pybind.cc 98.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
58
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
59
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
69 70 71
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
72
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
73
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
74
#include "paddle/fluid/operators/common_infer_shape_functions.h"
75
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
76
#include "paddle/fluid/operators/py_func_op.h"
77
#include "paddle/fluid/platform/cpu_helper.h"
78
#include "paddle/fluid/platform/device/device_wrapper.h"
79
#include "paddle/fluid/platform/device_context.h"
80
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
81
#include "paddle/fluid/platform/enforce.h"
82
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
83
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
84 85
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
86 87 88
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
89
#include "paddle/fluid/pybind/cuda_streams_py.h"
90
#include "paddle/fluid/pybind/distributed_py.h"
91
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
92
#include "paddle/fluid/pybind/imperative.h"
93
#include "paddle/fluid/pybind/io.h"
94
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
95
#include "paddle/fluid/pybind/xpu_streams_py.h"
96
#include "paddle/phi/backends/cpu/cpu_info.h"
97 98
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
99
#include "paddle/utils/none.h"
100 101 102
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
103
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
104
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
105
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
106
#include "paddle/fluid/pybind/box_helper_py.h"
107
#include "paddle/fluid/pybind/communication.h"
108
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
109
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
110
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
111
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
112
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
113
#include "paddle/fluid/pybind/generator_py.h"
114
#include "paddle/fluid/pybind/global_value_getter_setter.h"
115
#include "paddle/fluid/pybind/gloo_context_py.h"
116
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
117
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
119
#include "paddle/fluid/pybind/ir.h"
120
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
121
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
122
#include "paddle/fluid/pybind/pybind_variant_caster.h"
123
#include "paddle/phi/backends/device_manager.h"
124

125
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
126
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
127
#endif
128
#include "paddle/fluid/framework/data_type.h"
129 130
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
131 132
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
133
#include "paddle/fluid/pybind/reader_py.h"
134
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
135
#include "paddle/fluid/pybind/tensor_py.h"
136
#include "paddle/fluid/string/to_string.h"
137 138
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
139
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
140
#endif
141
#ifndef PADDLE_WITH_HIP
142
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
143
#endif
144
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
145 146
#endif

147
#ifdef PADDLE_WITH_ASCEND_CL
148
#include "paddle/fluid/platform/collective_helper.h"
149 150
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
151 152
#endif

153
#ifdef PADDLE_WITH_XPU
154
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
155
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
156 157
#endif

158
#ifdef PADDLE_WITH_CUSTOM_DEVICE
159
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
160 161 162
#include "paddle/phi/capi/capi.h"
#endif

163
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
164

J
jianghaicheng 已提交
165
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
166 167
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
168
#endif
169

170 171 172 173
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
174 175 176 177
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
178
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
179 180 181
#include "paddle/fluid/pybind/fleet_py.h"
#endif

182 183 184 185
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
186
#if defined(PADDLE_WITH_RPC)
187 188 189
#include "paddle/fluid/pybind/rpc.h"
#endif

190
#include "paddle/fluid/eager/api/utils/global_utils.h"
191
#include "paddle/fluid/imperative/layout_autotune.h"
192 193
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
194 195
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
196 197
#include "pybind11/stl.h"

198
DECLARE_bool(use_mkldnn);
199

Q
Qiao Longfei 已提交
200 201
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
202 203 204
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
205

206
namespace paddle {
207
namespace pybind {
208

0
0x45f 已提交
209
PyTypeObject *g_framework_scope_pytype = nullptr;
210
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
211
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
212

213 214 215 216 217 218 219 220
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

221
bool IsCompiledWithCUDA() {
222 223 224 225 226 227 228
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

229 230 231 232 233 234 235 236
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

254 255
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
256 257 258 259 260 261
  return false;
#else
  return true;
#endif
}

262 263 264 265 266 267 268 269
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

270 271 272 273 274 275 276 277
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
286 287 288 289 290 291 292 293
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

294 295 296 297 298 299 300 301
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

302 303 304 305 306 307 308 309
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

310 311 312 313 314 315 316 317
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

318 319 320 321 322 323 324 325
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

