io.py 90.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25
import sys
26

H
hong 已提交
27
import numpy as np
28
import math
29
import paddle
30
from paddle.fluid import layers
H
hong 已提交
31
from paddle.fluid.executor import Executor, global_scope
32
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
33
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
34
    program_guard, dygraph_not_support, static_only
35 36
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
37
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
38
from paddle.fluid.compiler import CompiledProgram
39
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
40
from . import reader
41
from . import unique_name
S
sneaxiy 已提交
42
from .reader import *
43 44
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
45
from . import core
46
from .. import compat as cpt
47 48
from paddle.utils import deprecated
from paddle.fluid.framework import static_only
49

50 51
batch = paddle.batch

52
__all__ = [
53 54 55 56 57 58 59 60 61 62 63 64 65
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
66 67
    'get_program_parameter',
    'get_program_persistable_vars',
68
] + reader.__all__
69

70 71
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
72

73 74

def is_parameter(var):
F
fengjiayi 已提交
75 76
    """
    Check whether the given variable is an instance of Parameter.
77 78

    Args:
F
fengjiayi 已提交
79
        var(Variable): The variable to be checked.
80 81

    Returns:
F
fengjiayi 已提交
82 83 84 85 86 87
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

88
            import paddle
89
            import paddle.fluid as fluid
90 91

            paddle.enable_static()
F
fengjiayi 已提交
92 93
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
94
    """
95 96 97 98
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

112
            import paddle
113
            import paddle.fluid as fluid
114 115

            paddle.enable_static()
116
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
117 118
            res = fluid.io.is_persistable(param)
    """
119
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
120 121
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
122
        return False
123 124 125
    return var.persistable


H
hong 已提交
126
def is_belong_to_optimizer(var):
127
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
128 129 130
        return is_persistable(var)

    return False
H
hong 已提交
131 132


133
@dygraph_not_support
H
hong 已提交
134 135
def get_program_parameter(program):
    """
136 137
    :api_attr: Static Graph

H
hong 已提交
138 139 140 141 142 143 144 145 146 147 148
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

149
            import paddle
H
hong 已提交
150
            import paddle.fluid as fluid
151 152

            paddle.enable_static()
H
hong 已提交
153 154 155 156 157 158 159 160
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


161
@dygraph_not_support
H
hong 已提交
162 163
def get_program_persistable_vars(program):
    """
164 165
    :api_attr: Static Graph

H
hong 已提交
166 167 168 169 170 171 172 173 174 175 176
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

177
            import paddle
H
hong 已提交
178
            import paddle.fluid as fluid
179 180

            paddle.enable_static()
H
hong 已提交
181 182 183 184 185 186 187 188
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


189 190
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
206 207


208
@signature_safe_contextmanager
H
hong 已提交
209 210 211 212 213 214 215
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
216 217
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
218 219


220
def _get_valid_program(main_program=None):
C
chengduo 已提交
221 222 223 224 225
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
226 227 228
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
229 230 231
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
232 233 234
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
235 236 237
    return main_program


238
@dygraph_not_support
239 240 241 242 243
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
244
              filename=None):
245
    """
246 247
    :api_attr: Static Graph

248
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
249

250
    There are two ways to specify the variables to be saved: set variables in
251 252
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
253

254
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
255
    If you prefer to save variables in separate files in the `dirname` folder,
256
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
257
    use `filename` to specify it.
258

F
fengjiayi 已提交
259 260
    Args:
        executor(Executor): The executor to run for saving variables.
261 262
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
263
        main_program(Program, optional): The program whose variables will be saved.
264
                                    If it is None, the default main program will
F
fengjiayi 已提交
265 266
                                    be used automatically.
                                    Default: None
267 268 269
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
270
                                       `predicate(variable) == True`.
271 272
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
273
                                 use `filename` to specify it. Otherwise, let `filename` be None.
274
                                 Default: None
F
fengjiayi 已提交
275 276

    Returns:
277 278
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
279 280 281 282 283 284 285

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

286
            import paddle
287
            import paddle.fluid as fluid
288

289
            paddle.enable_static()
290 291 292 293 294 295 296 297 298 299 300
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
301

302
            # The first usage: use `vars` to set the saved variables.
303 304
            var_list = [w, b]
            path = "./my_paddle_vars"
305
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
306 307 308 309 310 311 312 313 314 315
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
316
    """
317 318 319 320
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
321
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
322

