io.py 95.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25
import sys
26
from io import BytesIO
27

H
hong 已提交
28
import numpy as np
29
import math
30
import paddle
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
35
    program_guard, dygraph_not_support, static_only
36 37
from paddle.reader import cache, map_readers, buffered, compose, chain, shuffle, \
    ComposeNotAligned, firstn, xmap_readers, multiprocess_reader
38
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
39
from paddle.fluid.compiler import CompiledProgram
40
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
41
from . import reader
42
from . import unique_name
S
sneaxiy 已提交
43
from .reader import *
44 45
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
46
from . import core
47
from .. import compat as cpt
48 49
from paddle.utils import deprecated
from paddle.fluid.framework import static_only
50

51 52
batch = paddle.batch

53
__all__ = [
54 55 56 57 58 59 60 61 62 63 64 65 66
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
67 68
    'get_program_parameter',
    'get_program_persistable_vars',
69
] + reader.__all__
70

71 72 73
_logger = get_logger(__name__,
                     logging.INFO,
                     fmt='%(asctime)s-%(levelname)s: %(message)s')
74

75

76
class _open_buffer(object):
77

78 79 80 81 82 83 84 85
    def __init__(self, buffer):
        self.buffer = buffer

    def __enter__(self):
        return self.buffer


class _buffer_reader(_open_buffer):
86

87 88 89 90 91 92 93 94 95 96 97
    def __init__(self, buffer):
        super(_buffer_reader, self).__init__(buffer)
        self.initial_tell = self.buffer.tell()

    def __exit__(self, *args):
        # `args[0]` is type of exception. When the `read` is abnormal, the file pointer returns to the initial position.
        if args[0] is not None:
            self.buffer.seek(self.initial_tell)


class _buffer_writer(_open_buffer):
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def __exit__(self, *args):
        self.buffer.flush()


def _is_file_path(path):
    return isinstance(path, str)


def _open_file_buffer(path_or_buffer, mode):

    if _is_file_path(path_or_buffer):
        return open(path_or_buffer, mode)
    else:
        if 'w' in mode:
            return _buffer_writer(path_or_buffer)
        elif 'r' in mode:
            return _buffer_reader(path_or_buffer)
        else:
117 118
            raise ValueError(
                "Expected 'r' or 'w' in mode but got {}".format(mode))
119 120 121 122 123 124


def _is_memory_buffer(buffer):
    return isinstance(buffer, BytesIO)


125
def is_parameter(var):
F
fengjiayi 已提交
126 127
    """
    Check whether the given variable is an instance of Parameter.
128 129

    Args:
F
fengjiayi 已提交
130
        var(Variable): The variable to be checked.
131 132

    Returns:
F
fengjiayi 已提交
133 134 135 136 137 138
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

139
            import paddle
140
            import paddle.fluid as fluid
141 142

            paddle.enable_static()
F
fengjiayi 已提交
143 144
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
145
    """
146 147 148 149
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

163
            import paddle
164
            import paddle.fluid as fluid
165 166

            paddle.enable_static()
167
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
168 169
            res = fluid.io.is_persistable(param)
    """
170
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
171 172
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
173
        return False
174 175 176
    return var.persistable


H
hong 已提交
177
def is_belong_to_optimizer(var):
178
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
179 180 181
        return is_persistable(var)

    return False
H
hong 已提交
182 183


184
@dygraph_not_support
H
hong 已提交
185 186
def get_program_parameter(program):
    """
187 188
    :api_attr: Static Graph

H
hong 已提交
189 190 191 192 193 194 195 196 197 198 199
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

200
            import paddle
H
hong 已提交
201
            import paddle.fluid as fluid
202 203

            paddle.enable_static()
H
hong 已提交
204 205 206 207 208 209 210 211
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


212
@dygraph_not_support
H
hong 已提交
213 214
def get_program_persistable_vars(program):
    """
215 216
    :api_attr: Static Graph

H
hong 已提交
217 218 219 220 221 222 223 224 225 226 227
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

228
            import paddle
H
hong 已提交
229
            import paddle.fluid as fluid
230 231

            paddle.enable_static()
H
hong 已提交
232 233 234 235 236 237 238 239
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


240 241
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
242
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
243 244 245 246 247 248
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                lod_level=var.lod_level,
                                persistable=True)
249
    else:
250 251 252 253 254
        return block.create_var(name=var.name,
                                shape=var.shape,
                                dtype=var.dtype,
                                type=var.type,
                                persistable=True)
255 256


257
@signature_safe_contextmanager
H
hong 已提交
258 259 260 261 262 263 264
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
265 266
                with paddle.fluid.framework._dygraph_guard(None):
                    yield
H
hong 已提交
267 268


269
def _get_valid_program(main_program=None):
C
chengduo 已提交
270 271 272 273 274
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
275 276 277
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
278 279 280
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
281 282 283
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
284 285 286
    return main_program


287
@dygraph_not_support
288 289 290 291 292
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
293
              filename=None):
294
    """
295 296
    :api_attr: Static Graph

297
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
298

299
    There are two ways to specify the variables to be saved: set variables in
300 301
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
302

303
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
304
    If you prefer to save variables in separate files in the `dirname` folder,
305
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
306
    use `filename` to specify it.
307

F
fengjiayi 已提交
308 309
    Args:
        executor(Executor): The executor to run for saving variables.
310 311
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
312
        main_program(Program, optional): The program whose variables will be saved.
313
                                    If it is None, the default main program will
F
fengjiayi 已提交
314 315
                                    be used automatically.
                                    Default: None
316 317 318
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
319
                                       `predicate(variable) == True`.
320 321
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
322
                                 use `filename` to specify it. Otherwise, let `filename` be None.
323
                                 Default: None
F
fengjiayi 已提交
324 325

    Returns:
326 327
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
328 329 330 331 332 333 334

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

335
            import paddle
336
            import paddle.fluid as fluid
337

338
            paddle.enable_static()
339 340 341 342 343 344 345 346 347 348 349
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
350

