io.py 94.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
bug fix  
tangwei12 已提交
16
import errno
D
dzhwinter 已提交
17
import warnings
18
import six
19
import logging
Y
Yang Zhang 已提交
20
import pickle
H
hong 已提交
21
import contextlib
22
from functools import reduce
23
import sys
24
from io import BytesIO
25

H
hong 已提交
26
import numpy as np
27
import math
28
import paddle
29
from paddle.fluid import layers
H
hong 已提交
30
from paddle.fluid.executor import Executor, global_scope
31
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
33
    program_guard, dygraph_not_support, static_only
34 35
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46 47
from paddle.utils import deprecated
from paddle.fluid.framework import static_only
48

49 50
batch = paddle.batch

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
65 66
    'get_program_parameter',
    'get_program_persistable_vars',
67
] + reader.__all__
68

69 70 71
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
72

73

74
class _open_buffer(object):
75

76 77 78 79 80 81 82 83
    def __init__(self, buffer):
        self.buffer = buffer

    def __enter__(self):
        return self.buffer


class _buffer_reader(_open_buffer):
84

85 86 87 88 89 90 91 92 93 94 95
    def __init__(self, buffer):
        super(_buffer_reader, self).__init__(buffer)
        self.initial_tell = self.buffer.tell()

    def __exit__(self, *args):
        # `args[0]` is type of exception. When the `read` is abnormal, the file pointer returns to the initial position.
        if args[0] is not None:
            self.buffer.seek(self.initial_tell)


class _buffer_writer(_open_buffer):
96

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def __exit__(self, *args):
        self.buffer.flush()


def _is_file_path(path):
    return isinstance(path, str)


def _open_file_buffer(path_or_buffer, mode):

    if _is_file_path(path_or_buffer):
        return open(path_or_buffer, mode)
    else:
        if 'w' in mode:
            return _buffer_writer(path_or_buffer)
        elif 'r' in mode:
            return _buffer_reader(path_or_buffer)
        else:
115 116
            raise ValueError(
                "Expected 'r' or 'w' in mode but got {}".format(mode))
117 118 119 120 121 122


def _is_memory_buffer(buffer):
    return isinstance(buffer, BytesIO)


123
def is_parameter(var):
F
fengjiayi 已提交
124 125
    """
    Check whether the given variable is an instance of Parameter.
126 127

    Args:
F
fengjiayi 已提交
128
        var(Variable): The variable to be checked.
129 130

    Returns:
F
fengjiayi 已提交
131 132 133 134 135 136
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

137
            import paddle
138
            import paddle.fluid as fluid
139 140

            paddle.enable_static()
F
fengjiayi 已提交
141 142
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
143
    """
144 145 146 147
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

161
            import paddle
162
            import paddle.fluid as fluid
163 164

            paddle.enable_static()
165
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
166 167
            res = fluid.io.is_persistable(param)
    """
168
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
169 170
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
171
        return False
172 173 174
    return var.persistable


H
hong 已提交
175
def is_belong_to_optimizer(var):
176
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
177 178 179
        return is_persistable(var)

    return False
H
hong 已提交
180 181


182
@dygraph_not_support
H
hong 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

196
            import paddle
H
hong 已提交
197
            import paddle.fluid as fluid
198 199

            paddle.enable_static()
H
hong 已提交
200 201 202 203 204 205 206 207
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


208
@dygraph_not_support
H
hong 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221
def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

222
            import paddle
H
hong 已提交
223
            import paddle.fluid as fluid
224 225

            paddle.enable_static()
H
hong 已提交
226 227 228 229 230 231 232 233
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


234 235
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
236
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
237 238 239 240 241 242
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                lod_level=var.lod_level,
                                persistable=True)
243
    else:
244 245 246 247 248
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                persistable=True)
249 250


251
@signature_safe_contextmanager
H
hong 已提交
252 253 254 255 256 257 258
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
259 260
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
261 262


263
def _get_valid_program(main_program=None):
C
chengduo 已提交
264 265 266 267 268
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
269 270 271
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
272 273 274
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
275 276 277
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
278 279 280
    return main_program


281
@dygraph_not_support
282 283 284 285 286
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
287
              filename=None):
288
    """
289
    Save specific variables in the `Program` to files.
F
fengjiayi 已提交
290

291
    There are two ways to specify the variables to be saved: set variables in
292 293
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
294

295
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
296
    If you prefer to save variables in separate files in the `dirname` folder,
297
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
298
    use `filename` to specify it.
299

F
fengjiayi 已提交
300 301
    Args:
        executor(Executor): The executor to run for saving variables.
302 303
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
304
        main_program(Program, optional): The program whose variables will be saved.
305
                                    If it is None, the default main program will
F
fengjiayi 已提交
306 307
                                    be used automatically.
                                    Default: None
308 309 310
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
311
                                       `predicate(variable) == True`.
312 313
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
314
                                 use `filename` to specify it. Otherwise, let `filename` be None.
315
                                 Default: None
F
fengjiayi 已提交
316 317

    Returns:
318 319
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
320 321 322 323 324 325 326

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

327
            import paddle
328
            import paddle.fluid as fluid
329

330
            paddle.enable_static()
331 332 333 334 335 336 337 338 339 340 341
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
342

343
            # The first usage: use `vars` to set the saved variables.
344 345
            var_list = [w, b]
            path = "./my_paddle_vars"
346
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
347 348 349 350 351 352 353 354 355 356
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
357
    """
358 359 360 361
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
362
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
363