323
    if vars is None:
324
        return save_vars(
325
            executor,
326
            main_program=main_program,
327
            dirname=dirname,
328
            vars=list(filter(predicate, main_program.list_vars())),
329
            filename=filename)
330
    else:
331
        params_var_name = unique_name.generate("saved_params")
332 333 334 335 336 337 338
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

339 340
        save_program = Program()
        save_block = save_program.global_block()
341 342

        save_var_map = {}
343
        for each_var in vars:
344 345 346
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
347
            new_var = _clone_var_in_block_(save_block, each_var)
348 349 350
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
351 352 353 354
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
355
                    attrs={'file_path': os.path.normpath(save_file_path)})
356 357 358
            else:
                save_var_map[new_var.name] = new_var

359
        if filename is not None or save_to_memory:
360 361 362 363
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

364 365 366 367 368 369 370
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
371
            save_block.append_op(
372 373
                type='save_combine',
                inputs={'X': save_var_list},
374 375 376 377 378
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
379

380
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
381 382 383
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
384
        executor.run(save_program)
385 386
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
387 388


389
@dygraph_not_support
390
def save_params(executor, dirname, main_program=None, filename=None):
391
    """
392 393
    :api_attr: Static Graph

G
guofei 已提交
394
    This operator saves all parameters from the :code:`main_program` to
395
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
396
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
397

G
guofei 已提交
398 399 400
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
401 402
    the file name.

403
    Note:
G
guofei 已提交
404
        Some variables are not Parameter while they are necessary for
405
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
406 407
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
408 409 410
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
411 412
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
413 414

    Args:
415
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
416
                            refer to :ref:`api_guide_executor_en`.
417 418
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
419
        main_program(Program, optional): The program whose parameters will be
420 421
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
422 423 424 425 426 427 428
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
429 430

    Returns:
431 432
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
433 434 435 436

    Examples:
        .. code-block:: python

437
            import paddle
H
Huihuang Zheng 已提交
438
            import paddle.fluid as fluid
439

440 441

            paddle.enable_static()
G
guofei 已提交
442 443 444 445 446
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
447

G
guofei 已提交
448 449
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
450

F
fengjiayi 已提交
451
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
452 453
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
454 455
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
456
    """
457
    return save_vars(
458 459
        executor,
        dirname=dirname,
460
        main_program=main_program,
461
        vars=None,
462
        predicate=is_parameter,
463
        filename=filename)
464 465


466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

488
            import paddle
489
            import paddle.fluid as fluid
490 491

            paddle.enable_static()
492 493 494 495 496 497 498 499 500 501
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
502
        receive params on pserver through rpc.
503 504 505 506 507 508 509 510 511 512
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
513 514 515 516 517 518 519
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
520 521 522

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
523
                slice = optimizer.slice
524 525 526
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
527 528 529
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
530 531
                endpoints[index] = endpoint

T
tangwei12 已提交
532 533 534 535 536
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

537
            block.append_op(
T
tangwei12 已提交
538 539 540 541 542 543 544 545 546 547 548
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
578 579
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
580 581 582 583 584 585
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
586
        raise TypeError("'main_program' should be an instance of Program.")
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


620
@dygraph_not_support
621
def save_persistables(executor, dirname, main_program=None, filename=None):
622
    """
623 624
    :api_attr: Static Graph

G
guofei 已提交
625 626 627
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
628 629
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
630

G
guofei 已提交
631
    The :code:`dirname` is used to specify the folder where persistable variables
632
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
633 634
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
635 636 637

    Args:
        executor(Executor): The executor to run for saving persistable variables.
638
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
639
                            more details.
640

641 642 643
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
644 645
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
646
                                         If it is None, the default main program will
G
guofei 已提交
647 648 649 650 651
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
652 653

    Returns:
654 655
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
656 657 658 659

    Examples:
        .. code-block:: python

660
            import paddle
H
Huihuang Zheng 已提交
661
            import paddle.fluid as fluid
662

663
            paddle.enable_static()
G
guofei 已提交
664 665 666 667 668
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
669

G
guofei 已提交
670 671 672
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
673
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
674 675
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
676
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
677 678
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
679
    """
680
    if main_program and main_program._is_distributed:
681
        return _save_distributed_persistables(
682 683
            executor, dirname=dirname, main_program=main_program)
    else:
684
        return save_vars(
685 686 687 688 689 690
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
691 692