351
            # The first usage: use `vars` to set the saved variables.
352 353
            var_list = [w, b]
            path = "./my_paddle_vars"
354
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
355 356 357 358 359 360 361 362 363 364
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
365
    """
366 367 368 369
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
370
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
371

372
    if vars is None:
373 374 375 376 377
        return save_vars(executor,
                         main_program=main_program,
                         dirname=dirname,
                         vars=list(filter(predicate, main_program.list_vars())),
                         filename=filename)
378
    else:
石晓伟 已提交
379
        params_var_name = "saved_params"
380 381 382 383 384 385 386
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

387 388
        save_program = Program()
        save_block = save_program.global_block()
389 390

        save_var_map = {}
391
        for each_var in vars:
392 393 394
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
395
            new_var = _clone_var_in_block_(save_block, each_var)
396
            if filename is None and save_to_memory is False:
397 398
                save_file_path = os.path.join(os.path.normpath(dirname),
                                              new_var.name)
399 400 401 402
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
403
                    attrs={'file_path': os.path.normpath(save_file_path)})
404 405 406
            else:
                save_var_map[new_var.name] = new_var

407
        if filename is not None or save_to_memory:
408 409 410 411
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

412 413 414 415
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

416 417
            saved_params = save_block.create_var(type=core.VarDesc.VarType.RAW,
                                                 name=params_var_name)
418
            saved_params.desc.set_persistable(True)
419 420 421 422 423 424 425
            save_block.append_op(type='save_combine',
                                 inputs={'X': save_var_list},
                                 outputs={'Y': saved_params},
                                 attrs={
                                     'file_path': save_path,
                                     'save_to_memory': save_to_memory
                                 })
426

427
        # NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
428 429 430
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
431
        executor.run(save_program)
432 433
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
434 435


436
@dygraph_not_support
437
def save_params(executor, dirname, main_program=None, filename=None):
438
    """
439 440
    :api_attr: Static Graph

G
guofei 已提交
441
    This operator saves all parameters from the :code:`main_program` to
442
    the folder :code:`dirname` or file :code:`filename`. You can refer to
G
guofei 已提交
443
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
444

G
guofei 已提交
445 446 447
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
448 449
    the file name.

450
    Note:
G
guofei 已提交
451
        Some variables are not Parameter while they are necessary for
452
        training, such as learning rate, global step, etc. So you can NOT save
G
guofei 已提交
453 454
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
455 456 457
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to save your model for the inference, please use the
G
guofei 已提交
458 459
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
460 461

    Args:
462
        executor(Executor): The executor to run for saving parameters, You can
G
guofei 已提交
463
                            refer to :ref:`api_guide_executor_en`.
464 465
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
466
        main_program(Program, optional): The program whose parameters will be
467 468
                                         saved. You can refer to
                                         :ref:`api_guide_Program_en` for more
G
guofei 已提交
469 470 471 472 473 474 475
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
476 477

    Returns:
478 479
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
480 481 482 483

    Examples:
        .. code-block:: python

484
            import paddle
H
Huihuang Zheng 已提交
485
            import paddle.fluid as fluid
486

487 488

            paddle.enable_static()
G
guofei 已提交
489 490 491 492 493
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
494

G
guofei 已提交
495
            loss = fluid.layers.cross_entropy(input=predict, label=label)
496
            avg_loss = paddle.mean(loss)
497

F
fengjiayi 已提交
498
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
499 500
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
501 502
            # The parameters weights and bias of the fc layer in the network are going to
            # be saved in different files in the path "./my_paddle_model"
503
    """
504 505 506 507 508 509
    return save_vars(executor,
                     dirname=dirname,
                     main_program=main_program,
                     vars=None,
                     predicate=is_parameter,
                     filename=filename)
510 511


512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

534
            import paddle
535
            import paddle.fluid as fluid
536 537

            paddle.enable_static()
538 539 540 541 542 543 544 545 546 547
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
548
        receive params on pserver through rpc.
549 550 551 552 553 554 555 556 557 558
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
559 560 561 562 563 564 565
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
566 567 568

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
569
                slice = optimizer.slice
570 571 572
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
573 574 575
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
576 577
                endpoints[index] = endpoint

T
tangwei12 已提交
578 579 580 581 582
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

583 584 585 586 587 588 589 590 591 592
            block.append_op(type='recv_save',
                            attrs={
                                "trainer_id": 0,
                                "shape": origin.shape,
                                "slice_shapes": slice_shapes,
                                "slice_varnames": slice_varnames,
                                "remote_varnames": remote_varnames,
                                "endpoints": endpoints,
                                "file_path": os.path.join(dirname, origin.name)
                            })
T
tangwei12 已提交
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
614 615 616 617
        block.append_op(type='checkpoint_notify',
                        inputs={},
                        outputs={},
                        attrs=attrs)
618 619 620
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
621

622 623 624 625
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
626 627
                            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                            var.desc.type() == core.VarDesc.VarType.READER:
628 629 630 631 632 633
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
634
        raise TypeError("'main_program' should be an instance of Program.")
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
656 657 658 659
    save_vars(executor,
              main_program=main_program,
              dirname=dirname,
              vars=local_vars)
660 661 662 663 664 665 666 667 668 669

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


670
@dygraph_not_support
671
def save_persistables(executor, dirname, main_program=None, filename=None):
672
    """
673 674
    :api_attr: Static Graph

G
guofei 已提交
675 676 677
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
678 679
    saves these persistables variables to the folder :code:`dirname` or file
    :code:`filename`.
F
fengjiayi 已提交
680

G
guofei 已提交
681
    The :code:`dirname` is used to specify the folder where persistable variables
682
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
683 684
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
685 686 687

    Args:
        executor(Executor): The executor to run for saving persistable variables.
688
                            You can refer to :ref:`api_guide_executor_en` for
G
guofei 已提交
689
                            more details.
690

691 692 693
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
694 695
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
696
                                         If it is None, the default main program will
G
guofei 已提交
697 698 699 700 701
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
702 703