364
    if vars is None:
365 366 367 368 369
        return save_vars(executor,
                         main_program=main_program,
                         dirname=dirname,
                         vars=list(filter(predicate, main_program.list_vars())),
                         filename=filename)
370
    else:
石晓伟 已提交
371
        params_var_name = "saved_params"
372 373 374 375 376 377 378
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

379 380
        save_program = Program()
        save_block = save_program.global_block()
381 382

        save_var_map = {}
383
        for each_var in vars:
384 385 386
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
387
            new_var = _clone_var_in_block_(save_block, each_var)
388
            if filename is None and save_to_memory is False:
389 390
                save_file_path = os.path.join(os.path.normpath(dirname),
                                              new_var.name)
391 392 393 394
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
395
                    attrs={'file_path': os.path.normpath(save_file_path)})
396 397 398
            else:
                save_var_map[new_var.name] = new_var

399
        if filename is not None or save_to_memory:
400 401 402 403
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

404 405 406 407
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

408 409
            saved_params = save_block.create_var(type=core.VarDesc.VarType.RAW,
                                                 name=params_var_name)
410
            saved_params.desc.set_persistable(True)
411 412 413 414 415 416 417
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params},
                                 attrs={
                                     'file_path': save_path,
                                     'save_to_memory': save_to_memory
                                 })
418

419
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
420 421 422
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
423
        executor.run(save_program)
424 425
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
426 427


428
@dygraph_not_support
429
def save_params(executor, dirname, main_program=None, filename=None):
430
    """
431
    Save all parameters from the :code:`main_program` to
432
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
433
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
434

G
guofei 已提交
435 436 437
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
438 439
    the file name.

440
    Note:
G
guofei 已提交
441
        Some variables are not Parameter while they are necessary for
442
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
443 444
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
445 446 447
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
448 449
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
450 451

    Args:
452
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
453
                            refer to :ref:`api_guide_executor_en`.
454 455
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
456
        main_program(Program, optional): The program whose parameters will be
457 458
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
459 460 461 462 463 464 465
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
466 467

    Returns:
468 469
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
470 471 472 473

    Examples:
        .. code-block:: python

474
            import paddle
H
Huihuang Zheng 已提交
475
            import paddle.fluid as fluid
476

477 478

            paddle.enable_static()
G
guofei 已提交
479 480 481 482 483
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
484

G
guofei 已提交
485
            loss = fluid.layers.cross_entropy(input=predict, label=label)
486
            avg_loss = paddle.mean(loss)
487

F
fengjiayi 已提交
488
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
489 490
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
491 492
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
493
    """
494 495 496 497 498 499
    return save_vars(executor,
                     dirname=dirname,
                     main_program=main_program,
                     vars=None,
                     predicate=is_parameter,
                     filename=filename)
500 501


502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

524
            import paddle
525
            import paddle.fluid as fluid
526 527

            paddle.enable_static()
528 529 530 531 532 533 534 535 536 537
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
538
        receive params on pserver through rpc.
539 540 541 542 543 544 545 546 547 548
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
549 550 551 552 553 554 555
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
556 557 558

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
559
                slice = optimizer.slice
560 561 562
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
563 564 565
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
566 567
                endpoints[index] = endpoint

T
tangwei12 已提交
568 569 570 571 572
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

573 574 575 576 577 578 579 580 581 582
            block.append_op(type='recv_save',
                            attrs={
                                "trainer_id": 0,
                                "shape": origin.shape,
                                "slice_shapes": slice_shapes,
                                "slice_varnames": slice_varnames,
                                "remote_varnames": remote_varnames,
                                "endpoints": endpoints,
                                "file_path": os.path.join(dirname, origin.name)
                            })
T
tangwei12 已提交
583

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
604 605 606 607
        block.append_op(type='checkpoint_notify',
                        inputs={},
                        outputs={},
                        attrs=attrs)
608 609 610
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
611

612 613 614 615
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
616 617
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
618 619 620 621 622 623
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
624
        raise TypeError("'main_program' should be an instance of Program.")
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
646 647 648 649
    save_vars(executor,
              main_program=main_program,
              dirname=dirname,
              vars=local_vars)
650 651 652 653 654 655 656 657 658 659

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


660
@dygraph_not_support
661
def save_persistables(executor, dirname, main_program=None, filename=None):
662
    """
663 664
    Save all persistable variables from :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
665
    :ref:`api_guide_model_save_reader_en` for more details. And then
666 667
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
668

G
guofei 已提交
669
    The :code:`dirname` is used to specify the folder where persistable variables
670
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
671 672
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
673 674 675

    Args:
        executor(Executor): The executor to run for saving persistable variables.
676
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
677
                            more details.
678

679 680 681
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
682
                                         be saved. You can refer to
G
guofei 已提交
683
                                         :ref:`api_guide_Program_en` for more details.
684
                                         If it is None, the default main program will
G
guofei 已提交
685 686 687 688 689
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
690 691

    Returns:
692 693
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
694 695 696 697

    Examples:
        .. code-block:: python

698
            import paddle
H
Huihuang Zheng 已提交
699
            import paddle.fluid as fluid
700

701
            paddle.enable_static()
G
guofei 已提交
702 703 704 705 706
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
707