693 694 695 696 697
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
698
              filename=None):
699
    """
700 701
    :api_attr: Static Graph

702
    This API loads variables from files by executor.
F
fengjiayi 已提交
703

704
    There are two ways to specify the variables to be loaded: the first way, set
705 706
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
707
    The first way has a higher priority.
F
fengjiayi 已提交
708

709
    The `dirname` is used to specify the folder where to load variables.
710
    If variables were saved in separate files in the folder `dirname`,
711
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
712
    use `filename` to specify it.
713

F
fengjiayi 已提交
714 715
    Args:
        executor(Executor): The executor to run for loading variables.
716 717
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
718
                                    If it is None, the default main program will
F
fengjiayi 已提交
719 720
                                    be used automatically.
                                    Default: None
721
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
722
                                   Default: None
723
        predicate(function, optional): The function selects variables that make
724 725 726 727 728
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
729 730 731 732 733 734 735 736 737 738

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

739
            import paddle
740
            import paddle.fluid as fluid
741

742
            paddle.enable_static()
743 744 745 746 747 748 749 750 751 752 753
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
754

755 756 757 758 759 760 761 762 763 764 765
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
766
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
767 768 769
            def name_has_fc(var):
                res = "fc" in var.name
                return res
770 771 772
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
773
                               vars=None, predicate=name_has_fc)
774 775
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
776

777
    """
778 779 780 781 782
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
783

784
    if vars is None:
785
        if main_program is None:
Y
Yu Yang 已提交
786
            main_program = default_main_program()
787
        if not isinstance(main_program, Program):
788 789 790
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
791 792 793

        load_vars(
            executor,
794
            dirname=dirname,
T
tangwei12 已提交
795
            main_program=main_program,
796
            vars=list(filter(predicate, main_program.list_vars())),
797
            filename=filename)
798 799 800
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
801

802 803
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
804

805
        if not isinstance(main_program, Program):
806 807 808
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
809

T
tangwei12 已提交
810
        # save origin param shape
H
hong 已提交
811
        orig_para_shape = {}
812
        load_var_map = {}
813 814 815 816

        check_vars = []
        sparse_vars = []

817 818
        for each_var in vars:
            assert isinstance(each_var, Variable)
819

T
tangwei12 已提交
820 821
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
822 823

            if isinstance(each_var, Parameter):
824 825
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
826 827 828 829 830

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

831
            new_var = _clone_var_in_block_(load_block, each_var)
832 833
            check_vars.append(each_var)

834
            if filename is None:
835 836 837 838
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
839 840 841 842
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
843
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
844 845 846
            else:
                load_var_map[new_var.name] = new_var

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
                raise ValueError("SelectedRows var {} can not find at {}".
                                 format(new_var.name, var_path))

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
                    slice = load_block.create_var(
                        name=block,
                        type=new_var.type,
                        shape=new_var.shape,
                        dtype=new_var.dtype,
                        persistable=False)
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
                    load_block.append_op(
                        type='load',
                        inputs={},
                        outputs={'Out': [slice]},
                        attrs={'file_path': file_path})

                load_block.append_op(
                    type='lookup_sparse_table_merge',
                    inputs={'X': slices},
                    outputs={'Out': new_var},
                    attrs={})

898
        if filename is not None:
899 900 901 902
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

903 904 905
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

906
            load_block.append_op(
907
                type='load_combine',
908
                inputs={},
909
                outputs={"Out": load_var_list},
910 911 912 913
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
914 915
        executor.run(load_prog)

T
tangwei12 已提交
916
        # check var shape
917
        for each_var in check_vars:
H
hong 已提交
918 919 920 921 922
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
923
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
924 925 926
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
927
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
928 929 930
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

931

932
@dygraph_not_support
933
def load_params(executor, dirname, main_program=None, filename=None):
934
    """
935 936
    :api_attr: Static Graph

937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
956 957

    Args:
958 959
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
960
        dirname(str): The directory path.
961 962 963 964 965 966 967 968
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
969 970 971 972 973 974 975

