io.py 48.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
T
tangwei12 已提交
16 17
import time
import shutil
18

19 20
from paddle.fluid.evaluator import Evaluator
from paddle.fluid.framework import Program, Parameter, default_main_program, Variable
K
fix bug  
Kexin Zhao 已提交
21
from . import core
22 23

__all__ = [
T
tangwei12 已提交
24 25
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
    'load_persistables', 'save_inference_model', 'load_inference_model',
T
tangwei12 已提交
26
    'get_inference_program', 'save_checkpoint', 'load_checkpoint',
27
    'clean_checkpoint', 'load_persist_vars_without_grad',
28 29
    'load_lookup_table_vars', 'save_persist_vars_without_grad',
    'get_latest_checkpoint_serial'
30 31 32 33
]


def is_parameter(var):
F
fengjiayi 已提交
34 35
    """
    Check whether the given variable is an instance of Parameter.
36 37

    Args:
F
fengjiayi 已提交
38
        var(Variable): The variable to be checked.
39 40

    Returns:
F
fengjiayi 已提交
41 42 43 44 45 46 47 48
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
49
    """
50 51 52 53
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_persistable(param)
    """
70
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
Refine  
Yu Yang 已提交
71
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST:
72
        return False
73 74 75 76 77 78 79 80
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
81
        dtype=var.dtype,
82 83 84 85 86
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


87 88 89 90 91
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
92
              filename=None):
93
    """
F
fengjiayi 已提交
94 95 96 97 98 99 100
    Save variables to the given directory by executor.

    There are two ways to specify variables to be saved: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be saved. The first way has a higher priority. In other words, if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.
101

F
fengjiayi 已提交
102 103 104 105
    The `dirname` are used to specify the folder where to save variables. 
    If you prefer to save variables in separate files in the folder `dirname`, 
    set `filename` None; if you prefer to save all variables in a single file, 
    use `filename` to specify it.
106

F
fengjiayi 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be saved. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to save. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be saved. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which to save all variables. If you prefer to save 
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res

            prog = fluid.default_main_program()
            fluid.io.save_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
            # saved in the same file named 'var_file' in the path "./my_paddle_model".
157 158
    """
    if vars is None:
159
        if main_program is None:
Y
Yu Yang 已提交
160
            main_program = default_main_program()
161
        if not isinstance(main_program, Program):
162 163 164 165 166
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
            dirname=dirname,
167
            vars=filter(predicate, main_program.list_vars()),
168
            filename=filename)
169 170 171
    else:
        save_program = Program()
        save_block = save_program.global_block()
172 173

        save_var_map = {}
174
        for each_var in vars:
175 176 177
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
178
            new_var = _clone_var_in_block_(save_block, each_var)
179
            if filename is None:
180 181 182 183 184 185 186 187
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                save_var_map[new_var.name] = new_var

188
        if filename is not None:
189 190 191 192
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

193
            save_block.append_op(
194 195
                type='save_combine',
                inputs={'X': save_var_list},
196
                outputs={},
197
                attrs={'file_path': os.path.join(dirname, filename)})
198

199 200 201
        executor.run(save_program)


202
def save_params(executor, dirname, main_program=None, filename=None):
203
    """
F
fengjiayi 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

    Use the `dirname` to specify the saving folder. If you would like to 
    save parameters in separate files, set `filename` None; if you would 
    like to save all parameters in a single file, use `filename` to specify 
    the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file to save all parameters. If you prefer 
                            to save parameters in differnet files, set it 
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_params(executor=exe, dirname=param_path, 
                                 main_program=None)
240 241 242 243
    """
    save_vars(
        executor,
        dirname=dirname,
244
        main_program=main_program,
245
        vars=None,
246
        predicate=is_parameter,
247
        filename=filename)
248 249


250
def save_persistables(executor, dirname, main_program=None, filename=None):
251
    """
F
fengjiayi 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then saves these variables to the folder `dirname` 
    or file `filename`.

    The `dirname` is used to specify the folder where persistable variables 
    are going to be saved. If you would like to save variables in separate 
    files, set `filename` None; if you would like to save all variables in a 
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be saved. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file to saved all variables. If you prefer to 
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
283 284 285 286
    """
    save_vars(
        executor,
        dirname=dirname,
287
        main_program=main_program,
288
        vars=None,
289
        predicate=is_persistable,
290
        filename=filename)
291 292


293 294 295 296 297
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
298
              filename=None):
299
    """
F
fengjiayi 已提交
300 301 302 303 304 305 306 307 308 309 310 311
    Load variables from the given directory by executor.