G
guofei 已提交
708 709
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
710
            avg_loss = paddle.mean(loss)
F
fengjiayi 已提交
711
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
712 713
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
714
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
715 716
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
717
    """
718
    if main_program and main_program._is_distributed:
719 720 721
        return _save_distributed_persistables(executor,
                                              dirname=dirname,
                                              main_program=main_program)
722
    else:
723 724 725 726 727 728
        return save_vars(executor,
                         dirname=dirname,
                         main_program=main_program,
                         vars=None,
                         predicate=is_persistable,
                         filename=filename)
729 730


731 732 733 734 735
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
736
              filename=None):
737
    """
738 739
    :api_attr: Static Graph

740
    This API loads variables from files by executor.
F
fengjiayi 已提交
741

742
    There are two ways to specify the variables to be loaded: the first way, set
743 744
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
745
    The first way has a higher priority.
F
fengjiayi 已提交
746

747
    The `dirname` is used to specify the folder where to load variables.
748
    If variables were saved in separate files in the folder `dirname`,
749
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
750
    use `filename` to specify it.
751

F
fengjiayi 已提交
752 753
    Args:
        executor(Executor): The executor to run for loading variables.
754 755
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
756
                                    If it is None, the default main program will
F
fengjiayi 已提交
757 758
                                    be used automatically.
                                    Default: None
759
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
760
                                   Default: None
761
        predicate(function, optional): The function selects variables that make
762 763 764 765 766
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
767 768 769 770 771 772 773

    Returns:
        None

    Examples:
        .. code-block:: python

774
            import paddle
775
            import paddle.fluid as fluid
776

777
            paddle.enable_static()
778 779 780 781 782 783 784 785 786 787 788
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
789

790 791 792 793 794 795 796 797 798 799 800
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
801
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
802 803 804
            def name_has_fc(var):
                res = "fc" in var.name
                return res
805 806 807
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
808
                               vars=None, predicate=name_has_fc)
809 810
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
811

812
    """
813 814 815 816 817
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
818

819
    if vars is None:
820
        if main_program is None:
Y
Yu Yang 已提交
821
            main_program = default_main_program()
822
        if not isinstance(main_program, Program):
823 824 825
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
826

827 828 829 830 831
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  vars=list(filter(predicate, main_program.list_vars())),
                  filename=filename)
832 833 834
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
835

836 837
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
838

839
        if not isinstance(main_program, Program):
840 841 842
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
843

T
tangwei12 已提交
844
        # save origin param shape
H
hong 已提交
845
        orig_para_shape = {}
846
        load_var_map = {}
847 848 849 850

        check_vars = []
        sparse_vars = []

851 852
        for each_var in vars:
            assert isinstance(each_var, Variable)
853

T
tangwei12 已提交
854 855
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
856 857

            if isinstance(each_var, Parameter):
858 859
                orig_para_shape[each_var.name] = tuple(
                    each_var.desc.get_shape())
860 861 862 863 864

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

865
            new_var = _clone_var_in_block_(load_block, each_var)
866 867
            check_vars.append(each_var)

868
            if filename is None:
869 870 871 872
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
873 874 875 876
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
877
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
878 879 880
            else:
                load_var_map[new_var.name] = new_var

881 882 883 884 885 886 887 888 889 890 891
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
892 893 894
                raise ValueError(
                    "SelectedRows var {} can not find at {}".format(
                        new_var.name, var_path))
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
912 913 914 915 916
                    slice = load_block.create_var(name=block,
                                                  type=new_var.type,
                                                  shape=new_var.shape,
                                                  dtype=new_var.dtype,
                                                  persistable=False)
917 918 919
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
920 921 922 923
                    load_block.append_op(type='load',
                                         inputs={},
                                         outputs={'Out': [slice]},
                                         attrs={'file_path': file_path})
924

925 926 927 928
                load_block.append_op(type='lookup_sparse_table_merge',
                                     inputs={'X': slices},
                                     outputs={'Out': new_var},
                                     attrs={})
929

930
        if filename is not None:
931 932 933 934
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

935 936 937
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

938 939 940 941 942 943 944
            load_block.append_op(type='load_combine',
                                 inputs={},
                                 outputs={"Out": load_var_list},
                                 attrs={
                                     'file_path': filename,
                                     'model_from_memory': vars_from_memory
                                 })
945 946
        executor.run(load_prog)

T
tangwei12 已提交
947
        # check var shape
948
        for each_var in check_vars:
H
hong 已提交
949 950 951 952 953
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
954
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
955 956 957
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
958
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
959 960
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({})."
                    .format(orig_shape, each_var.name, new_shape))
H
hong 已提交
961

962

963
@dygraph_not_support
964
def load_params(executor, dirname, main_program=None, filename=None):
965
    """
966 967
    :api_attr: Static Graph

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
987 988

    Args:
989 990
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
991
        dirname(str): The directory path.
992 993 994 995 996 997 998 999
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
1000 1001 1002 1003 1004 1005 1006

    Returns:
        None

    Examples:
        .. code-block:: python

1007
            import paddle
1008
            import paddle.fluid as fluid
1009

1010
            paddle.enable_static()
F
fengjiayi 已提交
1011 1012 1013
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1014
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1015
                                main_program=None)
1016
    """
1017 1018 1019 1020 1021
    load_vars(executor,
              dirname=dirname,
              main_program=main_program,
              predicate=is_parameter,
              filename=filename)
1022 1023