    Returns:
        None

    Examples:
        .. code-block:: python

976
            import paddle
977
            import paddle.fluid as fluid
978

979
            paddle.enable_static()
F
fengjiayi 已提交
980 981 982
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
983
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
984
                                main_program=None)
985 986
    """
    load_vars(
987 988 989
        executor,
        dirname=dirname,
        main_program=main_program,
990
        predicate=is_parameter,
991
        filename=filename)
992 993


994
@dygraph_not_support
995
def load_persistables(executor, dirname, main_program=None, filename=None):
996
    """
997 998
    :api_attr: Static Graph
    
999 1000
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1001
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1002

1003 1004 1005 1006
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1007 1008

    Args:
1009 1010
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1011
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1012
        main_program(Program, optional): The program whose persistable variables will
1013 1014 1015 1016 1017 1018 1019
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1020 1021 1022 1023 1024 1025 1026

    Returns:
        None

    Examples:
        .. code-block:: python

1027
            import paddle
1028
            import paddle.fluid as fluid
1029

1030
            paddle.enable_static()
F
fengjiayi 已提交
1031 1032 1033
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1034
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1035
                                       main_program=None)
1036
    """
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1068
            import paddle
1069
            import paddle.fluid as fluid
1070 1071

            paddle.enable_static()
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
1105 1106 1107 1108 1109 1110 1111 1112
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1135
        raise TypeError("'main_program' should be an instance of Program.")
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1150 1151


1152 1153 1154
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1155 1156 1157
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1158 1159
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1160 1161 1162
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1163

1164
    for i, name in enumerate(feed_target_names):
1165 1166 1167 1168 1169 1170 1171
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
                format(
                    i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1172
        out = global_block.var(name)
W
Wu Yi 已提交
1173
        global_block._prepend_op(
K
Kexin Zhao 已提交
1174 1175
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1176
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1177 1178 1179
            attrs={'col': i})


1180 1181 1182
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1183 1184
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1185 1186 1187
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1188

1189
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1190 1191 1192 1193 1194 1195 1196
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1197 1198
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.save_inference_model")
1199 1200 1201 1202
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1203
                         main_program=None,
1204
                         model_filename=None,
1205
                         params_filename=None,
T
tangwei12 已提交
1206 1207
                         export_for_deployment=True,
                         program_only=False):
1208
    """
1209 1210
    :api_attr: Static Graph

F
fengjiayi 已提交
1211
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1212
    and then save it and all related parameters to given `dirname` .
1213
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1214 1215
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1216

G
guofei 已提交
1217
    Note:
1218
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1219
        structure and parameters are going to be saved. If you would like to save params of
1220
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1221
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1222 1223 1224

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1225
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1226
                                     data during inference.
1227
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1228
                                     inference results.
1229
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1230 1231
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1232
                                         build the inference model. If is set None,
G
guofei 已提交
1233 1234 1235
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1236
                                       itself. If is set None, a default filename
G
guofei 已提交
1237 1238
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1239
                                        If it is set None, parameters will be saved
G
guofei 已提交
1240
                                        in separate files .
X
Xin Pan 已提交
1241 1242 1243 1244 1245
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1246
                                     Default: True.
1247
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1248 1249
                                      save params of Program.
                                      Default: False.
1250

F
fengjiayi 已提交
1251
    Returns:
G
guofei 已提交
1252 1253 1254 1255
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1256 1257

    Raises:
G
guofei 已提交
1258 1259
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1260 1261 1262

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1263

1264
            import paddle
1265 1266
            import paddle.fluid as fluid

1267
            paddle.enable_static()
F
fengjiayi 已提交
1268 1269
            path = "./infer_model"

T
tianshuo78520a 已提交
1270
            # User defined network, here a softmax regession example
G
guofei 已提交
1271 1272
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1290
            # In this example, the save_inference_mode inference will prune the default
1291
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1292
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1293
            # and parameters are going to be saved in separate files under folder
1294
            # "./infer_model".
1295 1296

    """
M
minqiyang 已提交
1297
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1298
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1299
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1300
        if len(feeded_var_names) > 0:
1301
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1302
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1303
                    isinstance(name, six.string_types)
1304
                    for name in feeded_var_names)):
M
minqiyang 已提交
1305
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1306 1307

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1308
        target_vars = [target_vars]
X
Xin Pan 已提交
1309
    elif export_for_deployment:
1310 1311
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1312 1313
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1314
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1315