    There are two ways to specify variables to be loaded: The first way, list 
    variables in a list and assign it to the `vars`. The second way, assign the 
    `main_program` with an existing program, then all variables in the program 
    will be loaded. The first way has a higher priority. In other words if `vars` 
    are assigned, the `main_program` and the `predicate` will be ignored.

    The `dirname` are used to specify the folder where to load variables. 
    If variables were saved in separate files in the folder `dirname`, 
    set `filename` None; if all variables were saved in a single file, 
    use `filename` to specify it.
312

F
fengjiayi 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose variables will be loaded. 
                                    If it is None, the default main program will 
                                    be used automatically.
                                    Default: None
        vars(list[Variable]|None): The list that contains all variables to load. 
                                   It has a higher priority than the `main_program`.
                                   Default: None
        predicate(function|None): If it is not None, only variables in the 
                                  `main_program` that makes predicate(variable)==True 
                                  will be loaded. It only works when we are using the 
                                  `main_program` to specify variables (In other words 
                                  `vars` is None).
                                  Default: None
        filename(str|None): The file which saved all required variables. If variables 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"

            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
349

F
fengjiayi 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362
            prog = fluid.default_main_program()
            fluid.io.load_vars(executor=exe, dirname=path, main_program=prog,
                               vars=None)
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.


            # The second usage: using `vars` to specify variables
            var_list = [var_a, var_b, var_c]
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list, 
                               filename="vars_file")
            # var_a, var_b and var_c will be loaded. And they are supposed to haven 
            # been saved in the same file named 'var_file' in the path "./my_paddle_model".
363 364
    """
    if vars is None:
365
        if main_program is None:
Y
Yu Yang 已提交
366
            main_program = default_main_program()
367
        if not isinstance(main_program, Program):
368 369 370 371 372
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
            dirname=dirname,
373
            vars=filter(predicate, main_program.list_vars()),
374
            filename=filename)
375 376 377
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
378 379

        load_var_map = {}
380 381
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
382 383
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
384
            new_var = _clone_var_in_block_(load_block, each_var)
385
            if filename is None:
386 387 388 389 390 391 392 393
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
            else:
                load_var_map[new_var.name] = new_var

394
        if filename is not None:
395 396 397 398
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

399
            load_block.append_op(
400
                type='load_combine',
401
                inputs={},
402
                outputs={"Out": load_var_list},
403
                attrs={'file_path': os.path.join(dirname, filename)})
404

405 406 407
        executor.run(load_prog)


408
def load_params(executor, dirname, main_program=None, filename=None):
409
    """
F
fengjiayi 已提交
410
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
411
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    the file `filename`.

    Use the `dirname` to specify the folder where parameters were saved. If 
    parameters were saved in separate files in the folder `dirname`, set 
    `filename` None; if all parameters were saved in a single file, use 
    `filename` to specify the file name.

    NOTICE: Some variables are not Parameter while they are necessary for 
    training. So you can NOT save and continue your training just by 
    `save_params()` and `load_params()`. Please use `save_persistables()` 
    and `load_persistables()` instead. 

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all parameters. If parameters 
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_params(executor=exe, dirname=param_path, 
                                main_program=None)
446 447
    """
    load_vars(
448 449 450
        executor,
        dirname=dirname,
        main_program=main_program,
451
        predicate=is_parameter,
452
        filename=filename)
453 454


455
def load_persistables(executor, dirname, main_program=None, filename=None):
456
    """
F
fengjiayi 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    This function filters out all variables with `persistable==True` from the 
    give `main_program` and then trys to load these variables from the folder 
    `dirname` or the file `filename`.

    Use the `dirname` to specify the folder where persistable variables were 
    saved. If variables were saved in separate files, set `filename` None; 
    if all variables were saved in a single file, use `filename` to specify 
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
        main_program(Program|None): The program whose persistbale variables will 
                                    be loaded. If it is None, the default main 
                                    program will be used automatically.
                                    Default: None
        filename(str|None): The file which saved all variables. If variables were 
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persistables(executor=exe, dirname=param_path, 
                                       main_program=None)
488 489
    """
    load_vars(
490 491 492
        executor,
        dirname=dirname,
        main_program=main_program,
493
        predicate=is_persistable,
494
        filename=filename)
495 496


497 498
def get_inference_program(target_vars, main_program=None):
    if main_program is None:
Y
Yu Yang 已提交
499
        main_program = default_main_program()
500 501
    if not isinstance(target_vars, list):
        target_vars = [target_vars]
W
wanghaoshuang 已提交
502 503 504
    vars = []
    for var in target_vars:
        if isinstance(var, Evaluator):
W
wanghaoshuang 已提交
505 506
            vars.extend(var.states)
            vars.extend(var.metrics)
W
wanghaoshuang 已提交
507 508 509
        else:
            vars.append(var)
    pruned_program = main_program.prune(targets=vars)
510 511 512 513
    inference_program = pruned_program.inference_optimize()
    return inference_program


514 515 516
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
517 518 519
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
520 521
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
522 523 524
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
525

526
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
527
        out = global_block.var(name)
K
Kexin Zhao 已提交
528 529 530
        global_block.prepend_op(
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
531
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
532 533 534
            attrs={'col': i})


535 536 537
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
538 539
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
540 541 542
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
543

544
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
545 546 547 548 549 550 551
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


552 553 554 555
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
556
                         main_program=None,
557 558
                         model_filename=None,
                         params_filename=None):
559
    """
F
fengjiayi 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.