1024
@dygraph_not_support
1025
def load_persistables(executor, dirname, main_program=None, filename=None):
1026
    """
1027
    :api_attr: Static Graph
1028

1029 1030
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1031
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1032

1033 1034 1035 1036
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1037 1038

    Args:
1039 1040
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1041
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1042
        main_program(Program, optional): The program whose persistable variables will
1043 1044 1045 1046 1047 1048 1049
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1050 1051 1052 1053 1054 1055 1056

    Returns:
        None

    Examples:
        .. code-block:: python

1057
            import paddle
1058
            import paddle.fluid as fluid
1059

1060
            paddle.enable_static()
F
fengjiayi 已提交
1061 1062 1063
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1064
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1065
                                       main_program=None)
1066
    """
1067 1068

    if main_program and main_program._is_distributed:
1069 1070 1071
        _load_distributed_persistables(executor,
                                       dirname=dirname,
                                       main_program=main_program)
1072
    else:
1073 1074 1075 1076 1077
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  predicate=is_persistable,
                  filename=filename)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1098
            import paddle
1099
            import paddle.fluid as fluid
1100 1101

            paddle.enable_static()
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
                slice = load_block.create_var(name=slice_var.name,
                                              type=slice_var.type,
                                              shape=slice_var.shape,
                                              dtype=slice_var.dtype,
                                              persistable=True)

                load_block.append_op(type='load',
                                     inputs={},
                                     outputs={'Out': [slice]},
                                     attrs={
                                         'file_path':
                                         os.path.join(dirname, origin_var.name),
                                         'seek':
                                         offset,
                                         'shape':
                                         slice.shape
                                     })
1144
            else:
1145 1146 1147 1148 1149 1150
                origin = load_block.create_var(name="{}".format(
                    origin_var.name),
                                               type=origin_var.type,
                                               shape=origin_var.shape,
                                               dtype=origin_var.dtype,
                                               persistable=True)
1151 1152 1153 1154
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
1155
                    attrs={'file_path': os.path.join(dirname, origin_var.name)})
1156 1157 1158

        load_block.append_op(
            type='delete_var',
1159 1160
            inputs={'X': need_delete_vars},
        )
1161 1162 1163 1164

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1165
        raise TypeError("'main_program' should be an instance of Program.")
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1180 1181


1182 1183 1184
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1185 1186 1187
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1188
    global_block = inference_program.global_block()
1189 1190 1191
    feed_var = global_block.create_var(name=feed_holder_name,
                                       type=core.VarDesc.VarType.FEED_MINIBATCH,
                                       persistable=True)
K
Kexin Zhao 已提交
1192

1193
    for i, name in enumerate(feed_target_names):
1194 1195 1196 1197 1198
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
1199
                format(i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1200
        out = global_block.var(name)
1201 1202 1203 1204
        global_block._prepend_op(type='feed',
                                 inputs={'X': [feed_var]},
                                 outputs={'Out': [out]},
                                 attrs={'col': i})
K
Kexin Zhao 已提交
1205 1206


1207 1208 1209
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1210
    global_block = inference_program.global_block()
1211 1212 1213
    fetch_var = global_block.create_var(name=fetch_holder_name,
                                        type=core.VarDesc.VarType.FETCH_LIST,
                                        persistable=True)
K
Kexin Zhao 已提交
1214

1215
    for i, name in enumerate(fetch_target_names):
1216 1217 1218 1219
        global_block.append_op(type='fetch',
                               inputs={'X': [name]},
                               outputs={'Out': [fetch_var]},
                               attrs={'col': i})
K
Kexin Zhao 已提交
1220 1221


1222 1223
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.save_inference_model")
1224 1225 1226 1227
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1228
                         main_program=None,
1229
                         model_filename=None,
1230
                         params_filename=None,
T
tangwei12 已提交
1231
                         export_for_deployment=True,
1232
                         program_only=False,
1233
                         clip_extra=True):
1234
    """
F
fengjiayi 已提交
1235
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1236
    and then save it and all related parameters to given `dirname` .
1237
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1238 1239
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1240

G
guofei 已提交
1241
    Note:
1242
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1243
        structure and parameters are going to be saved. If you would like to save params of
1244
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1245
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1246 1247 1248

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1249
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1250
                                     data during inference.
1251
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1252
                                     inference results.
1253
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1254 1255
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1256
                                         build the inference model. If is set None,
G
guofei 已提交
1257 1258 1259
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1260
                                       itself. If is set None, a default filename
G
guofei 已提交
1261 1262
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1263
                                        If it is set None, parameters will be saved
G
guofei 已提交
1264
                                        in separate files .
1265
        export_for_deployment(bool, optional): If True, programs are modified to only support
X
Xin Pan 已提交
1266 1267 1268 1269
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1270
                                     Default: True.
1271
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1272 1273
                                      save params of Program.
                                      Default: False.
1274

F
fengjiayi 已提交
1275
    Returns:
1276
        list, The fetch variables' name list.
F
fengjiayi 已提交
1277 1278 1279

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1280

1281
            import paddle
1282 1283
            import paddle.fluid as fluid

1284
            paddle.enable_static()
F
fengjiayi 已提交
1285 1286
            path = "./infer_model"