1316
    # remind user to set auc_states to zeros if the program contains auc op
1317 1318
    all_ops = main_program.global_block().ops
    for op in all_ops:
1319 1320 1321
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1322 1323 1324 1325 1326 1327
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1328 1329 1330 1331 1332
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1333
        for i, var in enumerate(target_vars):
1334
            if isinstance(var, Variable):
F
flame 已提交
1335 1336 1337
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1338
        target_vars = uniq_target_vars
F
flame 已提交
1339
    target_var_name_list = [var.name for var in target_vars]
1340

1341
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1342
    save_dirname = dirname
1343
    try:
L
lujun 已提交
1344 1345
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1346 1347 1348 1349
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1350 1351 1352 1353
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1354
    model_basename = os.path.join(save_dirname, model_basename)
1355

X
Xin Pan 已提交
1356 1357 1358 1359
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1360 1361 1362

    origin_program = main_program.clone()

X
Xin Pan 已提交
1363
    if export_for_deployment:
X
Xin Pan 已提交
1364 1365
        main_program = main_program.clone()
        global_block = main_program.global_block()
1366
        need_to_remove_op_index = []
X
Xin Pan 已提交
1367 1368 1369
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1370 1371 1372 1373 1374
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1375
        main_program.desc.flush()
X
Xin Pan 已提交
1376

1377 1378
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1379
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1380 1381
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1382 1383 1384
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1385
        main_program.desc._set_version()
1386
        paddle.fluid.core.save_op_version_info(main_program.desc)
X
Xin Pan 已提交
1387 1388
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1389 1390 1391
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1392 1393
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1394

T
tangwei12 已提交
1395 1396 1397 1398 1399 1400
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1401 1402
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1403 1404
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1405

L
lujun 已提交
1406
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1407
    return target_var_name_list
X
fix  
Xin Pan 已提交
1408

1409

1410 1411
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.load_inference_model")
1412 1413 1414
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1415 1416
                         params_filename=None,
                         pserver_endpoints=None):
1417
    """
1418 1419
    :api_attr: Static Graph

1420 1421 1422
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1423
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1424

F
fengjiayi 已提交
1425
    Args:
1426 1427 1428
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1429
        executor(Executor): The executor to run for loading inference model.
1430
                            See :ref:`api_guide_executor_en` for more details about it.
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1442 1443 1444 1445

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1446
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1447 1448

    Returns:
1449
        list: The return of this API is a list with three elements:
1450
        (program, feed_target_names, fetch_targets). The `program` is a
1451 1452 1453 1454 1455
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1456 1457 1458 1459 1460 1461 1462

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1463
            import paddle
1464 1465
            import paddle.fluid as fluid
            import numpy as np
1466

1467
            paddle.enable_static()
1468
            # Build the model
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1480 1481

            # Save the inference model
F
fengjiayi 已提交
1482
            path = "./infer_model"
1483 1484
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1485 1486 1487

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1488 1489
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1490
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1491 1492 1493 1494
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1495 1496 1497
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1498
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1499
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1500 1501
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1502
                                              pserver_endpoints=endpoints))
1503

1504
            # In this example, the inference program was saved in the file
1505
            # "./infer_model/__model__" and parameters were saved in
1506 1507 1508 1509
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1510
    """
1511 1512 1513 1514
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1515
            raise ValueError("There is no directory named '%s'" % dirname)
1516

1517 1518
        if model_filename is None:
            model_filename = '__model__'
1519

1520 1521
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1537

1538
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1539
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1540 1541 1542
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1543
    load_persistables(executor, load_dirname, program, params_filename)
1544

T
tangwei12 已提交
1545
    if pserver_endpoints:
T
tangwei12 已提交
1546
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1547

1548 1549
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1550 1551 1552 1553 1554
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1555 1556


T
tangwei12 已提交
1557 1558 1559
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1560 1561
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1562
    program._sync_with_cpp()
T
tangwei12 已提交
1563
    return program
T
tangwei12 已提交
1564 1565


X
xuwei06 已提交
1566 1567
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1579

F
fengjiayi 已提交
1580 1581
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1582

1583
            import paddle
1584
            import paddle.fluid as fluid
1585 1586

            paddle.enable_static()
F
fengjiayi 已提交
1587 1588 1589
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1590

X
xuwei06 已提交
1591
    """
1592
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1593