    Args:
        dirname(str): The directory path to save the inference model.
        feeded_var_names(list[str]): Names of variables that need to be feeded data 
                                     during inference.
        target_vars(list[Variable]): Variables from which we can get inference 
                                     results.
        executor(Executor): The executor that saves the inference model.
        main_program(Program|None): The original program, which will be pruned to 
                                    build the inference model. If is setted None, 
                                    the default main program will be used.
                                    Default: None.
        model_filename(str|None): The name of file to save the inference program 
                                  itself. If is setted None, a default filename 
                                  `__model__` will be used.
        params_filename(str|None): The name of file to save all related parameters. 
                                   If it is setted None, parameters will be saved 
                                   in separate files .
580

F
fengjiayi 已提交
581 582 583 584 585 586 587 588 589
    Returns:
        None

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
590

F
fengjiayi 已提交
591 592 593 594 595 596 597 598 599 600
            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[predict_var], executor=exe)

            # In this exsample, the function will prune the default main program 
            # to make it suitable for infering the `predict_var`. The pruned 
            # inference program is going to be saved in the "./infer_model/__model__" 
            # and parameters are going to be saved in separate files under folder
            # "./infer_model". 
601 602

    """
F
fengjiayi 已提交
603 604 605
    if isinstance(feeded_var_names, basestring):
        feeded_var_names = [feeded_var_names]
    else:
Q
Qiao Longfei 已提交
606 607 608 609
        if len(feeded_var_names) > 0:
            if not (bool(feeded_var_names) and all(
                    isinstance(name, basestring) for name in feeded_var_names)):
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
610 611

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
612
        target_vars = [target_vars]
F
fengjiayi 已提交
613 614 615 616 617
    else:
        if not (bool(target_vars) and all(
                isinstance(var, Variable) for var in target_vars)):
            raise ValueError("'target_vars' should be a list of Variable.")

618
    if main_program is None:
Y
Yu Yang 已提交
619
        main_program = default_main_program()
620
    copy_program = main_program.clone()
621 622 623 624

    if not os.path.isdir(dirname):
        os.makedirs(dirname)

625
    # Clear the is_target information and remove the existed feed and fetch op
626
    global_block = copy_program.global_block()
627 628 629 630
    for i, op in enumerate(global_block.ops):
        op.desc.set_is_target(False)
        if op.type == "feed" or op.type == "fetch":
            global_block.remove_op(i)
631
    copy_program.desc.flush()
632

633
    pruned_program = copy_program.prune(targets=target_vars)
634
    inference_program = pruned_program.inference_optimize()
635 636
    fetch_var_names = [v.name for v in target_vars]

K
Kexin Zhao 已提交
637 638
    prepend_feed_ops(inference_program, feeded_var_names)
    append_fetch_ops(inference_program, fetch_var_names)
639

640 641
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
642
    else:
643 644
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)
645

646 647 648 649
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)

    with open(model_filename, "wb") as f:
650
        f.write(inference_program.desc.serialize_to_string())
651

652
    save_persistables(executor, dirname, inference_program, params_filename)
653 654


655 656 657 658
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
                         params_filename=None):
659 660 661
    """
    Load inference model from a directory

F
fengjiayi 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
                                  If it is None, the default filename 
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
                                   It is only used for the case that all 
                                   parameters were saved in a single binary 
                                   file. If parameters were saved in separate 
                                   files, set it as 'None'.