326 327 328 329
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
330
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
331 332 333 334 335 336
    return true;
  else
    return false;
#endif
}

337 338 339 340
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
341
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
342 343 344 345 346 347
    return true;
  else
    return false;
#endif
}

348 349 350 351
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
352 353
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
354 355 356 357 358 359 360
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
361 362
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
363 364 365
#endif
}

366
bool IsCompiledWithBrpc() {
367
#ifndef PADDLE_WITH_DISTRIBUTE
368
  return false;
369
#else
370
  return true;
371
#endif
372 373
}

Y
update  
Yancey1989 已提交
374
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
375
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
376 377 378 379 380 381
  return true;
#else
  return false;
#endif
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
450 451
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
452 453
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
467 468
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
469 470
    }
    vec_res.emplace_back(
471
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
472 473 474 475 476 477 478 479 480 481 482 483
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
484 485
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
486 487 488 489 490 491 492 493 494 495 496 497
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
498 499 500
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
501 502 503 504
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
505 506
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
507 508 509 510
  }
  return vec_res;
}

O
OccupyMars2025 已提交
511
static void inline CreateVariableIfNotExist(
512 513
    const py::handle &py_handle,
    const framework::Scope &scope,
514 515 516 517 518 519
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
520 521
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
522 523 524 525 526 527 528 529 530 531 532 533 534
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
535 536 537
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
538 539 540 541 542
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
543 544 545 546 547
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
548 549
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
550
        PADDLE_ENFORCE_NOT_NULL(
551 552 553
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
554 555 556
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
557
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
558
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
559 560
        tensor_temp->mutable_data(
            exe->GetPlace(),
561
            framework::TransToPhiDataType(var_desc.GetDataType()));
562 563 564
      }
    }
  } else {
565 566
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
567 568 569 570 571
  }

  return;
}

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
588 589
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
590 591 592 593 594 595 596
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
597 598 599 600
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
601
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
602 603 604 605 606 607 608 609
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

610
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
611
  BindImperative(&m);
612
  BindEager(&m);
J
Jack Zhou 已提交
613
  BindEagerStringTensor(&m);
614
  BindCudaStream(&m);
J
james 已提交
615
  BindXpuStream(&m);
616
  BindJit(&m);
617

Y
Yu Yang 已提交
618
  // Not used, just make sure cpu_info.cc is linked.
619
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
620

Y
Refine  
Yu Yang 已提交
621
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
622

623 624
  AssertStaticGraphAndDygraphGradMakerNoDiff();

625
  m.doc() = "C++ core of PaddlePaddle";
626

627 628 629 630
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

631
  BindException(&m);
Y
Yu Yang 已提交
632

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

648 649
  m.def("set_num_threads", &platform::SetNumThreads);

650 651
  m.def("disable_signal_handler", &DisableSignalHandler);

652 653 654 655 656 657 658 659
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

660
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
661
  m.def("cudnn_version", &platform::DnnVersion);
662 663 664 665 666 667
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
668
#endif
669

Z
Zeng Jinle 已提交
670 671 672 673
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

674 675 676 677 678 679 680 681 682
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
683 684
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
685
      .def("replay", &platform::CUDAGraph::Replay)
686 687
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
688 689
#endif

Z
Zeng Jinle 已提交
690 691 692 693
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
694 695 696
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
697 698

    PADDLE_ENFORCE_NOT_NULL(
699 700 701 702
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
703

6
633WHU 已提交
704 705
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
706
    phi::DenseTensor tensor;
6
633WHU 已提交
707

S
Siming Dai 已提交
708
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
709
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
710
    }
711
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
712
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
713
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
714 715 716 717
    }
#endif
    return tensor;
  });
H
hong 已提交
718

719
  m.def("_create_loaded_parameter",
720 721
        [](const py::handle &vec_var_list,
           const Scope &scope,
722
           const Executor *executor) {
O
OccupyMars2025 已提交
723
          CreateVariableIfNotExist(vec_var_list, scope, executor);
724 725
        });

726 727 728 729 730 731
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
732 733
  });

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

759 760 761 762 763 764
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
765

S
sneaxiy 已提交
766
  m.def(
S
sneaxiy 已提交
767
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
768 769 770 771
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
772 773 774
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
791
            }
792
            all_kernels_info.emplace(op_type, kernel_types);
793
          }
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
810
                }
811 812
              } else {
                kernel_types.emplace_back(kernel_type_str);
813
              }
814
            }
815 816 817
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
818
          }
819
        }
820

821 822 823 824
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
825 826 827
           Return the registered kernels in paddle.