X
xuwei06 已提交
1594 1595 1596 1597 1598 1599 1600 1601
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1602
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1603

F
fengjiayi 已提交
1604 1605 1606 1607 1608 1609 1610
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1611

F
fengjiayi 已提交
1612 1613
    Returns:
        numpy.array: The parameter's values.
1614

F
fengjiayi 已提交
1615 1616 1617
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1618
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1619
                        given program but it is not a Parameter.
1620

F
fengjiayi 已提交
1621 1622 1623
    Examples:
        .. code-block:: python

1624
            import paddle
1625
            import paddle.fluid as fluid
1626 1627

            paddle.enable_static()
F
fengjiayi 已提交
1628 1629
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1630 1631
    """
    if program is None:
Y
Yu Yang 已提交
1632
        program = default_main_program()
X
xuwei06 已提交
1633 1634
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1659
                        var_desc.type() == core.VarDesc.VarType.READER:
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1698
                        var_desc.type() == core.VarDesc.VarType.READER:
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1712 1713


W
WeiXin 已提交
1714
def _unpack_saved_dict(saved_obj, protocol):
1715 1716
    temp_saved_obj = {}
    unpack_infor = {}
W
WeiXin 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    # When pickle protocol=2 or protocol=3 the serialized object cannot be larger than 4G.
    if 1 < protocol < 4:
        if isinstance(saved_obj, dict):
            for key, value in saved_obj.items():
                if isinstance(value, np.ndarray):
                    MAX_NUMBER_OF_ELEMENT = int(
                        (2**30 - 1) / value.dtype.itemsize)
                    num_element = np.prod(value.shape)
                    if num_element > MAX_NUMBER_OF_ELEMENT:
                        unpack_infor[key] = {}
                        unpack_infor[key]["OriginShape"] = value.shape
                        unpack_infor[key]["slices"] = []
                        value = value.flatten()
                        for i in range(
                                int(
                                    math.ceil(num_element * 1.0 /
                                              MAX_NUMBER_OF_ELEMENT))):
                            part_name = key + "@@." + str(i)
                            unpack_infor[key]["slices"].append(part_name)
                            temp_saved_obj[part_name] = value[
                                i * MAX_NUMBER_OF_ELEMENT:MAX_NUMBER_OF_ELEMENT
                                * (i + 1)]
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

    if unpack_infor:
        for key, value in unpack_infor.items():
            if key in saved_obj:
                saved_obj.pop(key)
                for part in value['slices']:
                    saved_obj[part] = temp_saved_obj[part]
        saved_obj['UnpackBigParamInfor@@'] = unpack_infor
    return saved_obj


def _pack_loaded_dict(load_obj):
W
WeiXin 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
    if isinstance(load_obj, dict):
        unpack_info = 'UnpackBigParamInfor@@'
        if unpack_info in load_obj:
            removes = []
            for key, value in load_obj[unpack_info].items():
                slices = [load_obj[part] for part in value["slices"]]
                load_obj[key] = np.concatenate(slices).reshape(value[
                    "OriginShape"])
                removes += value["slices"]
            for key in removes:
                load_obj.pop(key)
            load_obj.pop(unpack_info)

1764 1765 1766
    return load_obj


1767
@static_only
W
WeiXin 已提交
1768
def save(program, model_path, pickle_protocol=2):
H
hong 已提交
1769
    """
1770 1771
    :api_attr: Static Graph

1772
    This function save parameters, optimizer information and network description to model_path.
H
hong 已提交
1773

1774 1775
    The parameters contains all the trainable Tensor, will save to a file with suffix ".pdparams".
    The optimizer information contains all the Tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no Tensor need to save (like SGD), the fill will not generated).
H
hong 已提交
1776
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1777

H
hong 已提交
1778 1779 1780
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
W
WeiXin 已提交
1781 1782
        pickle_protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
                                 Default: 2
H
hong 已提交
1783 1784 1785 1786 1787 1788 1789

    Returns:
        None

    Examples:
        .. code-block:: python

1790
            import paddle
1791
            import paddle.static as static
H
hong 已提交
1792

1793
            paddle.enable_static()
H
hong 已提交
1794

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
H
hong 已提交
1805 1806 1807 1808
    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1809
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1810