    Returns:
        tuple: The return of this function is a tuple with three elements:
        (program, feed_target_names, fetch_targets). The `program` is a 
        Program, it's the program for inference. The `feed_target_names` is 
        a list of str, it contains Names of variables that need to feed 
        data in the inference program. The `fetch_targets` is a list of 
        Variable. It contains variables from which we can get inference 
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./infer_model"
            [inference_program, feed_target_names, fetch_targets] = 
                fluid.io.load_inference_model(dirname=path, executor=exe)
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

F
fengjiayi 已提交
698
            # In this exsample, the inference program was saved in the 
F
fengjiayi 已提交
699 700 701 702 703
            # "./infer_model/__model__" and parameters were saved in 
            # separate files in ""./infer_model". 
            # After getting inference program, feed target names and 
            # fetch targets, we can use an Executor to run the inference 
            # program to get the inference result.
704

705 706 707 708
    """
    if not os.path.isdir(dirname):
        raise ValueError("There is no directory named '%s'", dirname)

709 710
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
711
    else:
712 713 714 715 716
        model_filename = "__model__"
    model_filename = os.path.join(dirname, model_filename)

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
717

718
    with open(model_filename, "rb") as f:
719 720
        program_desc_str = f.read()

721
    program = Program.parse_from_string(program_desc_str)
722
    load_persistables(executor, dirname, program, params_filename)
723

724 725
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
726 727 728 729 730
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
731 732 733 734


def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
735 736 737 738 739 740 741 742 743 744 745
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
746

F
fengjiayi 已提交
747 748
    Examples:
        .. code-block:: python
X
xuwei06 已提交
749

F
fengjiayi 已提交
750 751 752
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
753

X
xuwei06 已提交
754
    """
X
xuwei06 已提交
755 756
    assert is_parameter(para)

X
xuwei06 已提交
757 758 759 760 761 762 763 764
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
765
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
766

F
fengjiayi 已提交
767 768 769 770 771 772 773
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
774

F
fengjiayi 已提交
775 776
    Returns:
        numpy.array: The parameter's values.
777

F
fengjiayi 已提交
778 779 780 781 782
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
783

F
fengjiayi 已提交
784 785 786 787 788
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
789 790
    """
    if program is None:
Y
Yu Yang 已提交
791
        program = default_main_program()
X
xuwei06 已提交
792 793
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
T
tangwei12 已提交
794 795


T
tangwei12 已提交
796
SUCCESS_MARK_FILENAME = "_SUCCESS"
797
CHECKPOINT_PREFIX = "checkpoint"
T
tangwei12 已提交
798
MODEL_DIR = "__model__"
799
LOOKUP_TABLE_DIR = "__lookup_table__"
T
tangwei12 已提交
800
TRAINER_PREFIX = "trainer"
801
CHECKPOINT_SEPARATOR = "_"
T
tangwei12 已提交
802 803 804


def save_checkpoint(executor,
T
tangwei12 已提交
805
                    checkpoint_dir,
T
tangwei12 已提交
806 807
                    trainer_id,
                    trainer_args=None,
T
tangwei12 已提交
808
                    main_program=None,
T
tangwei12 已提交
809 810
                    max_num_checkpoints=3,
                    lookup_table=None,
T
bug fix  
tangwei12 已提交
811
                    ps_endpoint_list=None):
T
tangwei12 已提交
812
    """
F
fengjiayi 已提交
813
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
814
    main_program and then saves these variables to the `checkpoint_dir` 
F
fengjiayi 已提交
815 816 817 818
    directory.

    In the training precess, we generally save a checkpoint in each
    iteration. So there might be a lot of checkpoints in the 
F
fengjiayi 已提交
819
    `checkpoint_dir`. To avoid them taking too much disk space, the 
F
fengjiayi 已提交
820 821
    `max_num_checkpoints` are introduced to limit the total number of 
    checkpoints. If the number of existing checkpints is greater than 
F
fengjiayi 已提交
822
    the `max_num_checkpoints`, oldest ones will be scroll deleted.
F
fengjiayi 已提交
823

F
fengjiayi 已提交
824 825
    A variable is a checkpoint variable and will be saved if it meets
    all following conditions:
F
fengjiayi 已提交
826 827 828
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
T
tangwei12 已提交
829

F
fengjiayi 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
    Args:
        executor(Executor): The executor to run for save checkpoint.
        checkpoint_dir(str): The folder where to save checkpoints.
        trainer_id(int): currect trainer id, if id is equal to 0, the trainer 
            is chief.
        trainer_args(dict|None): Current training arguments. Such as 'epoch_id' 
            and 'step_id'.
            Defaut: None
        main_program(Program|None): The program whose checkpoint variables will
            be saved. If it is None, the default main program will be used.
        max_num_checkpoints(int): The max number of total number of existing 
            checkpoints.
            Default: 3
T
tangwei12 已提交
843 844 845 846 847 848
        lookup_table(string|None): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list|None): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
F
fengjiayi 已提交
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        AssertionError: If `trainer_args` is not a dict.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            trainer_args = {"epoch_id": 200,
                            "step_id": 20} # just an example
T
tangwei12 已提交
865 866 867
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