           Args:
828
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
829
           )DOC");
830

831 832 833 834 835 836
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
837 838 839 840 841
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
842

S
sneaxiy 已提交
843 844 845
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
846
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
847

848
  m.def("_set_fuse_parameter_group_size",
849
        &paddle::framework::ir::SetFuseParameterGroupsSize);
850
  m.def("_set_fuse_parameter_memory_size",
851
        &paddle::framework::ir::SetFuseParameterMemorySize);
852

S
sneaxiy 已提交
853 854 855
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

856 857
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
858 859
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

860 861 862
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
904 905 906 907 908 909 910 911 912 913 914 915 916
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
917 918 919 920 921
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
922

923
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
924 925 926

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
927
      .def(py::init<>())
928
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
929
      .def("set_int",
930 931
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
932 933 934 935 936 937 938
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
939 940
      .def(
          "get_tensor",
941 942
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
943 944
          },
          py::return_value_policy::reference)
945 946
      .def("get_bytes",
           [](Variable &self) {
947 948 949 950 951 952
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
953
           })
S
Steffy-zxf 已提交
954 955 956 957
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
958
      .def("set_vocab",
959 960
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
961 962
             *self.GetMutable<Vocab>() = vocab;
           })
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
989
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
990 991 992 993 994 995
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
996
#endif
997 998 999
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1000 1001
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1012 1013
                scope_vec->size(),
                0,
1014 1015 1016 1017 1018
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1019 1020 1021 1022
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1023

S
sneaxiy 已提交
1024
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1025

0
0x45f 已提交
1026
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1040
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1041 1042 1043 1044 1045
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1046 1047 1048
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1049 1050
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1051 1052 1053 1054 1055 1056 1057
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1058
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1059

1060
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1061
           current scope, the variable would be created. Otherwise,
1062
           return the existing variable.
S
sneaxiy 已提交
1063 1064

           Args:
1065 1066
               name (str): the variable name.

S
sneaxiy 已提交
1067
           Returns:
1068
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1069
           )DOC",
1070
          py::return_value_policy::reference)
1071 1072 1073
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1074
           R"DOC(
1075
           Find variable named :code:`name` in the current scope or
1076
           its parent scope. Return None if not found.
1077

S
sneaxiy 已提交
1078 1079
           Args:
               name (str): the variable name.
1080

S
sneaxiy 已提交
1081
           Returns:
1082
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1083
           )DOC",
1084
           py::return_value_policy::reference)
1085
      .def("size", &Scope::Size)
1086 1087 1088
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1089 1090
           R"DOC(
           Find variable named :code:`name` in the current scope or
1091
           its parent scope. Return None if not found.
1092 1093 1094 1095 1096 1097 1098 1099

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1100
      .def(
1101 1102
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1103
          R"DOC(
S
sneaxiy 已提交
1104 1105 1106 1107 1108
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1109
          py::return_value_policy::reference)
1110 1111
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1112 1113
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1114
           )DOC")
1115 1116
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1117

1118 1119 1120 1121 1122 1123 1124 1125
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1126
        Create a new scope.
1127

S
sneaxiy 已提交
1128 1129 1130
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1131
      py::return_value_policy::reference);
S
sneaxiy 已提交
1132

Y
Yu Yang 已提交
1133 1134
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1135 1136
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1137 1138 1139 1140
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1141
        PADDLE_ENFORCE_EQ(
1142 1143
            info.Proto().SerializeToString(&str),
            true,
1144 1145
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1146 1147 1148
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1149 1150
    return ret_values;
  });
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1189 1190 1191 1192 1193 1194 1195 1196
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1197
              res = op_checker->GetDefaultAttrsMap();
1198 1199 1200 1201
            }
          }
          return res;
        });
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1236 1237 1238
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1239 1240 1241 1242 1243
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1244 1245 1246
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1247
  m.def("infer_no_need_buffer_slots",
1248 1249
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1277 1278 1279 1280 1281 1282
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1283 1284
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1285