W
WeiXin 已提交
1811 1812 1813 1814 1815 1816 1817 1818
    if not isinstance(pickle_protocol, int):
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
            type(pickle_protocol)))

    if pickle_protocol < 2 or pickle_protocol > 4:
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
                         format(pickle_protocol))

1819 1820 1821 1822
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1823 1824 1825 1826
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1827
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1828
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
W
WeiXin 已提交
1829 1830

    param_dict = _unpack_saved_dict(param_dict, pickle_protocol)
1831 1832 1833 1834

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3.5/6'
    if sys.platform == 'darwin' and sys.version_info.major == 3 and (
            sys.version_info.minor == 5 or sys.version_info.minor == 6):
W
WeiXin 已提交
1835
        pickle_bytes = pickle.dumps(param_dict, protocol=pickle_protocol)
1836 1837 1838 1839 1840 1841
        with open(model_path + ".pdparams", 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
        with open(model_path + ".pdparams", 'wb') as f:
W
WeiXin 已提交
1842
            pickle.dump(param_dict, f, protocol=pickle_protocol)
H
hong 已提交
1843 1844 1845 1846

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1847 1848
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
W
WeiXin 已提交
1849
        pickle.dump(opt_dict, f, protocol=pickle_protocol)
H
hong 已提交
1850 1851 1852 1853

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
1854
    paddle.fluid.core.save_op_version_info(program.desc)
H
hong 已提交
1855 1856 1857 1858 1859

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1860
@static_only
H
hong 已提交
1861
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1862
    """
1863 1864
    :api_attr: Static Graph

H
hong 已提交
1865
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1866
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1867

1868 1869
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1870 1871
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1872
    Args:
1873 1874
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1875
        executor(Executor, optional): The executor used for initialize the parameter
1876
                                      When startup program is not run.
1877
        var_list(list, optional): The Tensor list to load single model file saved with
1878
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1879
                                  Default: None
H
hong 已提交
1880 1881 1882

    Returns:
        None
1883

H
hong 已提交
1884 1885 1886
     Examples:
        .. code-block:: python

1887
            import paddle
1888
            import paddle.static as static
H
hong 已提交
1889

1890
            paddle.enable_static()
H
hong 已提交
1891

1892 1893 1894
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
H
hong 已提交
1895

1896 1897 1898 1899 1900 1901 1902
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
            static.load(prog, "./temp")
H
hong 已提交
1903 1904
    """

1905 1906
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
1920
        _logger.debug(
H
hong 已提交
1921 1922 1923 1924 1925 1926
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
1927 1928 1929 1930 1931 1932

        if var_list is not None:
            var_list_names = [var.name for var in var_list]
        else:
            var_list_names = None

H
hong 已提交
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
1943 1944
                load_condition = var_list_names is None or var.name in var_list_names
                if var_path in binary_file_set and load_condition:
H
hong 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1959
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1975
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
1988 1989 1990
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
1991 1992

            return
Y
Yang Zhang 已提交
1993 1994 1995 1996 1997 1998 1999 2000

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
2001 2002 2003 2004
        elif p.is_xpu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.XPUPlace(p.xpu_device_id())
Y
Yang Zhang 已提交
2005 2006 2007 2008 2009 2010
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
2011 2012

    parameter_list = list(filter(is_parameter, program.list_vars()))
2013 2014 2015 2016 2017

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
2018
    with open(parameter_file_name, 'rb') as f:
2019
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
2020
            f, encoding='latin1')
2021
        load_dict = _pack_loaded_dict(load_dict)
Y
Yang Zhang 已提交
2022 2023 2024 2025 2026
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
2027 2028 2029 2030 2031

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
2032
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
2033
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
2034
            "Optimizer file [{}] not exits".format(opt_file_name)
2035 2036 2037 2038

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
2039 2040

        with open(opt_file_name, 'rb') as f:
2041
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
2042
                f, encoding='latin1')
Y
Yang Zhang 已提交
2043 2044 2045 2046 2047
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
2048 2049


H
hong 已提交
2050
def load_program_state(model_path, var_list=None):
2051
    """
2052 2053
    :api_attr: Static Graph

2054
    Load program state from local file
2055

2056 2057
    Args:
        model_path(str): The file prefix store the program
2058
        var_list(list, optional): The Tensor list to load saved with
2059
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
2060
                                  Default: None.
2061
                                  The var_list is only used to get name,
H
hong 已提交
2062
                                  will not be modified.
2063 2064 2065 2066 2067 2068
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