F
fengjiayi 已提交
868 869 870 871 872
            fluid.io.save_checkpoint(executor=exe,
                                     checkpoint_dir=path,
                                     trainer_id=0,
                                     trainer_args=trainer_args,
                                     main_program=prog,
T
tangwei12 已提交
873 874 875
                                     max_num_checkpoints=3,
                                     lookup_table=table_name,
                                     ps_endpoint_list = ps_endpoints)
T
tangwei12 已提交
876 877
    """
    if checkpoint_dir is None:
T
tangwei12 已提交
878
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
879
    assert checkpoint_dir
T
tangwei12 已提交
880

T
tangwei12 已提交
881 882
    if trainer_args:
        assert isinstance(trainer_args, dict)
T
tangwei12 已提交
883

884 885
    if not os.path.isdir(checkpoint_dir):
        os.makedirs(checkpoint_dir)
T
tangwei12 已提交
886

T
bug fix  
tangwei12 已提交
887 888
    is_chief = trainer_id == 0

T
tangwei12 已提交
889
    serial = get_latest_checkpoint_serial(checkpoint_dir) + 1
T
tangwei12 已提交
890
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
T
tangwei12 已提交
891

T
tangwei12 已提交
892 893
    save_trainer_args(cur_dir, trainer_id, trainer_args)

T
bug fix  
tangwei12 已提交
894
    if is_chief:
T
tangwei12 已提交
895
        save_persist_vars_without_grad(executor, cur_dir, main_program)
T
tangwei12 已提交
896

T
bug fix  
tangwei12 已提交
897 898 899
    if is_chief and lookup_table and ps_endpoint_list:
        save_pserver_vars_by_notify(executor, cur_dir, lookup_table,
                                    ps_endpoint_list)
T
tangwei12 已提交
900

T
tangwei12 已提交
901
    _scroll_delete(checkpoint_dir, max_num_checkpoints)
T
tangwei12 已提交
902 903


T
tangwei12 已提交
904
def load_checkpoint(executor, checkpoint_dir, serial, main_program):
T
tangwei12 已提交
905
    """
F
fengjiayi 已提交
906 907
    This function filters out all checkpoint variables from the give
    main_program and then try to load these variables from the
F
fengjiayi 已提交
908
    `checkpoint_dir` directory.
F
fengjiayi 已提交
909 910

    In the training precess, we generally save a checkpoint in each
F
fengjiayi 已提交
911 912
    iteration. So there are more than one checkpoint in the 
    `checkpoint_dir` (each checkpoint has its own sub folder), use 
F
fengjiayi 已提交
913
    `serial` to specify which serial of checkpoint you would like to
F
fengjiayi 已提交
914 915 916
    load.

    A variable is a checkpoint variable and will be loaded if it meets
F
fengjiayi 已提交
917
    all following conditions:
F
fengjiayi 已提交
918 919 920 921 922 923 924 925 926 927
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for loading checkpoint.
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        main_program(Program): The program whose checkpoint variables will
                               be loaded.
T
tangwei12 已提交
928

F
fengjiayi 已提交
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
    Returns:
        None

    Raises:
        ValueError: If `checkpoint_dir` is None.
        ValueError: If `serial` is None or `serial` is less than 0.
        ValueError: If `main_program` is None.

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            path = "./checkpoints"
            prog = fluid.default_main_program()
            fluid.io.load_checkpoint(executor=exe, checkpoint_dir=path,
                    serial=9, main_program=prog)

            # In this example, `load_checkpoint` function
            # will first filters out all checkpoint variables in the default
            # main program, and then try to load these variables form the
            # folder "./checkpoints/checkpoint_9/__model__".
T
tangwei12 已提交
950
    """
T
tangwei12 已提交
951

T
tangwei12 已提交
952
    if checkpoint_dir is None:
T
tangwei12 已提交
953
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
954

T
tangwei12 已提交
955
    if serial is None or serial < 0:
T
tangwei12 已提交
956
        raise ValueError("'serial' should not be None or <0 ")
T
tangwei12 已提交
957

T
tangwei12 已提交
958
    if main_program is None:
T
tangwei12 已提交
959
        raise ValueError('main_program should not be None.')
960

T
tangwei12 已提交
961
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
T
tangwei12 已提交
962
    load_persist_vars_without_grad(executor, cur_dir, main_program, True)
T
tangwei12 已提交
963 964


T
tangwei12 已提交
965 966
def clean_checkpoint(checkpoint_dir, delete_dir=False):
    """
T
tangwei12 已提交
967 968
    clean the checkpoint dir, when the train exits normally, 
    the trainer will call clean_checkpoint to delete checkpoint directory saved before.
T
tangwei12 已提交
969
    delete_dir only works when the directory is empty, otherwise, OSError is raised.  
970

F
fengjiayi 已提交
971 972
    : param checkpoint_dir
    : param delete_dir
T
tangwei12 已提交
973
    """
974