    Returns:
704 705
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
706 707 708 709

    Examples:
        .. code-block:: python

710
            import paddle
H
Huihuang Zheng 已提交
711
            import paddle.fluid as fluid
712

713
            paddle.enable_static()
G
guofei 已提交
714 715 716 717 718
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
719

G
guofei 已提交
720 721
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
722
            avg_loss = paddle.mean(loss)
F
fengjiayi 已提交
723
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
724 725
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
726
            # The persistables variables weights and bias in the fc layer of the network
G
guofei 已提交
727 728
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
729
    """
730
    if main_program and main_program._is_distributed:
731 732 733
        return _save_distributed_persistables(executor,
                                              dirname=dirname,
                                              main_program=main_program)
734
    else:
735 736 737 738 739 740
        return save_vars(executor,
                         dirname=dirname,
                         main_program=main_program,
                         vars=None,
                         predicate=is_persistable,
                         filename=filename)
741 742


743 744 745 746 747
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
748
              filename=None):
749
    """
750 751
    :api_attr: Static Graph

752
    This API loads variables from files by executor.
F
fengjiayi 已提交
753

754
    There are two ways to specify the variables to be loaded: the first way, set
755 756
    variables in a list and assign it to the `vars`; the second way, use the
    `predicate` function to select variables that make `predicate(variable) == True`.
757
    The first way has a higher priority.
F
fengjiayi 已提交
758

759
    The `dirname` is used to specify the folder where to load variables.
760
    If variables were saved in separate files in the folder `dirname`,
761
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
762
    use `filename` to specify it.
763

F
fengjiayi 已提交
764 765
    Args:
        executor(Executor): The executor to run for loading variables.
766 767
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
768
                                    If it is None, the default main program will
F
fengjiayi 已提交
769 770
                                    be used automatically.
                                    Default: None
771
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
772
                                   Default: None
773
        predicate(function, optional): The function selects variables that make
774 775 776 777 778
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
779 780 781 782 783 784 785 786 787 788

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

789
            import paddle
790
            import paddle.fluid as fluid
791

792
            paddle.enable_static()
793 794 795 796 797 798 799 800 801 802 803
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
804

805 806 807 808 809 810 811 812 813 814 815
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
816
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
817 818 819
            def name_has_fc(var):
                res = "fc" in var.name
                return res
820 821 822
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
823
                               vars=None, predicate=name_has_fc)
824 825
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
826

827
    """
828 829 830 831 832
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
833

834
    if vars is None:
835
        if main_program is None:
Y
Yu Yang 已提交
836
            main_program = default_main_program()
837
        if not isinstance(main_program, Program):
838 839 840
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
841

842 843 844 845 846
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  vars=list(filter(predicate, main_program.list_vars())),
                  filename=filename)
847 848 849
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
850

851 852
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
853

854
        if not isinstance(main_program, Program):
855 856 857
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
858

T
tangwei12 已提交
859
        # save origin param shape
H
hong 已提交
860
        orig_para_shape = {}
861
        load_var_map = {}
862 863 864 865

        check_vars = []
        sparse_vars = []

866 867
        for each_var in vars:
            assert isinstance(each_var, Variable)
868

T
tangwei12 已提交
869 870
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
871 872

            if isinstance(each_var, Parameter):
873 874
                orig_para_shape[each_var.name] = tuple(
                    each_var.desc.get_shape())
875 876 877 878 879

            if each_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                sparse_vars.append(each_var)
                continue

880
            new_var = _clone_var_in_block_(load_block, each_var)
881 882
            check_vars.append(each_var)

883
            if filename is None:
884 885 886 887
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
888 889 890 891
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
892
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
893 894 895
            else:
                load_var_map[new_var.name] = new_var

896 897 898 899 900 901 902 903 904 905 906
        for each_var in sparse_vars:
            assert isinstance(each_var, Variable)

            if filename is not None:
                raise ValueError(
                    "SelectedRows can not be load with load_combine")

            new_var = _clone_var_in_block_(load_block, each_var)

            var_path = os.path.join(dirname, new_var.name)
            if not os.path.exists(var_path):
907 908 909
                raise ValueError(
                    "SelectedRows var {} can not find at {}".format(
                        new_var.name, var_path))
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926

            if os.path.isfile(var_path):
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                blocks = []
                block_paths = os.listdir(var_path)

                for block in block_paths:
                    if block.startswith(new_var.name):
                        blocks.append(block)

                slices = []
                for block in blocks:
927 928 929 930 931
                    slice = load_block.create_var(name=block,
                                                  type=new_var.type,
                                                  shape=new_var.shape,
                                                  dtype=new_var.dtype,
                                                  persistable=False)
932 933 934
                    slices.append(slice)

                    file_path = os.path.join(var_path, block, "Param")
935 936 937 938
                    load_block.append_op(type='load',
                                         inputs={},
                                         outputs={'Out': [slice]},
                                         attrs={'file_path': file_path})
939

940 941 942 943
                load_block.append_op(type='lookup_sparse_table_merge',
                                     inputs={'X': slices},
                                     outputs={'Out': new_var},
                                     attrs={})
944

945
        if filename is not None:
946 947 948 949
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

950 951 952
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

953 954 955 956 957 958 959
            load_block.append_op(type='load_combine',
                                 inputs={},
                                 outputs={"Out": load_var_list},
                                 attrs={
                                     'file_path': filename,
                                     'model_from_memory': vars_from_memory
                                 })
960 961
        executor.run(load_prog)

T
tangwei12 已提交
962
        # check var shape
963
        for each_var in check_vars:
H
hong 已提交
964 965 966 967 968
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
969
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
970 971 972
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
973
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
974 975
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({})."
                    .format(orig_shape, each_var.name, new_shape))
H
hong 已提交
976

977

978
@dygraph_not_support
979
def load_params(executor, dirname, main_program=None, filename=None):
980
    """
981 982
    :api_attr: Static Graph

