io.py 54.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24 25 26
import paddle
import paddle.reader
from paddle.reader import *
27
from paddle.fluid import layers
X
Xin Pan 已提交
28
from paddle.fluid.executor import Executor
29
from paddle.fluid.evaluator import Evaluator
30
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
31
from paddle.fluid.compiler import CompiledProgram
32
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
33 34
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
35
from . import core
36
from .. import compat as cpt
37

38 39
batch = paddle.batch

40
__all__ = [
T
tangwei12 已提交
41
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
42 43
    'load_persistables', 'save_inference_model', 'load_inference_model', 'batch'
] + reader.__all__ + paddle.reader.__all__
44

45 46
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
47

48 49

def is_parameter(var):
F
fengjiayi 已提交
50 51
    """
    Check whether the given variable is an instance of Parameter.
52 53

    Args:
F
fengjiayi 已提交
54
        var(Variable): The variable to be checked.
55 56

    Returns:
F
fengjiayi 已提交
57 58 59 60 61 62
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

63
            import paddle.fluid as fluid
F
fengjiayi 已提交
64 65
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
66
    """
67 68 69 70
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

84
            import paddle.fluid as fluid
85
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
86 87
            res = fluid.io.is_persistable(param)
    """
88
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
89 90
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
91
        return False
92 93 94 95 96
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
112 113


C
chengduo 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


128 129 130 131 132
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
133
              filename=None):
134
    """
F
fengjiayi 已提交
135 136
    Save variables to the given directory by executor.

137 138 139 140
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
141
    are assigned, the `main_program` and the `predicate` will be ignored.
142

143 144 145
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
146
    use `filename` to specify it.
147

F
fengjiayi 已提交
148 149 150
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
151 152
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
153 154
                                    be used automatically.
                                    Default: None
155
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
156 157
                                   It has a higher priority than the `main_program`.
                                   Default: None
158 159 160 161
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
162 163
                                  `vars` is None).
                                  Default: None
164
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
165 166 167 168 169 170 171 172 173 174 175 176
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

177 178 179 180 181 182 183 184 185 186 187 188
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
189

190
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
191 192 193 194
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
195
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
196
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
197 198 199 200 201
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
202 203
            var_list = [w, b]
            path = "./my_paddle_vars"
204
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
205 206
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
207
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
208
    """
L
lujun 已提交
209
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
210
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
211

212 213 214
    if vars is None:
        save_vars(
            executor,
215
            main_program=main_program,
L
lujun 已提交
216
            dirname=save_dirname,
217
            vars=list(filter(predicate, main_program.list_vars())),
218
            filename=filename)
219
    else:
220 221 222 223 224 225 226
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

227 228
        save_program = Program()
        save_block = save_program.global_block()
229 230

        save_var_map = {}
231
        for each_var in vars:
232 233 234
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
235
            new_var = _clone_var_in_block_(save_block, each_var)
236
            if filename is None:
237 238
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
239 240 241 242
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
243
                    attrs={'file_path': save_file_path})
244 245 246
            else:
                save_var_map[new_var.name] = new_var

247
        if filename is not None:
248 249 250 251
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

252
            save_block.append_op(
253 254
                type='save_combine',
                inputs={'X': save_var_list},
255
                outputs={},
L
lujun 已提交
256
                attrs={'file_path': os.path.join(save_dirname, filename)})
257

258 259 260
        executor.run(save_program)


261
def save_params(executor, dirname, main_program=None, filename=None):
262
    """
F
fengjiayi 已提交
263 264 265
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

266 267 268
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
269 270
    the file name.

271 272 273
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
274 275 276
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
277 278 279 280 281 282 283 284

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
285 286
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
287 288 289 290 291 292 293 294 295
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
296 297
            import paddle.fluid as fluid

F
fengjiayi 已提交
298 299 300
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
301
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
302
                                 main_program=None)
303 304 305 306
    """
    save_vars(
        executor,
        dirname=dirname,
307
        main_program=main_program,
308
        vars=None,
309
        predicate=is_parameter,
310
        filename=filename)
311 312


313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

335
            import paddle.fluid as fluid
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
460
        raise TypeError("'main_program' should be an instance of Program.")
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


494
def save_persistables(executor, dirname, main_program=None, filename=None):
495
    """
496 497
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
498 499
    or file `filename`.

500 501 502
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
503 504 505 506 507
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
508 509
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
510 511
                                    program will be used automatically.
                                    Default: None
512
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
513 514 515 516 517 518 519 520 521
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
522 523
            import paddle.fluid as fluid

F
fengjiayi 已提交
524 525
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
526
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
527
            prog = fluid.default_main_program()
528
            fluid.io.save_persistables(executor=exe, dirname=param_path,
529
                                       main_program=prog)
530
    """
531 532 533 534 535 536 537 538 539 540 541
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
542 543


544 545 546 547 548
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
549
              filename=None):
550
    """
F
fengjiayi 已提交
551 552
    Load variables from the given directory by executor.