T
tangwei12 已提交
975
    if checkpoint_dir is None:
T
tangwei12 已提交
976
        raise ValueError("'checkpoint_dir' should not be None")
T
tangwei12 已提交
977
    _scroll_delete(checkpoint_dir, max_num_checkpoints=0)
T
tangwei12 已提交
978 979 980 981 982

    if delete_dir and not os.listdir(checkpoint_dir):
        os.rmdir(checkpoint_dir)


T
tangwei12 已提交
983 984 985 986
def load_persist_vars_without_grad(executor,
                                   dirname,
                                   program,
                                   has_model_dir=False):
T
tangwei12 已提交
987
    """
F
fengjiayi 已提交
988
    This function filters out all checkpoint variables from the give
F
fengjiayi 已提交
989
    program and then trys to load these variables from the given directory.
F
fengjiayi 已提交
990

F
fengjiayi 已提交
991
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
992 993 994 995
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".
996

F
fengjiayi 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be loaded.
        has_model_dir(bool): if True, the function loads variables
                             from a sub directory named '__model__'.
                             Default: False

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.load_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog, has_model_dir=True)

            # In this example, `load_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then trys to load these variables form the
            # folder "./my_paddle_model/__model__".
T
tangwei12 已提交
1022 1023
    """

T
tangwei12 已提交
1024
    if has_model_dir:
T
tangwei12 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        dirname = _get_model_dir(dirname)

    load_vars(
        executor,
        dirname=dirname,
        main_program=program,
        predicate=_is_checkpoint_var,
        filename=None)


T
bug fix  
tangwei12 已提交
1035
def load_lookup_table_vars(executor, dirname, program, pserver_id, table_name):
T
tangwei12 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
    """
    The parameter server will load lookup table's local file in 
    selectedrows variable.

    Args:
        executor(Executor): The executor to run for loading persistable variables
        dirname(str): The directory path
        main_program(Program): Find the variable named table_name in main_program
        pserver_id(int): the serial number in pserver_endpoints list
        table_name(str): lookup table name
    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            dirname = "./checkpoints/checkpoint_9/__model__"
            prog = fluid.default_main_program()
            pserver_id = 1
            table_name = "share_w"
            fluid.io.load_lookup_table_vars(executor=exe,
                    dirname=dirname, program=prog, pserver_id=pserver_id,
                    table_name=table_name)
    """
T
bug fix  
tangwei12 已提交
1061 1062 1063 1064 1065 1066 1067 1068

    for var in program.list_vars():
        if var.name == table_name:
            lookup_table_var = var
            break

    assert lookup_table_var is not None

1069
    lookup_table_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)
T
bug fix  
tangwei12 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
    table_file = table_name + CHECKPOINT_SEPARATOR + str(pserver_id)

    load_prog = Program()
    load_block = load_prog.global_block()

    load_block.append_op(
        type='load',
        inputs={},
        outputs={'Out': [lookup_table_var]},
        attrs={'file_path': os.path.join(lookup_table_dir, table_file)})
1080

T
bug fix  
tangwei12 已提交
1081
    executor.run(load_prog)
1082 1083


T
tangwei12 已提交
1084 1085
def save_persist_vars_without_grad(executor, dirname, program):
    """
F
fengjiayi 已提交
1086 1087 1088 1089
    This function filters out all checkpoint variables from the give
    program and then save these variables to a sub-folder '__model__' of 
    the given directory.

F
fengjiayi 已提交
1090
    A variable is a checkpoint variable if it meets all following
F
fengjiayi 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    conditions:
        1. It's persistable.
        2. It's type is not FEED_MINIBATCH nor FETCH_LIST nor RAW.
        3. It's name contains no "@GRAD" nor ".trainer_" nor ".block".

    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
        program(Program): The program whose checkpoint variables will
                          be saved.

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            fluid.io.save_persist_vars_without_grad(executor=exe,
                    dirname=param_path, program=prog)
1113

F
fengjiayi 已提交
1114 1115 1116 1117
            # In this example, `save_persist_vars_without_grad` function
            # will first filters out all checkpoint variables in the default
            # main program, and then saves these variables to the folder 
            # "./my_paddle_model/__model__".
T
tangwei12 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    """
    cur_dir = _get_model_dir(dirname)
    save_vars(
        executor,
        dirname=cur_dir,
        main_program=program,
        vars=None,
        predicate=_is_checkpoint_var,
        filename=None)
    _write_success(cur_dir)


T
bug fix  
tangwei12 已提交
1130 1131
def save_pserver_vars_by_notify(executor, dirname, lookup_table,
                                ps_endpoint_list):
T
tangwei12 已提交
1132
    """
T
tangwei12 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    This function will send checkpoint notify message from Trainer 0
    to all the pservers.
    The checkpoint notify message contains lookup table name, 
    the absolute path on pserver to save lookup_table.

