
            dirname=save_dirname,
288
            vars=list(filter(predicate, main_program.list_vars())),
289
            filename=filename)
290
    else:
291 292 293 294 295 296 297
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

298 299
        save_program = Program()
        save_block = save_program.global_block()
300 301

        save_var_map = {}
302
        for each_var in vars:
303 304 305
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
306
            new_var = _clone_var_in_block_(save_block, each_var)
307
            if filename is None:
308 309
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
310 311 312 313
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
314
                    attrs={'file_path': save_file_path})
315 316 317
            else:
                save_var_map[new_var.name] = new_var

318
        if filename is not None:
319 320 321 322
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

323
            save_block.append_op(
324 325
                type='save_combine',
                inputs={'X': save_var_list},
326
                outputs={},
L
lujun 已提交
327
                attrs={'file_path': os.path.join(save_dirname, filename)})
328

329 330 331 332
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
333 334 335
        executor.run(save_program)


336
def save_params(executor, dirname, main_program=None, filename=None):
337
    """
G
guofei 已提交
338 339 340
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
341

G
guofei 已提交
342 343 344
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
345 346
    the file name.

G
guofei 已提交
347 348 349 350 351 352 353 354 355 356
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
357 358

    Args:
G
guofei 已提交
359 360
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
361
        dirname(str): The saving directory path.
G
guofei 已提交
362 363 364 365 366 367 368 369 370 371
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
372 373 374 375 376 377 378

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
379
            import paddle.fluid as fluid
G
guofei 已提交
380 381 382 383 384 385 386 387 388 389
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
390
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
391 392 393 394
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
395 396 397 398
    """
    save_vars(
        executor,
        dirname=dirname,
399
        main_program=main_program,
400
        vars=None,
401
        predicate=is_parameter,
402
        filename=filename)
403 404


405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

427
            import paddle.fluid as fluid
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
449 450 451 452 453 454 455
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
456 457 458

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
459
                slice = optimizer.slice
460 461 462
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
463 464 465
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
466 467
                endpoints[index] = endpoint

T
tangwei12 已提交
468 469 470 471 472
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

473
            block.append_op(
T
tangwei12 已提交
474 475 476 477 478 479 480 481 482 483 484
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
514 515
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
516 517 518 519 520 521
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
522
        raise TypeError("'main_program' should be an instance of Program.")
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


556
def save_persistables(executor, dirname, main_program=None, filename=None):
557
    """
G
guofei 已提交
558 559 560 561 562
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
563

G
guofei 已提交
564
    The :code:`dirname` is used to specify the folder where persistable variables
565
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
566 567
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
568 569 570

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
571 572 573 574 575 576 577 578 579 580 581 582
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
        main_program(Program, optional): The program whose persistbale variables will
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
583 584 585 586 587 588 589

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
590
            import paddle.fluid as fluid
G
guofei 已提交
591 592 593 594 595 596 597 598 599 600
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
601
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
602 603 604 605 606
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
607
    """
608 609 610 611 612 613 614 615 616 617 618
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
619 620


621 622 623 624 625
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
626
              filename=None):
627
    """
628
    This API loads variables from files by executor.
F
fengjiayi 已提交
629

630 631 632 633
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
634

635
    The `dirname` is used to specify the folder where to load variables.
636
    If variables were saved in separate files in the folder `dirname`,
637
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
638
    use `filename` to specify it.
639

F
fengjiayi 已提交
640 641
    Args:
        executor(Executor): The executor to run for loading variables.
642 643
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
644
                                    If it is None, the default main program will
F
fengjiayi 已提交
645 646
                                    be used automatically.
                                    Default: None
647
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
648
                                   Default: None
649 650 651 652 653 654
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
655 656 657 658 659 660 661 662 663 664

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

665
            import paddle.fluid as fluid
666

667 668 669 670 671 672 673 674 675 676 677
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
678

679 680 681 682 683 684 685 686 687 688 689
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
690
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
691 692 693
            def name_has_fc(var):
                res = "fc" in var.name
                return res
694 695 696
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
697
                               vars=None, predicate=name_has_fc)
698 699
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
700