553 554 555 556
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
557 558
    are assigned, the `main_program` and the `predicate` will be ignored.

559 560 561
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
562
    use `filename` to specify it.
563

F
fengjiayi 已提交
564 565 566
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
567 568
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
569 570
                                    be used automatically.
                                    Default: None
571
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
572 573
                                   It has a higher priority than the `main_program`.
                                   Default: None
574 575 576 577
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
578 579
                                  `vars` is None).
                                  Default: None
580
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
581 582 583 584 585 586 587 588 589 590 591 592
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

593 594 595 596 597 598 599 600 601 602 603 604
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
605

606
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
607 608 609 610
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
611 612 613
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
614
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
615 616 617 618
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
619 620 621 622
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
623
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
624
                               filename="vars_file")
625 626
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
627
    """
L
lujun 已提交
628
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
629

630
    if vars is None:
631
        if main_program is None:
Y
Yu Yang 已提交
632
            main_program = default_main_program()
633
        if not isinstance(main_program, Program):
634 635 636 637
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
638
            dirname=load_dirname,
T
tangwei12 已提交
639
            main_program=main_program,
640
            vars=list(filter(predicate, main_program.list_vars())),
641
            filename=filename)
642 643 644
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
645

646 647
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
648

649 650 651
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

652
        load_var_map = {}
653 654
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
655 656
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
657
            new_var = _clone_var_in_block_(load_block, each_var)
658
            if filename is None:
659 660 661 662
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
663 664 665
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
666 667 668
            else:
                load_var_map[new_var.name] = new_var

669
        if filename is not None:
670 671 672 673
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

674
            load_block.append_op(
675
                type='load_combine',
676
                inputs={},
677
                outputs={"Out": load_var_list},
L
lujun 已提交
678
                attrs={'file_path': os.path.join(load_dirname, filename)})
679 680 681
        executor.run(load_prog)


682
def load_params(executor, dirname, main_program=None, filename=None):
683
    """
F
fengjiayi 已提交
684
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
685
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
686 687
    the file `filename`.

688 689 690
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
691 692
    `filename` to specify the file name.

693 694 695 696
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
697 698 699
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
700 701 702 703 704 705 706 707

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
708
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
709 710 711 712 713 714 715 716 717
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

718
            import paddle.fluid as fluid
F
fengjiayi 已提交
719 720 721
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
722
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
723
                                main_program=None)
724 725
    """
    load_vars(
726 727 728
        executor,
        dirname=dirname,
        main_program=main_program,
729
        predicate=is_parameter,
730
        filename=filename)
731 732


733
def load_persistables(executor, dirname, main_program=None, filename=None):
734
    """
735 736
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
737 738
    `dirname` or the file `filename`.

739 740 741
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
742 743 744 745 746
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
747 748
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
749 750
                                    program will be used automatically.
                                    Default: None
751
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
752 753 754 755 756 757 758 759 760
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

761
            import paddle.fluid as fluid
F
fengjiayi 已提交
762 763 764
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
765
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
766
                                       main_program=None)
767
    """
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

799
            import paddle.fluid as fluid
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
847 848 849 850
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
885
        raise TypeError("'main_program' should be an instance of Program.")
886 887 888 889 890 891 892 893 894 895 896 897 898 899

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
900 901


902 903 904
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
905 906 907
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
908 909
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
910 911 912
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
913

914
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
915
        out = global_block.var(name)
W
Wu Yi 已提交
916
        global_block._prepend_op(
K
Kexin Zhao 已提交
917 918
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
919
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
920 921 922
            attrs={'col': i})


923 924 925
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
926 927
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
928 929 930
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
931

932
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
933 934 935 936 937 938 939
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


940 941 942 943
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
944
                         main_program=None,
945
                         model_filename=None,
946
                         params_filename=None,
T
tangwei12 已提交
947 948
                         export_for_deployment=True,
                         program_only=False):
949
    """
F
fengjiayi 已提交
950 951
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
952 953 954 955
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
956 957 958

    Args:
        dirname(str): The directory path to save the inference model.
959
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
960
                                     during inference.
961
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
962 963
                                     results.
        executor(Executor): The executor that saves the inference model.
964 965
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
966 967
                                    the default main program will be used.
                                    Default: None.
968 969
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
970
                                  `__model__` will be used.
971 972
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
973
                                   in separate files .
X
Xin Pan 已提交
974 975 976 977 978
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
979
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
980

F
fengjiayi 已提交
981
    Returns:
F
flame 已提交
982
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
983 984 985 986 987 988 989

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
990

991 992
            import paddle.fluid as fluid

F
fengjiayi 已提交
993 994
            path = "./infer_model"

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1017
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1018
            # and parameters are going to be saved in separate files under folder
1019
            # "./infer_model".
1020 1021

    """
M
minqiyang 已提交
1022
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1023
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1024
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1025
        if len(feeded_var_names) > 0:
1026
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1027
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1028
                    isinstance(name, six.string_types)
1029
                    for name in feeded_var_names)):
M
minqiyang 已提交
1030
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1031 1032