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
1002 1003

    Args:
1004 1005
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1006
        dirname(str): The directory path.
1007 1008 1009 1010 1011 1012 1013 1014
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
1015 1016 1017 1018 1019 1020 1021

    Returns:
        None

    Examples:
        .. code-block:: python

1022
            import paddle
1023
            import paddle.fluid as fluid
1024

1025
            paddle.enable_static()
F
fengjiayi 已提交
1026 1027 1028
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1029
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1030
                                main_program=None)
1031
    """
1032 1033 1034 1035 1036
    load_vars(executor,
              dirname=dirname,
              main_program=main_program,
              predicate=is_parameter,
              filename=filename)
1037 1038


1039
@dygraph_not_support
1040
def load_persistables(executor, dirname, main_program=None, filename=None):
1041
    """
1042
    :api_attr: Static Graph
1043

1044 1045
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
1046
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
1047

1048 1049 1050 1051
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
1052 1053

    Args:
1054 1055
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
1056
        dirname(str): The directory path.
T
tianshuo78520a 已提交
1057
        main_program(Program, optional): The program whose persistable variables will
1058 1059 1060 1061 1062 1063 1064
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
1065 1066 1067 1068 1069 1070 1071

    Returns:
        None

    Examples:
        .. code-block:: python

1072
            import paddle
1073
            import paddle.fluid as fluid
1074

1075
            paddle.enable_static()
F
fengjiayi 已提交
1076 1077 1078
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
1079
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
1080
                                       main_program=None)
1081
    """
1082 1083

    if main_program and main_program._is_distributed:
1084 1085 1086
        _load_distributed_persistables(executor,
                                       dirname=dirname,
                                       main_program=main_program)
1087
    else:
1088 1089 1090 1091 1092
        load_vars(executor,
                  dirname=dirname,
                  main_program=main_program,
                  predicate=is_persistable,
                  filename=filename)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

1113
            import paddle
1114
            import paddle.fluid as fluid
1115 1116

            paddle.enable_static()
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
                slice = load_block.create_var(name=slice_var.name,
                                              type=slice_var.type,
                                              shape=slice_var.shape,
                                              dtype=slice_var.dtype,
                                              persistable=True)

                load_block.append_op(type='load',
                                     inputs={},
                                     outputs={'Out': [slice]},
                                     attrs={
                                         'file_path':
                                         os.path.join(dirname, origin_var.name),
                                         'seek':
                                         offset,
                                         'shape':
                                         slice.shape
                                     })
1159
            else:
1160 1161 1162 1163 1164 1165
                origin = load_block.create_var(name="{}".format(
                    origin_var.name),
                                               type=origin_var.type,
                                               shape=origin_var.shape,
                                               dtype=origin_var.dtype,
                                               persistable=True)
1166 1167 1168 1169
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
1170
                    attrs={'file_path': os.path.join(dirname, origin_var.name)})
1171 1172 1173

        load_block.append_op(
            type='delete_var',
1174 1175
            inputs={'X': need_delete_vars},
        )
1176 1177 1178 1179

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1180
        raise TypeError("'main_program' should be an instance of Program.")
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1195 1196


1197 1198 1199
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1200 1201 1202
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1203
    global_block = inference_program.global_block()
1204 1205 1206
    feed_var = global_block.create_var(name=feed_holder_name,
                                       type=core.VarDesc.VarType.FEED_MINIBATCH,
                                       persistable=True)
K
Kexin Zhao 已提交
1207

1208
    for i, name in enumerate(feed_target_names):
1209 1210 1211 1212 1213
        if not global_block.has_var(name):
            raise ValueError(
                "The feeded_var_names[{i}]: '{name}' doesn't exist in pruned inference program. "
                "Please check whether '{name}' is a valid feed_var name, or remove it from feeded_var_names "
                "if '{name}' is not involved in the target_vars calculation.".
1214
                format(i=i, name=name))
K
fix bug  
Kexin Zhao 已提交
1215
        out = global_block.var(name)
1216 1217 1218 1219
        global_block._prepend_op(type='feed',
                                 inputs={'X': [feed_var]},
                                 outputs={'Out': [out]},
                                 attrs={'col': i})
K
Kexin Zhao 已提交
1220 1221


1222 1223 1224
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1225
    global_block = inference_program.global_block()
1226 1227 1228
    fetch_var = global_block.create_var(name=fetch_holder_name,
                                        type=core.VarDesc.VarType.FETCH_LIST,
                                        persistable=True)
K
Kexin Zhao 已提交
1229

1230
    for i, name in enumerate(fetch_target_names):
1231 1232 1233 1234
        global_block.append_op(type='fetch',
                               inputs={'X': [name]},
                               outputs={'Out': [fetch_var]},
                               attrs={'col': i})
K
Kexin Zhao 已提交
1235 1236


1237 1238
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.save_inference_model")
1239 1240 1241 1242
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1243
                         main_program=None,
1244
                         model_filename=None,
1245
                         params_filename=None,
T
tangwei12 已提交
1246
                         export_for_deployment=True,
1247 1248
                         program_only=False,
                         clip_extra=False):
1249
    """
1250 1251
    :api_attr: Static Graph

F
fengjiayi 已提交
1252
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1253
    and then save it and all related parameters to given `dirname` .
1254
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1255 1256
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1257

G
guofei 已提交
1258
    Note:
1259
        The :code:`dirname` is used to specify the folder where inference model
G
guofei 已提交
1260
        structure and parameters are going to be saved. If you would like to save params of
1261
        Program in separate files, set `params_filename` None; if you would like to save all
G
guofei 已提交
1262
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1263 1264 1265

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1266
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1267
                                     data during inference.
1268
        target_vars(list[Variable]): list of Variable. Variables from which we can get
G
guofei 已提交
1269
                                     inference results.
1270
        executor(Executor): The executor that saves the inference model. You can refer
G
guofei 已提交
1271 1272
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1273
                                         build the inference model. If is set None,
G
guofei 已提交
1274 1275 1276
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1277
                                       itself. If is set None, a default filename
G
guofei 已提交
1278 1279
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1280
                                        If it is set None, parameters will be saved
G
guofei 已提交
1281
                                        in separate files .
X
Xin Pan 已提交
1282 1283 1284 1285 1286
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1287
                                     Default: True.
1288
        program_only(bool, optional): If True, It will save inference program only, and do not
G
guofei 已提交
1289 1290
                                      save params of Program.
                                      Default: False.
1291