701
    """
L
lujun 已提交
702
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
703

704
    if vars is None:
705
        if main_program is None:
Y
Yu Yang 已提交
706
            main_program = default_main_program()
707
        if not isinstance(main_program, Program):
708 709 710 711
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
712
            dirname=load_dirname,
T
tangwei12 已提交
713
            main_program=main_program,
714
            vars=list(filter(predicate, main_program.list_vars())),
715
            filename=filename)
716 717 718
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
719

720 721
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
722

723 724 725
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

T
tangwei12 已提交
726
        # save origin param shape
H
hong 已提交
727
        orig_para_shape = {}
728
        load_var_map = {}
729 730
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
731 732
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
733 734

            if isinstance(each_var, Parameter):
735 736
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
737
            new_var = _clone_var_in_block_(load_block, each_var)
738
            if filename is None:
739 740 741 742
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
743 744 745
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
746 747 748
            else:
                load_var_map[new_var.name] = new_var

749
        if filename is not None:
750 751 752 753
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

754
            load_block.append_op(
755
                type='load_combine',
756
                inputs={},
757
                outputs={"Out": load_var_list},
L
lujun 已提交
758
                attrs={'file_path': os.path.join(load_dirname, filename)})
759 760
        executor.run(load_prog)

T
tangwei12 已提交
761
        # check var shape
H
hong 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

776

777
def load_params(executor, dirname, main_program=None, filename=None):
778
    """
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
798 799

    Args:
800 801
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
802
        dirname(str): The directory path.
803 804 805 806 807 808 809 810
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
811 812 813 814 815 816 817

    Returns:
        None

    Examples:
        .. code-block:: python

818
            import paddle.fluid as fluid
819

F
fengjiayi 已提交
820 821 822
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
823
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
824
                                main_program=None)
825 826
    """
    load_vars(
827 828 829
        executor,
        dirname=dirname,
        main_program=main_program,
830
        predicate=is_parameter,
831
        filename=filename)
832 833


834
def load_persistables(executor, dirname, main_program=None, filename=None):
835
    """
836 837 838
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
839

840 841 842 843
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
844 845

    Args:
846 847
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
848
        dirname(str): The directory path.
849 850 851 852 853 854 855 856
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
857 858 859 860 861 862 863

    Returns:
        None

    Examples:
        .. code-block:: python

864
            import paddle.fluid as fluid
865

F
fengjiayi 已提交
866 867 868
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
869
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
870
                                       main_program=None)
871
    """
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

903
            import paddle.fluid as fluid
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
937 938 939 940 941 942 943 944
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
967
        raise TypeError("'main_program' should be an instance of Program.")
968 969 970 971 972 973 974 975 976 977 978 979 980 981

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
982 983


984 985 986
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
987 988 989
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
990 991
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
992 993 994
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
995

996
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
997
        out = global_block.var(name)
W
Wu Yi 已提交
998
        global_block._prepend_op(
K
Kexin Zhao 已提交
999 1000
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1001
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1002 1003 1004
            attrs={'col': i})


1005 1006 1007
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1008 1009
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1010 1011 1012
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1013

1014
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1015 1016 1017 1018 1019 1020 1021
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1022 1023 1024 1025
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1026
                         main_program=None,
1027
                         model_filename=None,
1028
                         params_filename=None,
T
tangwei12 已提交
1029 1030
                         export_for_deployment=True,
                         program_only=False):
1031
    """
F
fengjiayi 已提交
1032
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1033
    and then save it and all related parameters to given `dirname` .
1034
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1035 1036
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1037

G
guofei 已提交
1038 1039 1040 1041 1042
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1043 1044 1045

    Args:
        dirname(str): The directory path to save the inference model.
G
guofei 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        feeded_var_names(list[str]): list of string. Names of variables that need to be feeded
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
                                         build the inference model. If is setted None,
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
                                       itself. If is setted None, a default filename
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
                                        If it is setted None, parameters will be saved
                                        in separate files .
X
Xin Pan 已提交
1062 1063 1064 1065 1066
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1067 1068 1069 1070
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1071