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1033
        target_vars = [target_vars]
X
Xin Pan 已提交
1034
    elif export_for_deployment:
1035 1036
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1037 1038
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1039
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1050 1051 1052 1053 1054
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1055
        for i, var in enumerate(target_vars):
1056
            if isinstance(var, Variable):
F
flame 已提交
1057 1058 1059
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1060
        target_vars = uniq_target_vars
F
flame 已提交
1061
    target_var_name_list = [var.name for var in target_vars]
1062

1063
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1064
    save_dirname = dirname
1065
    try:
L
lujun 已提交
1066 1067
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1068 1069 1070 1071
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1072 1073 1074 1075
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1076
    model_basename = os.path.join(save_dirname, model_basename)
1077

X
Xin Pan 已提交
1078 1079 1080 1081
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1082 1083 1084

    origin_program = main_program.clone()

X
Xin Pan 已提交
1085
    if export_for_deployment:
X
Xin Pan 已提交
1086 1087
        main_program = main_program.clone()
        global_block = main_program.global_block()
1088
        need_to_remove_op_index = []
X
Xin Pan 已提交
1089 1090 1091
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1092 1093 1094 1095 1096
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1097
        main_program.desc.flush()
X
Xin Pan 已提交
1098

1099
        main_program = main_program._prune(feeded_var_names, target_vars)
X
Xin Pan 已提交
1100
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1101 1102
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1103 1104 1105
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1106 1107
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1108 1109
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1110 1111 1112
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1113 1114
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1115

T
tangwei12 已提交
1116 1117 1118 1119 1120 1121
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1122 1123
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1124 1125
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1126

L
lujun 已提交
1127
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1128
    return target_var_name_list
X
fix  
Xin Pan 已提交
1129

1130

1131 1132 1133
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1134 1135
                         params_filename=None,
                         pserver_endpoints=None):
1136
    """
1137 1138 1139 1140
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1141

F
fengjiayi 已提交
1142 1143 1144 1145
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1146
                                  If it is None, the default filename
F
fengjiayi 已提交
1147 1148 1149
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1150 1151 1152
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1153
                                   files, set it as 'None'.
1154 1155 1156 1157
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1158 1159 1160

    Returns:
        tuple: The return of this function is a tuple with three elements:
1161 1162 1163 1164 1165
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1166 1167 1168 1169 1170 1171 1172 1173
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1187
            path = "./infer_model"
1188 1189 1190
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1191 1192
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1193 1194 1195 1196
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1197 1198
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1199
            # if we need lookup table, we will use:
1200
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1201 1202
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1203
                                              pserver_endpoints=endpoints))
1204

1205
            # In this example, the inference program was saved in the
1206
            # "./infer_model/__model__" and parameters were saved in
1207
            # separate files in "./infer_model".
1208 1209
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1210
            # program to get the inference result.
1211
    """
L
lujun 已提交
1212 1213
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1214 1215
        raise ValueError("There is no directory named '%s'", dirname)

1216 1217
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1218
    else:
1219
        model_filename = "__model__"
L
lujun 已提交
1220
    model_filename = os.path.join(load_dirname, model_filename)
1221 1222 1223

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1224

1225
    with open(model_filename, "rb") as f:
1226 1227
        program_desc_str = f.read()

1228
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1229
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1230 1231 1232
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1233
    load_persistables(executor, load_dirname, program, params_filename)
1234

T
tangwei12 已提交
1235
    if pserver_endpoints:
T
tangwei12 已提交
1236
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1237

1238 1239
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1240 1241 1242 1243 1244
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1245 1246


T
tangwei12 已提交
1247 1248 1249
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1250 1251
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1252
    program._sync_with_cpp()
T
tangwei12 已提交
1253
    return program
T
tangwei12 已提交
1254 1255


X
xuwei06 已提交
1256 1257
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1269

F
fengjiayi 已提交
1270 1271
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1272

1273
            import paddle.fluid as fluid
F
fengjiayi 已提交
1274 1275 1276
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1277

X
xuwei06 已提交
1278
    """
X
xuwei06 已提交
1279 1280
    assert is_parameter(para)

X
xuwei06 已提交
1281 1282 1283 1284 1285 1286 1287 1288
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1289
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1290

F
fengjiayi 已提交
1291 1292 1293 1294 1295 1296 1297
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1298

F
fengjiayi 已提交
1299 1300
    Returns:
        numpy.array: The parameter's values.
1301

F
fengjiayi 已提交
1302 1303 1304 1305 1306
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1307

F
fengjiayi 已提交
1308 1309 1310
    Examples:
        .. code-block:: python

1311
            import paddle.fluid as fluid
F
fengjiayi 已提交
1312 1313
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1314 1315
    """
    if program is None:
Y
Yu Yang 已提交
1316
        program = default_main_program()
X
xuwei06 已提交
1317 1318
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)