F
fengjiayi 已提交
1292
    Returns:
G
guofei 已提交
1293 1294 1295 1296
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1297 1298

    Raises:
G
guofei 已提交
1299 1300
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1301 1302 1303

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1304

1305
            import paddle
1306 1307
            import paddle.fluid as fluid

1308
            paddle.enable_static()
F
fengjiayi 已提交
1309 1310
            path = "./infer_model"

T
tianshuo78520a 已提交
1311
            # User defined network, here a softmax regession example
G
guofei 已提交
1312 1313
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1314 1315 1316 1317
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
1318
            avg_loss = paddle.mean(loss)
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1331
            # In this example, the save_inference_mode inference will prune the default
1332
            # main program according to the network's input node (img) and output node(predict).
G
guofei 已提交
1333
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1334
            # and parameters are going to be saved in separate files under folder
1335
            # "./infer_model".
1336 1337

    """
M
minqiyang 已提交
1338
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1339
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1340
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1341
        if len(feeded_var_names) > 0:
1342
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1343
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1344
                    isinstance(name, six.string_types)
1345
                    for name in feeded_var_names)):
M
minqiyang 已提交
1346
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1347 1348

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1349
        target_vars = [target_vars]
X
Xin Pan 已提交
1350
    elif export_for_deployment:
1351 1352
        if not (bool(target_vars)
                and all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1353 1354
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1355
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1356

1357
    # remind user to set auc_states to zeros if the program contains auc op
1358 1359
    all_ops = main_program.global_block().ops
    for op in all_ops:
1360 1361 1362
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1363 1364 1365 1366 1367 1368
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1369 1370
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1371 1372
        for i, var in enumerate(target_vars):
            uniq_target_vars.append(var)
1373
        target_vars = uniq_target_vars
F
flame 已提交
1374
    target_var_name_list = [var.name for var in target_vars]
1375

1376
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1377
    save_dirname = dirname
1378
    try:
L
lujun 已提交
1379 1380
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1381 1382 1383 1384
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1385 1386 1387 1388
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1389
    model_basename = os.path.join(save_dirname, model_basename)
1390

X
Xin Pan 已提交
1391 1392 1393 1394
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1395 1396 1397

    origin_program = main_program.clone()

X
Xin Pan 已提交
1398
    if export_for_deployment:
X
Xin Pan 已提交
1399 1400
        main_program = main_program.clone()
        global_block = main_program.global_block()
1401
        need_to_remove_op_index = []
X
Xin Pan 已提交
1402 1403 1404
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1405 1406 1407 1408 1409
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1410
        main_program.desc.flush()
X
Xin Pan 已提交
1411

1412 1413
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1414
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1415 1416
        fetch_var_names = [v.name for v in target_vars]

1417 1418 1419 1420 1421
        for target_v in target_vars:
            if not main_program.global_block().has_var(target_v.name):
                main_program.global_block().create_var(
                    name=target_v.name,
                    shape=target_v.shape,
1422 1423
                    dtype=target_v.dtype,
                    persistable=target_v.persistable)
1424

X
Xin Pan 已提交
1425 1426 1427
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1428
        main_program.desc._set_version()
1429
        paddle.fluid.core.save_op_version_info(main_program.desc)
X
Xin Pan 已提交
1430
        with open(model_basename, "wb") as f:
1431
            f.write(
1432 1433
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
X
Xin Pan 已提交
1434 1435 1436
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1437
        with open(model_basename + ".main_program", "wb") as f:
1438
            f.write(
1439 1440
                main_program._remove_training_info(
                    clip_extra=clip_extra).desc.serialize_to_string())
T
tangwei12 已提交
1441

T
tangwei12 已提交
1442 1443 1444 1445 1446 1447
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1448 1449
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1450 1451
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1452

L
lujun 已提交
1453
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1454
    return target_var_name_list
X
fix  
Xin Pan 已提交
1455

1456

1457 1458
@static_only
@deprecated(since="2.0.0", update_to="paddle.static.load_inference_model")
1459 1460 1461
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1462 1463
                         params_filename=None,
                         pserver_endpoints=None):
1464
    """
1465 1466
    :api_attr: Static Graph

1467 1468 1469
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1470
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1471

F
fengjiayi 已提交
1472
    Args:
1473 1474 1475
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1476
        executor(Executor): The executor to run for loading inference model.
1477
                            See :ref:`api_guide_executor_en` for more details about it.
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1489 1490 1491 1492

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1493
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1494 1495

    Returns:
1496
        list: The return of this API is a list with three elements:
1497
        (program, feed_target_names, fetch_targets). The `program` is a
1498 1499 1500 1501 1502
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1503 1504 1505 1506 1507 1508 1509

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1510
            import paddle
1511 1512
            import paddle.fluid as fluid
            import numpy as np
1513

1514
            paddle.enable_static()
1515
            # Build the model
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1527 1528

            # Save the inference model
F
fengjiayi 已提交
1529
            path = "./infer_model"
1530 1531
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1532 1533 1534

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1535 1536
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1537
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1538 1539 1540 1541
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1542 1543 1544
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1545
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1546
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1547 1548
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1549
                                              pserver_endpoints=endpoints))
1550

1551
            # In this example, the inference program was saved in the file
1552
            # "./infer_model/__model__" and parameters were saved in
1553 1554 1555 1556
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1557
    """
1558 1559 1560 1561
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1562
            raise ValueError("There is no directory named '%s'" % dirname)
1563

1564 1565
        if model_filename is None:
            model_filename = '__model__'
1566