F
fengjiayi 已提交
1072
    Returns:
G
guofei 已提交
1073 1074 1075 1076
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1077 1078

    Raises:
G
guofei 已提交
1079 1080
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1081 1082 1083

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1084

1085 1086
            import paddle.fluid as fluid

F
fengjiayi 已提交
1087 1088
            path = "./infer_model"

1089
            # User defined network, here a softmax regresssion example
G
guofei 已提交
1090 1091
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1109 1110 1111
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1112
            # and parameters are going to be saved in separate files under folder
1113
            # "./infer_model".
1114 1115

    """
M
minqiyang 已提交
1116
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1117
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1118
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1119
        if len(feeded_var_names) > 0:
1120
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1121
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1122
                    isinstance(name, six.string_types)
1123
                    for name in feeded_var_names)):
M
minqiyang 已提交
1124
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1125 1126

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1127
        target_vars = [target_vars]
X
Xin Pan 已提交
1128
    elif export_for_deployment:
1129 1130
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1131 1132
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1133
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1134

1135 1136 1137 1138 1139 1140 1141 1142 1143
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1144 1145 1146 1147 1148
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1149
        for i, var in enumerate(target_vars):
1150
            if isinstance(var, Variable):
F
flame 已提交
1151 1152 1153
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1154
        target_vars = uniq_target_vars
F
flame 已提交
1155
    target_var_name_list = [var.name for var in target_vars]
1156

1157
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1158
    save_dirname = dirname
1159
    try:
L
lujun 已提交
1160 1161
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1162 1163 1164 1165
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1166 1167 1168 1169
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1170
    model_basename = os.path.join(save_dirname, model_basename)
1171

X
Xin Pan 已提交
1172 1173 1174 1175
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1176 1177 1178

    origin_program = main_program.clone()

X
Xin Pan 已提交
1179
    if export_for_deployment:
X
Xin Pan 已提交
1180 1181
        main_program = main_program.clone()
        global_block = main_program.global_block()
1182
        need_to_remove_op_index = []
X
Xin Pan 已提交
1183 1184 1185
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1186 1187 1188 1189 1190
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1191
        main_program.desc.flush()
X
Xin Pan 已提交
1192

1193 1194
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1195
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1196 1197
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1198 1199 1200
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1201 1202
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1203 1204
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1205 1206 1207
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1208 1209
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1210

T
tangwei12 已提交
1211 1212 1213 1214 1215 1216
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1217 1218
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1219 1220
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1221

L
lujun 已提交
1222
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1223
    return target_var_name_list
X
fix  
Xin Pan 已提交
1224

1225

1226 1227 1228
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1229 1230
                         params_filename=None,
                         pserver_endpoints=None):
1231
    """
1232 1233 1234
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1235
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1236

F
fengjiayi 已提交
1237
    Args:
1238
        dirname(str): The given directory path.
F
fengjiayi 已提交
1239
        executor(Executor): The executor to run for loading inference model.
1240 1241
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1242
                                  If it is None, the default filename
1243 1244 1245
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1246 1247 1248
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1249 1250 1251 1252 1253 1254
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1255
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1256 1257

    Returns:
1258
        list: The return of this API is a list with three elements:
1259
        (program, feed_target_names, fetch_targets). The `program` is a
1260 1261 1262 1263 1264
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1265 1266 1267 1268 1269 1270 1271

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1272 1273
            import paddle.fluid as fluid
            import numpy as np
1274 1275

            # Build the model
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1287 1288

            # Save the inference model
F
fengjiayi 已提交
1289
            path = "./infer_model"
1290 1291
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1292 1293 1294

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1295 1296
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1297
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1298 1299 1300 1301
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1302 1303 1304
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1305
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1306
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1307 1308
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1309
                                              pserver_endpoints=endpoints))
1310

1311
            # In this example, the inference program was saved in the file
1312
            # "./infer_model/__model__" and parameters were saved in
1313 1314 1315 1316
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1317
    """
L
lujun 已提交
1318 1319
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1320 1321
        raise ValueError("There is no directory named '%s'", dirname)

