io.py 76.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34 35
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
    program_guard
T
tangwei12 已提交
36
from paddle.fluid.compiler import CompiledProgram
37
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
38 39
from . import reader
from .reader import *
40 41
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
42
from . import core
43
from .. import compat as cpt
44

45 46
batch = paddle.batch

47
__all__ = [
48 49 50 51 52 53 54 55 56 57 58 59 60
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
61 62
    'get_program_parameter',
    'get_program_persistable_vars',
63
] + reader.__all__ + paddle.reader.__all__
64

65 66
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
67

68 69

def is_parameter(var):
F
fengjiayi 已提交
70 71
    """
    Check whether the given variable is an instance of Parameter.
72 73

    Args:
F
fengjiayi 已提交
74
        var(Variable): The variable to be checked.
75 76

    Returns:
F
fengjiayi 已提交
77 78 79 80 81 82
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

83
            import paddle.fluid as fluid
F
fengjiayi 已提交
84 85
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
86
    """
87 88 89 90
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

104
            import paddle.fluid as fluid
105
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
106 107
            res = fluid.io.is_persistable(param)
    """
108
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
109 110
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
111
        return False
112 113 114
    return var.persistable


H
hong 已提交
115
def is_belong_to_optimizer(var):
116
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
117 118 119
        return is_persistable(var)

    return False
H
hong 已提交
120 121


H
hong 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


166 167
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
183 184


H
hong 已提交
185 186 187 188 189 190 191 192 193 194 195
@contextlib.contextmanager
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
196 197 198 199 200 201
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
202 203 204
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
205 206 207
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
208 209 210
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
211 212 213
    return main_program


214 215 216 217 218
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
219
              filename=None):
220
    """
221
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
222

223 224 225
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
226

227
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
228
    If you prefer to save variables in separate files in the `dirname` folder,
229
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
230
    use `filename` to specify it.
231

F
fengjiayi 已提交
232 233
    Args:
        executor(Executor): The executor to run for saving variables.
234 235
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
236
                                    If it is None, the default main program will
F
fengjiayi 已提交
237 238
                                    be used automatically.
                                    Default: None
239 240 241 242 243 244 245 246
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
247 248 249 250 251 252 253 254 255 256

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

257
            import paddle.fluid as fluid
258

259 260 261 262 263 264 265 266 267 268 269
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
270

271
            # The first usage: use `vars` to set the saved variables.
272 273
            var_list = [w, b]
            path = "./my_paddle_vars"
274
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
275 276 277 278 279 280 281 282 283 284
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
285
    """
L
lujun 已提交
286
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
287
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
288

289 290 291
    if vars is None:
        save_vars(
            executor,
292
            main_program=main_program,
L
lujun 已提交
293
            dirname=save_dirname,
294
            vars=list(filter(predicate, main_program.list_vars())),
295
            filename=filename)
296
    else:
297 298 299 300 301 302 303
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

304 305
        save_program = Program()
        save_block = save_program.global_block()
306 307

        save_var_map = {}
308
        for each_var in vars:
309 310 311
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
312
            new_var = _clone_var_in_block_(save_block, each_var)
313
            if filename is None:
314 315
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
316 317 318 319
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
320
                    attrs={'file_path': save_file_path})
321 322 323
            else:
                save_var_map[new_var.name] = new_var

324
        if filename is not None:
325 326 327 328
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

329
            save_block.append_op(
330 331
                type='save_combine',
                inputs={'X': save_var_list},
332
                outputs={},
L
lujun 已提交
333
                attrs={'file_path': os.path.join(save_dirname, filename)})
334

335 336 337 338
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
339 340 341
        executor.run(save_program)


342
def save_params(executor, dirname, main_program=None, filename=None):
343
    """
G
guofei 已提交
344 345 346
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
347

G
guofei 已提交
348 349 350
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
351 352
    the file name.