1567 1568
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1569

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1584

1585
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1586
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1587 1588 1589
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1590
    load_persistables(executor, load_dirname, program, params_filename)
1591

T
tangwei12 已提交
1592
    if pserver_endpoints:
T
tangwei12 已提交
1593
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1594

1595 1596
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1597 1598 1599 1600 1601
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1602 1603


T
tangwei12 已提交
1604 1605 1606
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1607 1608
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1609
    program._sync_with_cpp()
T
tangwei12 已提交
1610
    return program
T
tangwei12 已提交
1611 1612


X
xuwei06 已提交
1613 1614
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1626

F
fengjiayi 已提交
1627 1628
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1629

1630
            import paddle
1631
            import paddle.fluid as fluid
1632 1633

            paddle.enable_static()
F
fengjiayi 已提交
1634 1635 1636
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1637

X
xuwei06 已提交
1638
    """
1639
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1640

X
xuwei06 已提交
1641 1642 1643 1644 1645 1646 1647 1648
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1649
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1650

F
fengjiayi 已提交
1651 1652 1653 1654 1655 1656 1657
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1658

F
fengjiayi 已提交
1659 1660
    Returns:
        numpy.array: The parameter's values.
1661

F
fengjiayi 已提交
1662 1663 1664
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1665
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1666
                        given program but it is not a Parameter.
1667

F
fengjiayi 已提交
1668 1669 1670
    Examples:
        .. code-block:: python

1671
            import paddle
1672
            import paddle.fluid as fluid
1673 1674

            paddle.enable_static()
F
fengjiayi 已提交
1675 1676
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1677 1678
    """
    if program is None:
Y
Yu Yang 已提交
1679
        program = default_main_program()
X
xuwei06 已提交
1680 1681
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1706
                        var_desc.type() == core.VarDesc.VarType.READER:
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
1745
                        var_desc.type() == core.VarDesc.VarType.READER:
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1759 1760


W
WeiXin 已提交
1761
def _unpack_saved_dict(saved_obj, protocol):
1762 1763
    temp_saved_obj = {}
    unpack_infor = {}
W
WeiXin 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
    # When pickle protocol=2 or protocol=3 the serialized object cannot be larger than 4G.
    if 1 < protocol < 4:
        if isinstance(saved_obj, dict):
            for key, value in saved_obj.items():
                if isinstance(value, np.ndarray):
                    MAX_NUMBER_OF_ELEMENT = int(
                        (2**30 - 1) / value.dtype.itemsize)
                    num_element = np.prod(value.shape)
                    if num_element > MAX_NUMBER_OF_ELEMENT:
                        unpack_infor[key] = {}
                        unpack_infor[key]["OriginShape"] = value.shape
                        unpack_infor[key]["slices"] = []
                        value = value.flatten()
                        for i in range(
                                int(
                                    math.ceil(num_element * 1.0 /
                                              MAX_NUMBER_OF_ELEMENT))):
                            part_name = key + "@@." + str(i)
                            unpack_infor[key]["slices"].append(part_name)
                            temp_saved_obj[part_name] = value[
1784 1785 1786
                                i *
                                MAX_NUMBER_OF_ELEMENT:MAX_NUMBER_OF_ELEMENT *
                                (i + 1)]
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798

    if unpack_infor:
        for key, value in unpack_infor.items():
            if key in saved_obj:
                saved_obj.pop(key)
                for part in value['slices']:
                    saved_obj[part] = temp_saved_obj[part]
        saved_obj['UnpackBigParamInfor@@'] = unpack_infor
    return saved_obj


def _pack_loaded_dict(load_obj):
W
WeiXin 已提交
1799 1800 1801 1802 1803 1804
    if isinstance(load_obj, dict):
        unpack_info = 'UnpackBigParamInfor@@'
        if unpack_info in load_obj:
            removes = []
            for key, value in load_obj[unpack_info].items():
                slices = [load_obj[part] for part in value["slices"]]
1805 1806
                load_obj[key] = np.concatenate(slices).reshape(
                    value["OriginShape"])
W
WeiXin 已提交
1807 1808 1809 1810 1811
                removes += value["slices"]
            for key in removes:
                load_obj.pop(key)
            load_obj.pop(unpack_info)

1812 1813 1814
    return load_obj


1815
@static_only
1816
def _legacy_save(param_dict, model_path, protocol=2):
1817

1818
    def get_tensor(var):
J
Jiabin Yang 已提交
1819
        if isinstance(var, (core.VarBase, core.eager.Tensor)):
1820 1821 1822 1823 1824 1825 1826 1827
            return var.numpy()
        elif isinstance(var, core.LoDTensor):
            return np.array(var)
        return var

    param_dict = {name: get_tensor(param_dict[name]) for name in param_dict}

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
1828 1829 1830
    if _is_file_path(
            model_path
    ) and sys.platform == 'darwin' and sys.version_info.major == 3:
1831 1832 1833 1834 1835 1836
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
        with open(model_path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
1837
        with _open_file_buffer(model_path, 'wb') as f:
1838 1839 1840 1841
            pickle.dump(param_dict, f, protocol=protocol)


@static_only
1842
def save(program, model_path, protocol=4, **configs):
H
hong 已提交
1843
    """
1844
    
1845
    This function save parameters, optimizer information and network description to model_path.
H
hong 已提交
1846

1847 1848
    The parameters contains all the trainable Tensor, will save to a file with suffix ".pdparams".
    The optimizer information contains all the Tensor used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no Tensor need to save (like SGD), the fill will not generated).
H
hong 已提交
1849
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
1850

H
hong 已提交
1851 1852 1853
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
1854
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
1855
                                 Default: 4
1856
        configs(dict, optional) : optional keyword arguments.                        
H
hong 已提交
1857 1858 1859 1860 1861 1862 1863

    Returns:
        None

    Examples:
        .. code-block:: python

1864
            import paddle
1865
            import paddle.static as static
H
hong 已提交
1866