T
tianshuo78520a 已提交
1287
            # User defined network, here a softmax regession example
G
guofei 已提交
1288 1289
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1290 1291 1292 1293
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
1294
            avg_loss = paddle.mean(loss)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1307
            # In this example, the save_inference_mode inference will prune the default
1308
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1309
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1310
            # and parameters are going to be saved in separate files under folder
1311
            # "./infer_model".
1312 1313

    """
M
minqiyang 已提交
1314
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1315
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1316
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1317
        if len(feeded_var_names) > 0:
1318
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1319
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1320
                    isinstance(name, six.string_types)
1321
                    for name in feeded_var_names)):
M
minqiyang 已提交
1322
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1323 1324

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1325
        target_vars = [target_vars]
X
Xin Pan 已提交
1326
    elif export_for_deployment:
1327 1328
        if not (bool(target_vars)
                and all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1329 1330
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1331
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1332

1333
    # remind user to set auc_states to zeros if the program contains auc op
1334 1335
    all_ops = main_program.global_block().ops
    for op in all_ops:
1336 1337 1338
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1339 1340 1341 1342 1343 1344
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1345 1346
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1347 1348
        for i, var in enumerate(target_vars):
            uniq_target_vars.append(var)
1349
        target_vars = uniq_target_vars
F
flame 已提交
1350
    target_var_name_list = [var.name for var in target_vars]
1351

1352
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1353
    save_dirname = dirname
1354
    try:
L
lujun 已提交
1355 1356
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1357 1358 1359 1360
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1361 1362 1363 1364
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1365
    model_basename = os.path.join(save_dirname, model_basename)
1366

X
Xin Pan 已提交
1367 1368 1369 1370
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1371 1372 1373

    origin_program = main_program.clone()

X
Xin Pan 已提交
1374
    if export_for_deployment:
X
Xin Pan 已提交
1375 1376
        main_program = main_program.clone()
        global_block = main_program.global_block()
1377
        need_to_remove_op_index = []
X
Xin Pan 已提交
1378 1379 1380
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1381 1382 1383 1384 1385
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1386
        main_program.desc.flush()
X
Xin Pan 已提交
1387

1388 1389
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1390
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1391 1392
        fetch_var_names = [v.name for v in target_vars]

1393 1394 1395 1396 1397
        for target_v in target_vars:
            if not main_program.global_block().has_var(target_v.name):
                main_program.global_block().create_var(
                    name=target_v.name,
                    shape=target_v.shape,
1398 1399
                    dtype=target_v.dtype,
                    persistable=target_v.persistable)
1400

X
Xin Pan 已提交
1401 1402 1403
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1404
        main_program.desc._set_version()
1405
        paddle.fluid.core.save_op_version_info(main_program.desc)
X
Xin Pan 已提交
1406
        with open(model_basename, "wb") as f:
1407
            f.write(
1408 1409
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
X
Xin Pan 已提交
1410 1411 1412
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1413
        with open(model_basename + ".main_program", "wb") as f:
1414
            f.write(
1415 1416
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
T
tangwei12 已提交
1417

T
tangwei12 已提交
1418 1419 1420 1421 1422 1423
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1424 1425
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1426 1427
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1428

L
lujun 已提交
1429
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1430
    return target_var_name_list
X
fix  
Xin Pan 已提交
1431

1432

1433 1434
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.load_inference_model")
1435 1436 1437
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1438 1439
                         params_filename=None,
                         pserver_endpoints=None):
1440
    """
1441 1442 1443
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1444
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1445

F
fengjiayi 已提交
1446
    Args:
1447 1448 1449
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1450
        executor(Executor): The executor to run for loading inference model.
1451
                            See :ref:`api_guide_executor_en` for more details about it.
1452 1453 1454 1455 1456 1457 1458
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
1459
          - The name of file to load all parameters.
1460 1461 1462
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1463 1464 1465 1466

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1467
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1468 1469

    Returns:
1470
        list: The return of this API is a list with three elements:
1471
        (program, feed_target_names, fetch_targets). The `program` is a
1472 1473 1474 1475 1476
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1477 1478 1479 1480 1481


    Examples:
        .. code-block:: python

1482
            import paddle
1483 1484
            import paddle.fluid as fluid
            import numpy as np
1485

1486
            paddle.enable_static()
1487
            # Build the model
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1499 1500

            # Save the inference model
F
fengjiayi 已提交
1501
            path = "./infer_model"
1502 1503
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1504 1505 1506

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1507 1508
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1509
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1510 1511 1512 1513
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1514 1515 1516
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1517
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1518
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1519 1520
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1521
                                              pserver_endpoints=endpoints))
1522

1523
            # In this example, the inference program was saved in the file
1524
            # "./infer_model/__model__" and parameters were saved in
1525 1526 1527 1528
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1529
    """
1530 1531 1532 1533
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1534
            raise ValueError("There is no directory named '%s'" % dirname)
1535

1536 1537
        if model_filename is None:
            model_filename = '__model__'
1538

1539 1540
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1556

1557
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1558
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1559 1560 1561
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1562
    load_persistables(executor, load_dirname, program, params_filename)
1563

T
tangwei12 已提交
1564
    if pserver_endpoints:
T
tangwei12 已提交
1565
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1566

1567 1568
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1569 1570 1571 1572 1573
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1574 1575


T
tangwei12 已提交
1576 1577 1578
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1579 1580
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1581
    program._sync_with_cpp()
T
tangwei12 已提交
1582
    return program
T
tangwei12 已提交
1583 1584