G
guofei 已提交
353 354 355 356 357 358 359 360 361 362
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
363 364

    Args:
G
guofei 已提交
365 366
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
F
fengjiayi 已提交
367
        dirname(str): The saving directory path.
G
guofei 已提交
368 369 370 371 372 373 374 375 376 377
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
378 379 380 381 382 383 384

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
385
            import paddle.fluid as fluid
G
guofei 已提交
386 387 388 389 390 391 392 393 394 395
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
396
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
397 398 399 400
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
401 402 403 404
    """
    save_vars(
        executor,
        dirname=dirname,
405
        main_program=main_program,
406
        vars=None,
407
        predicate=is_parameter,
408
        filename=filename)
409 410


411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

433
            import paddle.fluid as fluid
434 435 436 437 438 439 440 441 442 443
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
444
        receive params on pserver through rpc.
445 446 447 448 449 450 451 452 453 454
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
455 456 457 458 459 460 461
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
462 463 464

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
465
                slice = optimizer.slice
466 467 468
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
469 470 471
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
472 473
                endpoints[index] = endpoint

T
tangwei12 已提交
474 475 476 477 478
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

479
            block.append_op(
T
tangwei12 已提交
480 481 482 483 484 485 486 487 488 489 490
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
520 521
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
522 523 524 525 526 527
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
528
        raise TypeError("'main_program' should be an instance of Program.")
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


562
def save_persistables(executor, dirname, main_program=None, filename=None):
563
    """
G
guofei 已提交
564 565 566 567 568
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
569

G
guofei 已提交
570
    The :code:`dirname` is used to specify the folder where persistable variables
571
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
572 573
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
574 575 576

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
577 578 579
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
        dirname(str): The saving directory path.
T
tianshuo78520a 已提交
580
        main_program(Program, optional): The program whose persistable variables will
G
guofei 已提交
581 582 583 584 585 586 587 588
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
589 590 591 592 593 594 595

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
596
            import paddle.fluid as fluid
G
guofei 已提交
597 598 599 600 601 602 603 604 605 606
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
607
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
608 609 610 611 612
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
613
    """
614 615 616 617 618 619 620 621 622 623 624
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
625 626


627 628 629 630 631
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
632
              filename=None):
633
    """
634
    This API loads variables from files by executor.
F
fengjiayi 已提交
635

636 637 638 639
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
640

641
    The `dirname` is used to specify the folder where to load variables.
642
    If variables were saved in separate files in the folder `dirname`,
643
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
644
    use `filename` to specify it.
645

F
fengjiayi 已提交
646 647
    Args:
        executor(Executor): The executor to run for loading variables.
648 649
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
650
                                    If it is None, the default main program will
F
fengjiayi 已提交
651 652
                                    be used automatically.
                                    Default: None
653
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
654
                                   Default: None
655 656 657 658 659 660
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
661 662 663 664 665 666 667 668 669 670

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

671
            import paddle.fluid as fluid
672

673 674 675 676 677 678 679 680 681 682 683
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
684

685 686 687 688 689 690 691 692 693 694 695
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
696
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
697 698 699
            def name_has_fc(var):
                res = "fc" in var.name
                return res
700 701 702
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
703
                               vars=None, predicate=name_has_fc)
704 705
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
706

707
    """
L
lujun 已提交
708
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
709

710
    if vars is None:
711
        if main_program is None:
Y
Yu Yang 已提交
712
            main_program = default_main_program()
713
        if not isinstance(main_program, Program):
714 715 716
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
717 718 719

        load_vars(
            executor,
L
lujun 已提交
720
            dirname=load_dirname,
T
tangwei12 已提交
721
            main_program=main_program,
722
            vars=list(filter(predicate, main_program.list_vars())),
723
            filename=filename)
724 725 726
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
727

728 729
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
730

731
        if not isinstance(main_program, Program):
732 733 734
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
735