1867
            paddle.enable_static()
H
hong 已提交
1868

1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
H
hong 已提交
1879 1880 1881 1882
    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1883
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
1884 1885 1886 1887 1888
    if 'pickle_protocol' in configs:
        protocol = configs['pickle_protocol']
        warnings.warn(
            "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
        )
H
hong 已提交
1889

1890
    if not isinstance(protocol, int):
W
WeiXin 已提交
1891
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
1892
            type(protocol)))
W
WeiXin 已提交
1893

1894
    if protocol < 2 or protocol > 4:
1895 1896 1897
        raise ValueError(
            "Expected 1<'protocol'<5, but received protocol={}".format(
                protocol))
W
WeiXin 已提交
1898

1899 1900 1901 1902
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1903 1904 1905 1906
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1907
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1908
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
W
WeiXin 已提交
1909

1910
    param_dict = _unpack_saved_dict(param_dict, protocol)
1911

1912 1913 1914
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        pickle_bytes = pickle.dumps(param_dict, protocol=protocol)
1915 1916 1917 1918 1919 1920
        with open(model_path + ".pdparams", 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
        with open(model_path + ".pdparams", 'wb') as f:
1921
            pickle.dump(param_dict, f, protocol=protocol)
H
hong 已提交
1922 1923 1924 1925

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1926 1927
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1928
        pickle.dump(opt_dict, f, protocol=protocol)
H
hong 已提交
1929 1930 1931 1932

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
1933
    paddle.fluid.core.save_op_version_info(program.desc)
H
hong 已提交
1934 1935 1936 1937 1938

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1939 1940 1941 1942 1943 1944
def _pickle_loads_mac(path, f):
    pickle_bytes = bytearray(0)
    file_size = os.path.getsize(path)
    max_bytes = 2**30
    for _ in range(0, file_size, max_bytes):
        pickle_bytes += f.read(max_bytes)
T
tianshuo78520a 已提交
1945
    load_result = pickle.loads(pickle_bytes, encoding='latin1')
1946 1947 1948
    return load_result


1949
@static_only
H
hong 已提交
1950
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1951
    """
1952 1953
    :api_attr: Static Graph

H
hong 已提交
1954
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1955
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1956

1957 1958
    This function can also load model file saved with [ save_params, save_persistables, save_vars ].
    var_list can not be None  when load single model file
H
hong 已提交
1959 1960
    ( filename is not None When save_params, save_persistables or save_vars is called ).

1961
    Args:
1962 1963
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
1964
        executor(Executor, optional): The executor used for initialize the parameter
1965
                                      When startup program is not run.
1966
        var_list(list|tuple, optional): The Tensor list/tuple to load single model file saved with
1967
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
1968
                                  Default: None
H
hong 已提交
1969 1970 1971

    Returns:
        None
1972

H
hong 已提交
1973 1974 1975
     Examples:
        .. code-block:: python

1976
            import paddle
1977
            import paddle.static as static
H
hong 已提交
1978

1979
            paddle.enable_static()
H
hong 已提交
1980

1981 1982 1983
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
H
hong 已提交
1984

1985 1986 1987 1988 1989 1990 1991
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()

            static.save(prog, "./temp")
            static.load(prog, "./temp")
H
hong 已提交
1992 1993
    """

1994 1995
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2009
        _logger.debug(
2010 2011
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
2012 2013 2014 2015
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
2016 2017 2018 2019 2020 2021

        if var_list is not None:
            var_list_names = [var.name for var in var_list]
        else:
            var_list_names = None

H
hong 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
2032 2033
                load_condition = var_list_names is None or var.name in var_list_names
                if var_path in binary_file_set and load_condition:
H
hong 已提交
2034 2035 2036 2037 2038 2039 2040
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
2041 2042 2043
                load_vars(executor=executor,
                          dirname=model_path,
                          vars=loaded_var_list)
H
hong 已提交
2044 2045 2046 2047 2048
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
2049
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
2065
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
2066 2067 2068

            dir_name, file_name = os.path.split(model_path)
            try:
2069 2070 2071 2072
                load_vars(executor=executor,
                          dirname=dir_name,
                          vars=var_list,
                          filename=file_name)
H
hong 已提交
2073 2074 2075 2076
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
2077 2078 2079
                raise RuntimeError("Failed to load model file , please make sure model file is saved with the " \
                                   "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                   "When these API called, filename CANNOT be None")
H
hong 已提交
2080 2081

            return
Y
Yang Zhang 已提交
2082 2083 2084 2085 2086 2087 2088 2089

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
2090 2091 2092 2093
        elif p.is_xpu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.XPUPlace(p.xpu_device_id())
2094 2095 2096 2097
        elif p.is_npu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.NPUPlace(p.npu_device_id())
2098 2099 2100 2101
        elif p.is_mlu_place():
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.MLUPlace(p.mlu_device_id())
Y
Yang Zhang 已提交
2102 2103 2104 2105 2106 2107
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
2108 2109

    parameter_list = list(filter(is_parameter, program.list_vars()))
2110 2111 2112 2113 2114

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
2115
    with open(parameter_file_name, 'rb') as f:
2116 2117 2118 2119 2120

        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            load_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2121
            load_dict = pickle.load(f, encoding='latin1')
2122
        load_dict = _pack_loaded_dict(load_dict)
Y
Yang Zhang 已提交
2123 2124 2125 2126 2127
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
2128 2129 2130 2131 2132

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
2133
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
2134
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
2135
            "Optimizer file [{}] not exits".format(opt_file_name)
2136 2137 2138 2139

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
2140 2141

        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2142
            load_dict = pickle.load(f, encoding='latin1')
Y
Yang Zhang 已提交
2143 2144 2145 2146 2147
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
2148 2149


H
hong 已提交
2150
def load_program_state(model_path, var_list=None):
2151
    """
2152

2153
    Load program state from local file
2154

2155 2156
    Args:
        model_path(str): The file prefix store the program
2157
        var_list(list|tuple, optional): The Tensor list/tuple to load saved with
2158
                                  [ save_params, save_persistables, save_vars ].
H
hong 已提交
2159
                                  Default: None.
2160
                                  The var_list is only used to get name,
H
hong 已提交
2161
                                  will not be modified.
2162 2163 2164 2165
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
2166
    