X
xuwei06 已提交
1585 1586
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1598

F
fengjiayi 已提交
1599 1600
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1601

1602
            import paddle
1603
            import paddle.fluid as fluid
1604 1605

            paddle.enable_static()
F
fengjiayi 已提交
1606 1607 1608
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1609

X
xuwei06 已提交
1610
    """
1611
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1612

X
xuwei06 已提交
1613 1614 1615 1616 1617 1618 1619 1620
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1621
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1622

F
fengjiayi 已提交
1623 1624 1625 1626 1627 1628 1629
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1630

F
fengjiayi 已提交
1631 1632
    Returns:
        numpy.array: The parameter's values.
1633

F
fengjiayi 已提交
1634 1635 1636
    Examples:
        .. code-block:: python

1637
            import paddle
1638
            import paddle.fluid as fluid
1639 1640

            paddle.enable_static()
F
fengjiayi 已提交
1641 1642
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1643 1644
    """
    if program is None:
Y
Yu Yang 已提交
1645
        program = default_main_program()
X
xuwei06 已提交
1646 1647
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1672
                        var_desc.type() == core.VarDesc.VarType.READER:
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1711
                        var_desc.type() == core.VarDesc.VarType.READER:
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1725 1726


W
WeiXin 已提交
1727
def _unpack_saved_dict(saved_obj, protocol):
1728 1729
    temp_saved_obj = {}
    unpack_infor = {}
W
WeiXin 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
    # When pickle protocol=2 or protocol=3 the serialized object cannot be larger than 4G.
    if 1 < protocol < 4:
        if isinstance(saved_obj, dict):
            for key, value in saved_obj.items():
                if isinstance(value, np.ndarray):
                    MAX_NUMBER_OF_ELEMENT = int(
                        (2**30 - 1) / value.dtype.itemsize)
                    num_element = np.prod(value.shape)
                    if num_element > MAX_NUMBER_OF_ELEMENT:
                        unpack_infor[key] = {}
                        unpack_infor[key]["OriginShape"] = value.shape
                        unpack_infor[key]["slices"] = []
                        value = value.flatten()
                        for i in range(
                                int(
                                    math.ceil(num_element * 1.0 /
                                              MAX_NUMBER_OF_ELEMENT))):
                            part_name = key + "@@." + str(i)
                            unpack_infor[key]["slices"].append(part_name)
                            temp_saved_obj[part_name] = value[
1750 1751 1752
                                i *
                                MAX_NUMBER_OF_ELEMENT:MAX_NUMBER_OF_ELEMENT *
                                (i + 1)]
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

    if unpack_infor:
        for key, value in unpack_infor.items():
            if key in saved_obj:
                saved_obj.pop(key)
                for part in value['slices']:
                    saved_obj[part] = temp_saved_obj[part]
        saved_obj['UnpackBigParamInfor@@'] = unpack_infor
    return saved_obj


def _pack_loaded_dict(load_obj):
W
WeiXin 已提交
1765 1766 1767 1768 1769 1770
    if isinstance(load_obj, dict):
        unpack_info = 'UnpackBigParamInfor@@'
        if unpack_info in load_obj:
            removes = []
            for key, value in load_obj[unpack_info].items():
                slices = [load_obj[part] for part in value["slices"]]
1771 1772
                load_obj[key] = np.concatenate(slices).reshape(
                    value["OriginShape"])
W
WeiXin 已提交
1773 1774 1775 1776 1777
                removes += value["slices"]
            for key in removes:
                load_obj.pop(key)
            load_obj.pop(unpack_info)

1778 1779 1780
    return load_obj


1781
@static_only
1782
def _legacy_save(param_dict, model_path, protocol=2):
1783

1784
    def get_tensor(var):
J
Jiabin Yang 已提交
1785
        if isinstance(var, (core.VarBase, core.eager.Tensor)):
1786 1787 1788 1789 1790 1791 1792 1793
            return var.numpy()
        elif isinstance(var, core.LoDTensor):
            return np.array(var)
        return var

    param_dict = {name: get_tensor(param_dict[name]) for name in param_dict}

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
1794 1795 1796
    if _is_file_path(
            model_path
    ) and sys.platform == 'darwin' and sys.version_info.major == 3:
1797 1798 1799 1800 1801 1802
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
        with open(model_path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
1803
        with _open_file_buffer(model_path, 'wb') as f:
1804 1805 1806 1807
            pickle.dump(param_dict, f, protocol=protocol)


@static_only
1808
def save(program, model_path, protocol=4, **configs):
H
hong 已提交
1809
    """
1810

1811
    This function save parameters, optimizer information and network description to model_path.
H
hong 已提交
1812

1813 1814
    The parameters contains all the trainable Tensor, will save to a file with suffix ".pdparams".
    The optimizer information contains all the Tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no Tensor need to save (like SGD), the fill will not generated).
H
hong 已提交
1815
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1816

H
hong 已提交
1817 1818 1819
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
1820
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
1821
                                 Default: 4
1822
        configs(dict, optional) : optional keyword arguments.
H
hong 已提交
1823 1824 1825 1826 1827 1828 1829

    Returns:
        None

    Examples:
        .. code-block:: python

1830
            import paddle
1831
            import paddle.static as static
H
hong 已提交
1832