T
tangwei12 已提交
736
        # save origin param shape
H
hong 已提交
737
        orig_para_shape = {}
738
        load_var_map = {}
739 740
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
741 742
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
743 744

            if isinstance(each_var, Parameter):
745 746
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
747
            new_var = _clone_var_in_block_(load_block, each_var)
748
            if filename is None:
749 750 751 752
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
753 754 755
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
756 757 758
            else:
                load_var_map[new_var.name] = new_var

759
        if filename is not None:
760 761 762 763
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

764
            load_block.append_op(
765
                type='load_combine',
766
                inputs={},
767
                outputs={"Out": load_var_list},
L
lujun 已提交
768
                attrs={'file_path': os.path.join(load_dirname, filename)})
769 770
        executor.run(load_prog)

T
tangwei12 已提交
771
        # check var shape
H
hong 已提交
772 773 774 775 776 777
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
778
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
779 780 781
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
782
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
783 784 785
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

786

787
def load_params(executor, dirname, main_program=None, filename=None):
788
    """
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
808 809

    Args:
810 811
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
812
        dirname(str): The directory path.
813 814 815 816 817 818 819 820
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
821 822 823 824 825 826 827

    Returns:
        None

    Examples:
        .. code-block:: python

828
            import paddle.fluid as fluid
829

F
fengjiayi 已提交
830 831 832
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
833
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
834
                                main_program=None)
835 836
    """
    load_vars(
837 838 839
        executor,
        dirname=dirname,
        main_program=main_program,
840
        predicate=is_parameter,
841
        filename=filename)
842 843


844
def load_persistables(executor, dirname, main_program=None, filename=None):
845
    """
846 847
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
848
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
849

850 851 852 853
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
854 855

    Args:
856 857
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
858
        dirname(str): The directory path.
T
tianshuo78520a 已提交
859
        main_program(Program, optional): The program whose persistable variables will
860 861 862 863 864 865 866
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
867 868 869 870 871 872 873

    Returns:
        None

    Examples:
        .. code-block:: python

874
            import paddle.fluid as fluid
875

F
fengjiayi 已提交
876 877 878
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
879
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
880
                                       main_program=None)
881
    """
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

913
            import paddle.fluid as fluid
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
947 948 949 950 951 952 953 954
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
977
        raise TypeError("'main_program' should be an instance of Program.")
978 979 980 981 982 983 984 985 986 987 988 989 990 991

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
992 993


994 995 996
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
997 998 999
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1000 1001
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1002 1003 1004
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1005

1006
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1007
        out = global_block.var(name)
W
Wu Yi 已提交
1008
        global_block._prepend_op(
K
Kexin Zhao 已提交
1009 1010
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1011
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1012 1013 1014
            attrs={'col': i})


1015 1016 1017
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1018 1019
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1020 1021 1022
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1023

1024
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1025 1026 1027 1028 1029 1030 1031
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1032 1033 1034 1035
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1036
                         main_program=None,
1037
                         model_filename=None,
1038
                         params_filename=None,
T
tangwei12 已提交
1039 1040
                         export_for_deployment=True,
                         program_only=False):
1041
    """
F
fengjiayi 已提交
1042
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1043
    and then save it and all related parameters to given `dirname` .
1044
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1045 1046
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1047

G
guofei 已提交
1048 1049 1050 1051 1052
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1053 1054 1055

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1056
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1057 1058 1059 1060 1061 1062
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1063
                                         build the inference model. If is set None,
G
guofei 已提交
1064 1065 1066
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1067
                                       itself. If is set None, a default filename
G
guofei 已提交
1068 1069
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1070
                                        If it is set None, parameters will be saved
G
guofei 已提交
1071
                                        in separate files .
X
Xin Pan 已提交
1072 1073 1074 1075 1076
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1077 1078 1079 1080
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1081

F
fengjiayi 已提交
1082
    Returns:
G
guofei 已提交
1083 1084 1085 1086
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1087 1088

    Raises:
G
guofei 已提交
1089 1090
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1091 1092 1093