    Args:
        executor(Executor): The executor to run for send checkpoint notify.
        dirname(str): The folder where to save checkpoints.
        lookup_table(string): the lookup table name, when use distribute
            lookup table, we can get lookup table name by DistributeTranspiler.
            table_name 
        ps_endpoint_list(list): the parameter server ip:port list.  
            when use distribute lookup table, we can get ps_endpoint_list by 
            distribute arguments.
    Return:
        None
    
    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
            table_name = "share_w"
            ps_endpoints = ["127.0.0.1:6000","127.0.0.1:6001"]

            fluid.io.save_pserver_vars_by_notify(executor=exe,
                    dirname=param_path, lookup_table=table_name, 
                    ps_endpoint_list=ps_endpoints)
T
tangwei12 已提交
1162 1163 1164 1165 1166 1167 1168
    """
    cur_dir = _get_lookuptable_dir(dirname)

    checkpoint_notify_program = Program()
    checkpoint_notify_block = checkpoint_notify_program.global_block()

    attrs = {}
T
tangwei12 已提交
1169
    attrs['epmap'] = ps_endpoint_list
T
tangwei12 已提交
1170
    attrs['dir'] = cur_dir
T
tangwei12 已提交
1171
    attrs['lookup_table'] = lookup_table
T
tangwei12 已提交
1172 1173

    checkpoint_notify_block.append_op(
T
tangwei12 已提交
1174
        type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
T
tangwei12 已提交
1175 1176 1177
    executor.run(checkpoint_notify_program)


T
tangwei12 已提交
1178
def save_trainer_args(dirname, trainer_id, trainer_args):
T
tangwei12 已提交
1179 1180
    assert isinstance(trainer_args, dict)

T
tangwei12 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    cur_dir = _get_trainer_dir(dirname, trainer_id)

    for name, value in trainer_args.iteritems():
        args_file = os.path.join(cur_dir, name)
        with open(args_file, 'w') as f:
            f.write(str(value))
    _write_success(cur_dir)


def load_trainer_args(checkpoint_dir, serial, trainer_id, trainer_args):
T
tangwei12 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
    """
    trainer will load some args from it's  independent directory, 
    such as epoch_id and step_id.

    Args:
        checkpoint_dir(str): The folder where all checkpoints are.
        serial(int): The serial of checkpoint you would like to load.
        trainer_id(int): current trainer id.
        trainer_args(list): list about load trainer args
    Return:
        None

    Examples:
        .. code-block:: python

            param_path = "./checkpoint/"
            serial = 7
            trainer_id = 2
            trainer_args = ["epoch_id", "step_id"]

            fluid.io.load_trainer_args(checkpoint_dir=param_path, serial=serial,
            trainer_id=trainer_id, trainer_args=trainer_args)
    """
T
tangwei12 已提交
1214 1215
    assert isinstance(trainer_args, list)

T
tangwei12 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    cur_dir = _get_serial_dir(checkpoint_dir, serial)
    cur_dir = _get_trainer_dir(cur_dir, trainer_id)

    ret_values = []

    for arg in trainer_args:
        cur_file = os.path.join(cur_dir, arg)
        with open(cur_file, 'r') as f:
            contents = f.read()
            ret_values.append(contents.strip())
    return ret_values


T
tangwei12 已提交
1229
def _is_checkpoint_var(var):
T
tangwei12 已提交
1230
    """
T
tangwei12 已提交
1231 1232 1233
    the checkpoint will not save or load all the variables.
    var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.

T
tangwei12 已提交
1234
    : param var(Variable)
T
tangwei12 已提交
1235
    """
T
tangwei12 已提交
1236 1237 1238 1239
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.RAW:
        return False
T
tangwei12 已提交
1240
    # @GRAD are named for gradient variables, checkpoint will not save it.
T
tangwei12 已提交
1241 1242
    if "@GRAD" in var.name:
        return False
T
tangwei12 已提交
1243
    # .trainer_ are named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1244 1245 1246
    if ".trainer_" in var.name:
        return False