1833
            paddle.enable_static()
H
hong 已提交
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
H
hong 已提交
1845 1846 1847 1848
    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1849
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
1850 1851 1852 1853 1854
    if 'pickle_protocol' in configs:
        protocol = configs['pickle_protocol']
        warnings.warn(
            "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
        )
H
hong 已提交
1855

1856
    if not isinstance(protocol, int):
W
WeiXin 已提交
1857
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
1858
            type(protocol)))
W
WeiXin 已提交
1859

1860
    if protocol < 2 or protocol > 4:
1861 1862 1863
        raise ValueError(
            "Expected 1<'protocol'<5, but received protocol={}".format(
                protocol))
W
WeiXin 已提交
1864

1865 1866 1867 1868
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1869 1870 1871 1872
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1873
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1874
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
W
WeiXin 已提交
1875

1876
    param_dict = _unpack_saved_dict(param_dict, protocol)
1877

1878 1879 1880
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
1881 1882 1883 1884 1885 1886
        with open(model_path + ".pdparams", 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
        with open(model_path + ".pdparams", 'wb') as f:
1887
            pickle.dump(param_dict, f, protocol=protocol)
H
hong 已提交
1888 1889 1890 1891

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1892 1893
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1894
        pickle.dump(opt_dict, f, protocol=protocol)
H
hong 已提交
1895 1896 1897 1898

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
1899
    paddle.fluid.core.save_op_version_info(program.desc)
H
hong 已提交
1900 1901 1902 1903 1904

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1905 1906 1907 1908 1909 1910
def _pickle_loads_mac(path, f):
    pickle_bytes = bytearray(0)
    file_size = os.path.getsize(path)
    max_bytes = 2**30
    for _ in range(0, file_size, max_bytes):
        pickle_bytes += f.read(max_bytes)
T
tianshuo78520a 已提交
1911
    load_result = pickle.loads(pickle_bytes, encoding='latin1')
1912 1913 1914
    return load_result


1915
@static_only
H
hong 已提交
1916
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1917
    """
1918 1919
    :api_attr: Static Graph

H
hong 已提交
1920
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1921
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1922

1923 1924
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1925 1926
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1927
    Args:
1928 1929
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1930
        executor(Executor, optional): The executor used for initialize the parameter
1931
                                      When startup program is not run.
1932
        var_list(list|tuple, optional): The Tensor list/tuple to load single model file saved with
1933
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1934
                                  Default: None
H
hong 已提交
1935 1936 1937

    Returns:
        None
1938

H
hong 已提交
1939 1940 1941
     Examples:
        .. code-block:: python

1942
            import paddle
1943
            import paddle.static as static
H
hong 已提交
1944

1945
            paddle.enable_static()
H
hong 已提交
1946

1947 1948 1949
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
H
hong 已提交
1950

1951 1952 1953 1954 1955 1956 1957
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
            static.load(prog, "./temp")
H
hong 已提交
1958 1959
    """

1960 1961
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1975
        _logger.debug(
1976 1977
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
1978 1979 1980 1981
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
1982 1983 1984 1985 1986 1987

        if var_list is not None:
            var_list_names = [var.name for var in var_list]
        else:
            var_list_names = None

H
hong 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
1998 1999
                load_condition = var_list_names is None or var.name in var_list_names
                if var_path in binary_file_set and load_condition:
H
hong 已提交
2000 2001 2002 2003 2004 2005 2006
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
2007 2008 2009
                load_vars(executor=executor,
                          dirname=model_path,
                          vars=loaded_var_list)
H
hong 已提交
2010 2011 2012 2013 2014
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
2015
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
2031
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
2032 2033 2034

            dir_name, file_name = os.path.split(model_path)
            try:
2035 2036 2037 2038
                load_vars(executor=executor,
                          dirname=dir_name,
                          vars=var_list,
                          filename=file_name)
H
hong 已提交
2039 2040 2041 2042
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
2043 2044 2045
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
2046 2047

            return
Y
Yang Zhang 已提交
2048 2049 2050 2051 2052 2053 2054 2055

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
2056 2057 2058 2059
        elif p.is_xpu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.XPUPlace(p.xpu_device_id())
2060 2061 2062 2063
        elif p.is_npu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.NPUPlace(p.npu_device_id())
2064 2065 2066 2067
        elif p.is_mlu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.MLUPlace(p.mlu_device_id())
Y
Yang Zhang 已提交
2068 2069 2070 2071 2072 2073
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
2074 2075

    parameter_list = list(filter(is_parameter, program.list_vars()))
2076 2077 2078 2079 2080

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
2081
    with open(parameter_file_name, 'rb') as f:
2082 2083 2084 2085 2086

        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            load_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2087
            load_dict = pickle.load(f, encoding='latin1')
2088
        load_dict = _pack_loaded_dict(load_dict)
Y
Yang Zhang 已提交
2089 2090 2091 2092 2093
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
2094 2095 2096 2097 2098

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
2099
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
2100
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
2101
            "Optimizer file [{}] not exits".format(opt_file_name)
2102 2103 2104 2105

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
2106 2107

        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2108
            load_dict = pickle.load(f, encoding='latin1')
Y
Yang Zhang 已提交
2109 2110 2111 2112 2113
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
2114 2115


H
hong 已提交
2116
def load_program_state(model_path, var_list=None):
2117
    """
2118