1322 1323
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1324
    else:
1325
        model_filename = "__model__"
L
lujun 已提交
1326
    model_filename = os.path.join(load_dirname, model_filename)
1327 1328 1329

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1330

1331
    with open(model_filename, "rb") as f:
1332 1333
        program_desc_str = f.read()

1334
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1335
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1336 1337 1338
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1339
    load_persistables(executor, load_dirname, program, params_filename)
1340

T
tangwei12 已提交
1341
    if pserver_endpoints:
T
tangwei12 已提交
1342
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1343

1344 1345
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1346 1347 1348 1349 1350
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1351 1352


T
tangwei12 已提交
1353 1354 1355
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1356 1357
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1358
    program._sync_with_cpp()
T
tangwei12 已提交
1359
    return program
T
tangwei12 已提交
1360 1361


X
xuwei06 已提交
1362 1363
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1375

F
fengjiayi 已提交
1376 1377
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1378

1379
            import paddle.fluid as fluid
F
fengjiayi 已提交
1380 1381 1382
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1383

X
xuwei06 已提交
1384
    """
X
xuwei06 已提交
1385 1386
    assert is_parameter(para)

X
xuwei06 已提交
1387 1388 1389 1390 1391 1392 1393 1394
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1395
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1396

F
fengjiayi 已提交
1397 1398 1399 1400 1401 1402 1403
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1404

F
fengjiayi 已提交
1405 1406
    Returns:
        numpy.array: The parameter's values.
1407

F
fengjiayi 已提交
1408 1409 1410 1411 1412
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1413

F
fengjiayi 已提交
1414 1415 1416
    Examples:
        .. code-block:: python

1417
            import paddle.fluid as fluid
F
fengjiayi 已提交
1418 1419
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1420 1421
    """
    if program is None:
Y
Yu Yang 已提交
1422
        program = default_main_program()
X
xuwei06 已提交
1423 1424
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
T
tangwei12 已提交
1531
        "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"
H
hong 已提交
1532

1533 1534 1535 1536
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1537 1538 1539 1540
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1541
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1542 1543 1544
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
        pickle.dump(param_dict, f)
H
hong 已提交
1545 1546 1547 1548

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1549 1550 1551
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
        pickle.dump(opt_dict, f)
H
hong 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1562
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1563
    """
H
hong 已提交
1564
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1565
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1566

H
hong 已提交
1567 1568 1569 1570
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1571
    Args: 
1572 1573 1574 1575
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1576 1577 1578
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1595 1596
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
                        "loaded var [{}] not included in program variable list")

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1690 1691

    parameter_list = list(filter(is_parameter, program.list_vars()))
1692 1693 1694 1695 1696

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1697 1698 1699 1700 1701 1702 1703
    with open(parameter_file_name, 'rb') as f:
        load_dict = pickle.load(f)
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1704 1705 1706 1707 1708

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1709
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1710
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1711
            "Optimizer file [{}] not exits".format(opt_file_name)
1712 1713 1714 1715

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1716 1717 1718 1719 1720 1721 1722 1723

        with open(opt_file_name, 'rb') as f:
            load_dict = pickle.load(f)
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1724 1725


H
hong 已提交
1726
def load_program_state(model_path, var_list=None):
1727 1728 1729 1730 1731
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1732 1733 1734 1735 1736
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1838
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1839
        "Parameter file [{}] not exits".format(parameter_file_name)
1840 1841 1842 1843

    with open(parameter_file_name, 'rb') as f:
        para_dict = pickle.load(f)

H
hong 已提交
1844
    opt_file_name = model_prefix + ".pdopt"
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
            opti_dict = pickle.load(f)

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1884 1885
            fluid.set_program_state( prog, program_state)

1886 1887 1888 1889 1890 1891 1892
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1893
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1894 1895 1896 1897
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1898 1899 1900
            assert orig_para_np.shape == new_para_np.shape, \
                "Shape not matching: the Program requires a parameter with a shape of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1901
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1902 1903 1904
            assert orig_para_np.dtype == new_para_np.dtype, \
                "Dtype not matching: the Program requires a parameter with a dtype of ({}), " \
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1905 1906 1907 1908 1909 1910
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1911
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))