1286
            Args:
1287 1288 1289
                   program (ProgramDesc): The original program.

             Returns:
1290
                   tuple(ProgramDesc, map<int, int>): The first part is
1291 1292 1293 1294
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1295 1296 1297 1298
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1299 1300
    VLOG(4) << s;
    return s;
1301 1302 1303 1304 1305 1306
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1307
  });
1308 1309 1310 1311
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1312 1313 1314
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1315 1316
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1317

Y
Yu Yang 已提交
1318
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1319
      .def_static("create",
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1335 1336 1337 1338
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1339
                    return context;
Q
qijun 已提交
1340
                  })
1341 1342 1343 1344
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1345
#ifndef PADDLE_WITH_XPU
1346 1347 1348
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1349
#else
W
Wilber 已提交
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1363 1364 1365 1366
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1367
      return context;
1368
#endif
1369 1370 1371 1372 1373
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1374
#ifndef PADDLE_WITH_MLU
1375 1376 1377
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1378 1379
#else
                    return new paddle::platform::MLUDeviceContext(place);
1380
#endif
1381 1382 1383 1384 1385
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1386
#ifndef PADDLE_WITH_ASCEND_CL
1387 1388 1389
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1390 1391
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1392
#endif
1393 1394 1395 1396
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1397
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1398 1399 1400 1401
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1402 1403
#else
                return new paddle::platform::CustomDeviceContext(place);
1404
#endif
1405 1406 1407 1408 1409
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1410
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1411 1412 1413
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1414
#else
L
Leo Chen 已提交
1415
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1428 1429 1430 1431
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1432 1433 1434 1435
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1436 1437
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1438
#endif
1439 1440 1441 1442 1443
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1444
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1445 1446 1447
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1448 1449 1450
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1451
          });
1452
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1453 1454
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1455 1456 1457
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1458
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1459
#else
R
ronnywang 已提交
1460
          VLOG(1) << string::Sprintf(
1461 1462 1463 1464
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1465
              "PaddlePaddle by: pip install paddlepaddle\n");
1466 1467 1468 1469 1470 1471
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1472
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1473
#else
R
ronnywang 已提交
1474
          VLOG(1) << string::Sprintf(
1475 1476 1477 1478
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1479
              "PaddlePaddle by: pip install paddlepaddle\n");
1480 1481 1482 1483 1484 1485
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1486
    devices = phi::DeviceManager::GetAllDeviceList();
1487
#else
R
ronnywang 已提交
1488
          VLOG(1) << string::Sprintf(
1489 1490 1491 1492
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1493
              "PaddlePaddle by: pip install paddlepaddle\n");
1494 1495 1496 1497 1498 1499
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1500
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1501
#else
R
ronnywang 已提交
1502
          VLOG(1) << string::Sprintf(
1503 1504 1505 1506 1507 1508
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1509
              "PaddlePaddle by: pip install paddlepaddle\n");
1510 1511 1512
#endif
    return devices;
  });
Y
Yu Yang 已提交
1513

Y
Yu Yang 已提交
1514
  py::class_<OperatorBase>(m, "Operator")
1515 1516 1517 1518 1519 1520 1521
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1522 1523
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1524 1525 1526 1527 1528 1529
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1530
      .def("run",
1531 1532
           [](OperatorBase &self,
              const Scope &scope,
1533 1534 1535 1536
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1537
      .def("run",
1538 1539
           [](OperatorBase &self,
              const Scope &scope,
1540 1541 1542 1543
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1544
      .def("run",
1545 1546
           [](OperatorBase &self,
              const Scope &scope,
1547 1548 1549 1550
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1551
      .def("run",
1552 1553
           [](OperatorBase &self,
              const Scope &scope,
1554 1555 1556 1557
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1558
      .def("run",
1559 1560
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1561
              const platform::CUDAPinnedPlace &place) {
1562
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1563 1564
             self.Run(scope, place);
           })
1565
      .def("run",
1566 1567
           [](OperatorBase &self,
              const Scope &scope,
1568 1569 1570 1571
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1572
      .def("run",
1573 1574
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1575 1576 1577 1578
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1579 1580 1581 1582 1583
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1584 1585
             return op.Outputs();
           })
Q
qijun 已提交
1586 1587
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1588
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1589
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1590 1591 1592 1593
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1594