T
tangwei12 已提交
1247
    # .block is named for distribute train variables, checkpoint will not save it.
T
tangwei12 已提交
1248
    if ".block" in var.name:
T
tangwei12 已提交
1249 1250 1251
        return False

    return var.persistable
T
tangwei12 已提交
1252 1253


T
tangwei12 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
def _get_dir_serial(dirname):
    _, serial = dirname.split(CHECKPOINT_SEPARATOR)

    try:
        serial_num = int(serial)
    except ValueError:
        serial_num = -1
    return serial_num


def _get_serial_dir(dirname, serial):
    serial_folder = CHECKPOINT_PREFIX + CHECKPOINT_SEPARATOR + str(serial)
T
tangwei12 已提交
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    serial_dir = os.path.join(dirname, serial_folder)

    if not os.path.isdir(serial_dir):
        os.makedirs(serial_dir)

    return serial_dir


def _get_model_dir(dirname):
    model_dir = os.path.join(dirname, MODEL_DIR)

    if not os.path.isdir(model_dir):
        os.makedirs(model_dir)

    return model_dir


T
tangwei12 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291
def _get_lookuptable_dir(dirname):
    lookuptable_dir = os.path.join(dirname, LOOKUP_TABLE_DIR)

    if not os.path.isdir(lookuptable_dir):
        os.makedirs(lookuptable_dir)

    return lookuptable_dir


T
tangwei12 已提交
1292 1293 1294 1295 1296 1297 1298 1299
def _get_trainer_dir(dirname, trainer_id):
    trainer_folder = TRAINER_PREFIX + CHECKPOINT_SEPARATOR + str(trainer_id)
    trainer_dir = os.path.join(dirname, trainer_folder)

    if not os.path.isdir(trainer_dir):
        os.makedirs(trainer_dir)

    return trainer_dir
T
tangwei12 已提交
1300 1301


T
tangwei12 已提交
1302
def _scroll_delete(dirname, max_num_checkpoints=3):
T
tangwei12 已提交
1303
    dirs = os.listdir(dirname)
T
tangwei12 已提交
1304
    serial_map = {}
T
tangwei12 已提交
1305
    for serial in dirs:
T
tangwei12 已提交
1306 1307
        serial_num = _get_dir_serial(serial)
        serial_map[serial_num] = serial
T
tangwei12 已提交
1308

T
tangwei12 已提交
1309
    if len(serial_map.keys()) <= max_num_checkpoints:
T
tangwei12 已提交
1310 1311
        return

T
tangwei12 已提交
1312
    serials = serial_map.keys()
T
tangwei12 已提交
1313
    serials.sort(reverse=True)
T
tangwei12 已提交
1314
    serials = serials[max_num_checkpoints:]
T
tangwei12 已提交
1315
    for serial in serials:
T
tangwei12 已提交
1316
        cur_dir = _get_serial_dir(dirname, serial)
T
tangwei12 已提交
1317 1318 1319
        shutil.rmtree(cur_dir)


T
tangwei12 已提交
1320 1321
def _write_success(dirname):
    """
T
tangwei12 已提交
1322
    write an empty file named "_SUCCESS" in checkpoint dir, indicate this checkpoint is correct.
T
tangwei12 已提交
1323

F
fengjiayi 已提交
1324
    : param dirname
T
tangwei12 已提交
1325
    """
T
tangwei12 已提交
1326
    success_file = os.path.join(dirname, SUCCESS_MARK_FILENAME)
T
bug fix  
tangwei12 已提交
1327
    with open(success_file, 'a') as f:
1328
        now = time.ctime()
T
bug fix  
tangwei12 已提交
1329
        f.write(now)
T
tangwei12 已提交
1330 1331


T
tangwei12 已提交
1332
def get_latest_checkpoint_serial(checkpoint_dir):
T
tangwei12 已提交
1333
    """
T
tangwei12 已提交
1334 1335
    get the latest file in checkpoint directory, the _SUCCESS file must exist in the directory

F
fengjiayi 已提交
1336
    : param checkpoint_dir
T
tangwei12 已提交
1337
    """
T
tangwei12 已提交
1338
    if not checkpoint_dir:
T
tangwei12 已提交
1339
        return -1
T
tangwei12 已提交
1340 1341 1342 1343 1344 1345

    def has_success(checkpoint_dir, cur_dir):
        """
        is _SUCCESS in this dir
        """

T
tangwei12 已提交
1346
        serial = _get_dir_serial(cur_dir)
T
tangwei12 已提交
1347 1348
        if serial == -1 or not os.path.isdir(
                os.path.join(checkpoint_dir, cur_dir)):
1349 1350 1351
            return -1

        success_path = os.path.join(
T
tangwei12 已提交
1352 1353
            _get_serial_dir(checkpoint_dir, serial), MODEL_DIR,
            SUCCESS_MARK_FILENAME)
T
tangwei12 已提交
1354
        if os.path.isfile(success_path):
T
tangwei12 已提交
1355
            return serial
T
tangwei12 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

    if not os.path.isdir(checkpoint_dir):
        return -1

    current_dir = -1
    dirs = os.listdir(checkpoint_dir)
    for cur_dir in dirs:
        success_num = has_success(checkpoint_dir, cur_dir)
        if success_num > current_dir:
            current_dir = success_num
    return current_dir