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1094

1095 1096
            import paddle.fluid as fluid

F
fengjiayi 已提交
1097 1098
            path = "./infer_model"

T
tianshuo78520a 已提交
1099
            # User defined network, here a softmax regession example
G
guofei 已提交
1100 1101
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1119 1120 1121
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1122
            # and parameters are going to be saved in separate files under folder
1123
            # "./infer_model".
1124 1125

    """
M
minqiyang 已提交
1126
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1127
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1128
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1129
        if len(feeded_var_names) > 0:
1130
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1131
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1132
                    isinstance(name, six.string_types)
1133
                    for name in feeded_var_names)):
M
minqiyang 已提交
1134
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1135 1136

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1137
        target_vars = [target_vars]
X
Xin Pan 已提交
1138
    elif export_for_deployment:
1139 1140
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1141 1142
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1143
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1144

1145 1146 1147
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1148 1149 1150
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1151 1152 1153 1154 1155 1156
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1157 1158 1159 1160 1161
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1162
        for i, var in enumerate(target_vars):
1163
            if isinstance(var, Variable):
F
flame 已提交
1164 1165 1166
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1167
        target_vars = uniq_target_vars
F
flame 已提交
1168
    target_var_name_list = [var.name for var in target_vars]
1169

1170
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1171
    save_dirname = dirname
1172
    try:
L
lujun 已提交
1173 1174
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1175 1176 1177 1178
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1179 1180 1181 1182
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1183
    model_basename = os.path.join(save_dirname, model_basename)
1184

X
Xin Pan 已提交
1185 1186 1187 1188
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1189 1190 1191

    origin_program = main_program.clone()

X
Xin Pan 已提交
1192
    if export_for_deployment:
X
Xin Pan 已提交
1193 1194
        main_program = main_program.clone()
        global_block = main_program.global_block()
1195
        need_to_remove_op_index = []
X
Xin Pan 已提交
1196 1197 1198
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1199 1200 1201 1202 1203
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1204
        main_program.desc.flush()
X
Xin Pan 已提交
1205

1206 1207
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1208
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1209 1210
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1211 1212 1213
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1214 1215
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1216 1217
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1218 1219 1220
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1221 1222
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1223

T
tangwei12 已提交
1224 1225 1226 1227 1228 1229
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1230 1231
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1232 1233
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1234

L
lujun 已提交
1235
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1236
    return target_var_name_list
X
fix  
Xin Pan 已提交
1237

1238

1239 1240 1241
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1242 1243
                         params_filename=None,
                         pserver_endpoints=None):
1244
    """
1245 1246 1247
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1248
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1249

F
fengjiayi 已提交
1250
    Args:
1251
        dirname(str): The given directory path.
F
fengjiayi 已提交
1252
        executor(Executor): The executor to run for loading inference model.
1253 1254
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1255
                                  If it is None, the default filename
1256 1257 1258
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1259 1260 1261
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1262 1263 1264 1265 1266 1267
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1268
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1269 1270

    Returns:
1271
        list: The return of this API is a list with three elements:
1272
        (program, feed_target_names, fetch_targets). The `program` is a
1273 1274 1275 1276 1277
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1278 1279 1280 1281 1282 1283 1284

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1285 1286
            import paddle.fluid as fluid
            import numpy as np
1287 1288

            # Build the model
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1300 1301

            # Save the inference model
F
fengjiayi 已提交
1302
            path = "./infer_model"
1303 1304
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1305 1306 1307

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1308 1309
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1310
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1311 1312 1313 1314
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1315 1316 1317
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1318
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1319
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1320 1321
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1322
                                              pserver_endpoints=endpoints))
1323

1324
            # In this example, the inference program was saved in the file
1325
            # "./infer_model/__model__" and parameters were saved in
1326 1327 1328 1329
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1330
    """
L
lujun 已提交
1331 1332
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1333 1334
        raise ValueError("There is no directory named '%s'", dirname)