2069
            import paddle
2070
            import paddle.static as static
2071 2072

            paddle.enable_static()
2073

2074 2075 2076
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2077

2078 2079 2080 2081
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2082

2083 2084
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
2085
    """
H
hong 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2098
        _logger.debug(
H
hong 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
            def _load_vars_with_try_catch(exe,
                                          dirname,
                                          vars,
                                          filename,
                                          raise_error=True):
                try:
                    load_vars(
                        executor=exe,
                        dirname=dirname,
                        vars=vars,
                        filename=filename)
                    return True
                except:
                    error_str = "Failed to load model/variables `%s`, please make sure " \
                                "model/variables file is saved with the following APIs: " \
                                "save_params, save_persistables, save_vars."
                    filenames = [var.name for var in vars
                                 ] if filename is None else filename
                    if raise_error:
                        raise RuntimeError(error_str % filenames)
                    else:
                        warnings.warn(error_str % filenames, RuntimeWarning)
                return False

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

H
hong 已提交
2158 2159
            loaded_var_list = []

2160 2161 2162
            if os.path.isfile(model_path):
                # when model_path is file, var_list cannot be None
                dir_name, file_name = os.path.split(model_path)
H
hong 已提交
2163 2164
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
2165 2166
                _load_vars_with_try_catch(exe, dir_name, loaded_var_list,
                                          file_name)
H
hong 已提交
2167
            else:
2168 2169 2170 2171 2172 2173 2174
                # var_list can be None or not None
                if var_list is not None:
                    for var in var_list:
                        loaded_var_list.append(
                            clone_var_to_block(load_block, var))
                    _load_vars_with_try_catch(exe, model_path, loaded_var_list,
                                              None)
H
hong 已提交
2175
                else:
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
                    for var_name in var_name_list:
                        # NOTE(chenweihang): If identify which files the user wants 
                        # to load from the disk, we load these variables one by one. 
                        # If a file does not exist, we only warn the user that the 
                        # file may be an irrelevant file, but does not throw an error 
                        # to ensure that other legal variables can be loaded.
                        temp_var = load_block.create_var(
                            name=var_name, persistable=True)
                        if _load_vars_with_try_catch(exe, model_path,
                                                     [temp_var], None, False):
                            loaded_var_list.append(temp_var)

H
hong 已提交
2188 2189 2190 2191 2192 2193 2194
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

2195
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2196
        "Parameter file [{}] not exits".format(parameter_file_name)
2197 2198

    with open(parameter_file_name, 'rb') as f:
2199
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
2200
            f, encoding='latin1')
2201
    para_dict = _pack_loaded_dict(para_dict)
2202

H
hong 已提交
2203
    opt_file_name = model_prefix + ".pdopt"
2204 2205
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
2206
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
2207
                f, encoding='latin1')
2208 2209 2210 2211 2212 2213

        para_dict.update(opti_dict)

    return para_dict


2214
@static_only
2215 2216
def set_program_state(program, state_dict):
    """
2217 2218
    :api_attr: Static Graph

2219 2220
    Set program parameter from state_dict

2221
    An exception will throw if shape or dtype of the parameters is not match.
2222 2223 2224 2225 2226 2227

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2228
    Returns:
2229
        None
2230

2231 2232
    Examples:
        .. code-block:: python
2233

2234
            import paddle
2235
            import paddle.static as static
2236 2237

            paddle.enable_static()
2238

2239 2240 2241
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2242

2243 2244 2245 2246
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2247

2248 2249
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
H
hong 已提交
2250

2251
            static.set_program_state(prog, program_state)
2252
    """
2253
    state_dict = _pack_loaded_dict(state_dict)
2254 2255 2256 2257 2258 2259
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2260
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2261 2262 2263 2264
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2265
            assert orig_para_np.shape == new_para_np.shape, \
2266
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2267
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2268
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2269
            assert orig_para_np.dtype == new_para_np.dtype, \
2270
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2271
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2272 2273 2274 2275 2276
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

Q
QingshuChen 已提交
2277 2278
            #assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
            #    "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2279 2280 2281 2282 2283 2284 2285
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
Q
QingshuChen 已提交
2286 2287 2288 2289
            elif ten_place.is_xpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.XPUPlace(p.xpu_device_id())
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))