2167 2168
        .. code-block:: python

2169
            import paddle
2170
            import paddle.static as static
2171 2172

            paddle.enable_static()
2173

2174 2175 2176
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2177

2178 2179 2180 2181
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2182

2183 2184
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
2185
    """
H
hong 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
2198
        _logger.debug(
2199 2200
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]"
            .format(parameter_file_name))
H
hong 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
2226 2227
                    lod_level=var.lod_level if var.desc.type()
                    == core.VarDesc.VarType.LOD_TENSOR else None,
H
hong 已提交
2228 2229
                    persistable=True)

2230 2231 2232 2233 2234 2235
            def _load_vars_with_try_catch(exe,
                                          dirname,
                                          vars,
                                          filename,
                                          raise_error=True):
                try:
2236 2237 2238 2239
                    load_vars(executor=exe,
                              dirname=dirname,
                              vars=vars,
                              filename=filename)
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
                    return True
                except:
                    error_str = "Failed to load model/variables `%s`, please make sure " \
                                "model/variables file is saved with the following APIs: " \
                                "save_params, save_persistables, save_vars."
                    filenames = [var.name for var in vars
                                 ] if filename is None else filename
                    if raise_error:
                        raise RuntimeError(error_str % filenames)
                    else:
                        warnings.warn(error_str % filenames, RuntimeWarning)
                return False

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

H
hong 已提交
2256 2257
            loaded_var_list = []

2258 2259 2260
            if os.path.isfile(model_path):
                # when model_path is file, var_list cannot be None
                dir_name, file_name = os.path.split(model_path)
H
hong 已提交
2261 2262
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
2263 2264
                _load_vars_with_try_catch(exe, dir_name, loaded_var_list,
                                          file_name)
H
hong 已提交
2265
            else:
2266 2267 2268 2269 2270 2271 2272
                # var_list can be None or not None
                if var_list is not None:
                    for var in var_list:
                        loaded_var_list.append(
                            clone_var_to_block(load_block, var))
                    _load_vars_with_try_catch(exe, model_path, loaded_var_list,
                                              None)
H
hong 已提交
2273
                else:
2274
                    for var_name in var_name_list:
2275 2276 2277 2278
                        # NOTE(chenweihang): If identify which files the user wants
                        # to load from the disk, we load these variables one by one.
                        # If a file does not exist, we only warn the user that the
                        # file may be an irrelevant file, but does not throw an error
2279
                        # to ensure that other legal variables can be loaded.
2280 2281
                        temp_var = load_block.create_var(name=var_name,
                                                         persistable=True)
2282 2283 2284 2285
                        if _load_vars_with_try_catch(exe, model_path,
                                                     [temp_var], None, False):
                            loaded_var_list.append(temp_var)

H
hong 已提交
2286 2287
            res_dict = {}
            for var in loaded_var_list:
2288 2289
                res_dict[var.name] = np.asarray(
                    paddle.fluid.global_scope().find_var(var.name).get_tensor())
H
hong 已提交
2290 2291 2292

            return res_dict

2293
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
2294
        "Parameter file [{}] not exits".format(parameter_file_name)
2295 2296

    with open(parameter_file_name, 'rb') as f:
2297 2298 2299 2300
        # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
        if sys.platform == 'darwin' and sys.version_info.major == 3:
            para_dict = _pickle_loads_mac(parameter_file_name, f)
        else:
T
tianshuo78520a 已提交
2301
            para_dict = pickle.load(f, encoding='latin1')
2302
    para_dict = _pack_loaded_dict(para_dict)
2303

H
hong 已提交
2304
    opt_file_name = model_prefix + ".pdopt"
2305 2306
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
T
tianshuo78520a 已提交
2307
            opti_dict = pickle.load(f, encoding='latin1')
2308 2309 2310 2311 2312 2313

        para_dict.update(opti_dict)

    return para_dict


2314
@static_only
2315 2316
def set_program_state(program, state_dict):
    """
2317 2318
    :api_attr: Static Graph

2319 2320
    Set program parameter from state_dict

2321
    An exception will throw if shape or dtype of the parameters is not match.
2322 2323 2324 2325 2326 2327

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
2328
    Returns:
2329
        None
2330

2331 2332
    Examples:
        .. code-block:: python
2333

2334
            import paddle
2335
            import paddle.static as static
2336 2337

            paddle.enable_static()
2338

2339 2340 2341
            x = static.data(name="x", shape=[10, 10], dtype='float32')
            y = static.nn.fc(x, 10)
            z = static.nn.fc(y, 10)
2342

2343 2344 2345 2346
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
            prog = static.default_main_program()
2347

2348 2349
            static.save(prog, "./temp")
            program_state = static.load_program_state("./temp")
H
hong 已提交
2350

2351
            static.set_program_state(prog, program_state)
2352
    """
2353
    state_dict = _pack_loaded_dict(state_dict)
2354 2355 2356 2357 2358 2359
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
2360
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
2361 2362 2363 2364
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
2365
            assert orig_para_np.shape == new_para_np.shape, \
2366
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
2367
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
2368
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
2369
            assert orig_para_np.dtype == new_para_np.dtype, \
2370
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
2371
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
2372 2373 2374 2375 2376
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

Q
QingshuChen 已提交
2377 2378
            #assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
            #    "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
2379 2380 2381 2382 2383 2384 2385
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())
Q
QingshuChen 已提交
2386 2387 2388 2389
            elif ten_place.is_xpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.XPUPlace(p.xpu_device_id())
2390 2391 2392 2393
            elif ten_place.is_npu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.NPUPlace(p.npu_device_id())
2394 2395 2396 2397
            elif ten_place.is_mlu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.MLUPlace(p.mlu_device_id())
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
2409 2410
            "This list is not set, Because of Paramerter not found in program. There are: {}"
            .format(" ".join(unused_para_list)))