1335 1336
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1337
    else:
1338
        model_filename = "__model__"
L
lujun 已提交
1339
    model_filename = os.path.join(load_dirname, model_filename)
1340 1341 1342

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1343

1344
    with open(model_filename, "rb") as f:
1345 1346
        program_desc_str = f.read()

1347
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1348
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1349 1350 1351
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1352
    load_persistables(executor, load_dirname, program, params_filename)
1353

T
tangwei12 已提交
1354
    if pserver_endpoints:
T
tangwei12 已提交
1355
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1356

1357 1358
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1359 1360 1361 1362 1363
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1364 1365


T
tangwei12 已提交
1366 1367 1368
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1369 1370
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1371
    program._sync_with_cpp()
T
tangwei12 已提交
1372
    return program
T
tangwei12 已提交
1373 1374


X
xuwei06 已提交
1375 1376
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1388

F
fengjiayi 已提交
1389 1390
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1391

1392
            import paddle.fluid as fluid
F
fengjiayi 已提交
1393 1394 1395
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1396

X
xuwei06 已提交
1397
    """
1398
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1399

X
xuwei06 已提交
1400 1401 1402 1403 1404 1405 1406 1407
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1408
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1409

F
fengjiayi 已提交
1410 1411 1412 1413 1414 1415 1416
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1417

F
fengjiayi 已提交
1418 1419
    Returns:
        numpy.array: The parameter's values.
1420

F
fengjiayi 已提交
1421 1422 1423
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1424
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1425
                        given program but it is not a Parameter.
1426

F
fengjiayi 已提交
1427 1428 1429
    Examples:
        .. code-block:: python

1430
            import paddle.fluid as fluid
F
fengjiayi 已提交
1431 1432
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1433 1434
    """
    if program is None:
Y
Yu Yang 已提交
1435
        program = default_main_program()
X
xuwei06 已提交
1436 1437
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1544
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1545

1546 1547 1548 1549
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1550 1551 1552 1553
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1554
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1555 1556
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1557
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1558 1559 1560 1561

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1562 1563
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1564
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


H
hong 已提交
1575
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1576
    """
H
hong 已提交
1577
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1578
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1579

H
hong 已提交
1580 1581 1582 1583
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1584
    Args: 
1585 1586 1587 1588
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1589 1590 1591
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1608 1609
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1655
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1671
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1703 1704

    parameter_list = list(filter(is_parameter, program.list_vars()))
1705 1706 1707 1708 1709

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1710
    with open(parameter_file_name, 'rb') as f:
1711
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1712
            f, encoding='latin1')
Y
Yang Zhang 已提交
1713 1714 1715 1716 1717
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1718 1719 1720 1721 1722

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1723
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1724
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1725
            "Optimizer file [{}] not exits".format(opt_file_name)
1726 1727 1728 1729

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1730 1731

        with open(opt_file_name, 'rb') as f:
1732
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1733
                f, encoding='latin1')
Y
Yang Zhang 已提交
1734 1735 1736 1737 1738
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1739 1740


H
hong 已提交
1741
def load_program_state(model_path, var_list=None):
1742 1743 1744 1745 1746
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1747 1748 1749 1750 1751
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1853
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1854
        "Parameter file [{}] not exits".format(parameter_file_name)
1855 1856

    with open(parameter_file_name, 'rb') as f:
1857
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1858
            f, encoding='latin1')
1859

H
hong 已提交
1860
    opt_file_name = model_prefix + ".pdopt"
1861 1862
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1863
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1864
                f, encoding='latin1')
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

        para_dict.update(opti_dict)

    return para_dict


def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1901 1902
            fluid.set_program_state( prog, program_state)

1903 1904 1905 1906 1907 1908 1909
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1910
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1911 1912 1913 1914
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1915
            assert orig_para_np.shape == new_para_np.shape, \
1916
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
1917
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1918
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1919
            assert orig_para_np.dtype == new_para_np.dtype, \
1920
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
1921
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1922 1923 1924 1925 1926 1927
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1928
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))