2119
    Load program state from local file
2120

2121 2122
    Args:
        model_path(str): The file prefix store the program
2123
        var_list(list|tuple, optional): The Tensor list/tuple to load saved with
2124
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
2125
                                  Default: None.
2126
                                  The var_list is only used to get name,
H
hong 已提交
2127
                                  will not be modified.
2128 2129 2130 2131
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
2132

2133 2134
        .. code-block:: python

2135
            import paddle
2136
            import paddle.static as static
2137 2138

            paddle.enable_static()
2139

2140 2141 2142
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2143

2144 2145 2146 2147
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2148

2149 2150
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
2151
    """
H
hong 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2164
        _logger.debug(
2165 2166
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
2192 2193
                    lod_level=var.lod_level if var.desc.type()
                    == core.VarDesc.VarType.LOD_TENSOR else None,
H
hong 已提交
2194 2195
                    persistable=True)

2196 2197 2198 2199 2200 2201
            def _load_vars_with_try_catch(exe,
                                          dirname,
                                          vars,
                                          filename,
                                          raise_error=True):
                try:
2202 2203 2204 2205
                    load_vars(executor=exe,
                              dirname=dirname,
                              vars=vars,
                              filename=filename)
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
                    return True
                except:
                    error_str = "Failed to load model/variables `%s`, please make sure " \
                                "model/variables file is saved with the following APIs: " \
                                "save_params, save_persistables, save_vars."
                    filenames = [var.name for var in vars
                                 ] if filename is None else filename
                    if raise_error:
                        raise RuntimeError(error_str % filenames)
                    else:
                        warnings.warn(error_str % filenames, RuntimeWarning)
                return False

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

H
hong 已提交
2222 2223
            loaded_var_list = []

2224 2225 2226
            if os.path.isfile(model_path):
                # when model_path is file, var_list cannot be None
                dir_name, file_name = os.path.split(model_path)
H
hong 已提交
2227 2228
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
2229 2230
                _load_vars_with_try_catch(exe, dir_name, loaded_var_list,
                                          file_name)
H
hong 已提交
2231
            else:
2232 2233 2234 2235 2236 2237 2238
                # var_list can be None or not None
                if var_list is not None:
                    for var in var_list:
                        loaded_var_list.append(
                            clone_var_to_block(load_block, var))
                    _load_vars_with_try_catch(exe, model_path, loaded_var_list,
                                              None)
H
hong 已提交
2239
                else:
2240
                    for var_name in var_name_list:
2241 2242 2243 2244
                        # NOTE(chenweihang): If identify which files the user wants
                        # to load from the disk, we load these variables one by one.
                        # If a file does not exist, we only warn the user that the
                        # file may be an irrelevant file, but does not throw an error
2245
                        # to ensure that other legal variables can be loaded.
2246 2247
                        temp_var = load_block.create_var(name=var_name,
                                                         persistable=True)
2248 2249 2250 2251
                        if _load_vars_with_try_catch(exe, model_path,
                                                     [temp_var], None, False):
                            loaded_var_list.append(temp_var)

H
hong 已提交
2252 2253
            res_dict = {}
            for var in loaded_var_list:
2254 2255
                res_dict[var.name] = np.asarray(
                    paddle.fluid.global_scope().find_var(var.name).get_tensor())
H
hong 已提交
2256 2257 2258

            return res_dict

2259
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2260
        "Parameter file [{}] not exits".format(parameter_file_name)
2261 2262

    with open(parameter_file_name, 'rb') as f:
2263 2264 2265 2266
        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            para_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2267
            para_dict = pickle.load(f, encoding='latin1')
2268
    para_dict = _pack_loaded_dict(para_dict)
2269

H
hong 已提交
2270
    opt_file_name = model_prefix + ".pdopt"
2271 2272
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2273
            opti_dict = pickle.load(f, encoding='latin1')
2274 2275 2276 2277 2278 2279

        para_dict.update(opti_dict)

    return para_dict


2280
@static_only
2281 2282 2283 2284
def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

2285
    An exception will throw if shape or dtype of the parameters is not match.
2286 2287 2288 2289 2290 2291

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2292
    Returns:
2293
        None
2294

2295 2296
    Examples:
        .. code-block:: python
2297

2298
            import paddle
2299
            import paddle.static as static
2300 2301

            paddle.enable_static()
2302

2303 2304 2305
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2306

2307 2308 2309 2310
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2311

2312 2313
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
H
hong 已提交
2314

2315
            static.set_program_state(prog, program_state)
2316
    """
2317
    state_dict = _pack_loaded_dict(state_dict)
2318 2319 2320 2321 2322 2323
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2324
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2325 2326 2327 2328
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2329
            assert orig_para_np.shape == new_para_np.shape, \
2330
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2331
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2332
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2333
            assert orig_para_np.dtype == new_para_np.dtype, \
2334
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2335
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2336 2337 2338 2339 2340
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

Q
QingshuChen 已提交
2341 2342
            #assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
            #    "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2343 2344 2345 2346 2347 2348 2349
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
Q
QingshuChen 已提交
2350 2351 2352 2353
            elif ten_place.is_xpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.XPUPlace(p.xpu_device_id())
2354 2355 2356 2357
            elif ten_place.is_npu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.NPUPlace(p.npu_device_id())
2358 2359 2360 2361
            elif ten_place.is_mlu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.MLUPlace(p.mlu_device_id())
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
2373 2374
            "This list is not set, Because of Paramerter not found in program. There are: {}"
            .format(" ".join(unused_para_list)))