1595 1596 1597
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1598 1599
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1600 1601 1602 1603 1604 1605
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1606 1607
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1608

1609 1610
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1611
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1612
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1613
      .def("close", &Executor::Close)
1614 1615
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1616
           py::call_guard<py::gil_scoped_release>())
1617 1618
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1619
           py::call_guard<py::gil_scoped_release>())
1620
      .def("init_for_dataset",
1621 1622 1623 1624
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1625
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1626
             pybind11::gil_scoped_release release;
1627 1628 1629 1630 1631 1632 1633
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1634
      .def("run_prepared_ctx",
1635 1636 1637
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1638
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1639
              std::map<std::string, FetchType *> *fetch_targets,
1640 1641
              bool create_local_scope = true,
              bool create_vars = true,
1642 1643 1644
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1645 1646 1647 1648 1649 1650 1651 1652
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1653
           })
1654
      .def("run_prepared_ctx",
1655 1656 1657 1658 1659
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1660 1661
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1662 1663
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1664
           })
1665
      .def("prepare",
1666 1667 1668
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1669 1670 1671 1672
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1673 1674
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1675 1676
           })
      .def("create_variables", &Executor::CreateVariables)
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1693

1694
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1695
      .def(py::init<>())
1696 1697 1698 1699 1700
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1701

1702
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1703
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1704
      .def("run",
1705
           [](StandaloneExecutor &self,
1706
              Scope *scope,
1707
              std::vector<std::string> feed_names,
1708 1709 1710 1711
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1712
               ret = self.Run(scope, feed_names, fetch_names);
1713 1714 1715
             }
             return py::cast(std::move(ret));
           })
1716 1717
      .def("dry_run",
           [](StandaloneExecutor &self,
1718
              Scope *scope,
1719
              const std::unordered_map<std::string, py::array> &input_dict) {
1720
             std::vector<phi::DenseTensor> feed_tensors;
1721 1722 1723
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1724
               phi::DenseTensor t;
1725 1726 1727 1728 1729 1730
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1731
             framework::interpreter::CostInfo cost_info;
1732 1733
             {
               pybind11::gil_scoped_release release;
1734
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1735 1736
             }
             return cost_info;
H
hong 已提交
1737 1738
           });

D
dzhwinter 已提交
1739
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1740
  m.def("init_glog", framework::InitGLOG);
1741 1742 1743 1744
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1745 1746 1747 1748 1749 1750 1751 1752
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1753 1754
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1755
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1756
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1757
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1758
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1759
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1760
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1761
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1762
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1763
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1764 1765
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1766
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1767
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1768
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1769
  m.def("supports_bfloat16", SupportsBfloat16);
1770
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1771 1772
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1773
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1774
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1775
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1776 1777 1778
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1798 1799 1800
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1801 1802
  m.def(
      "run_cmd",
1803 1804
      [](const std::string &cmd,
         int time_out = -1,
1805
         int sleep_inter = -1) -> const std::string {
1806 1807
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1808
      },
1809 1810 1811
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1812 1813
  m.def(
      "shell_execute_cmd",
1814 1815 1816
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1817
         bool redirect_stderr = false) -> std::vector<std::string> {
1818 1819
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1820
      },
1821 1822 1823
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1824
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1825

1826
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1827 1828
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1829
    return platform::GetGPUComputeCapability(place.device) >= 53;
1830
  });
1831 1832 1833 1834
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1835
#endif
1836

S
Steffy-zxf 已提交
1837
  m.def("set_feed_variable",
1838 1839
        static_cast<void (*)(  // NOLINT
            Scope *,
1840
            const phi::DenseTensor &,
1841 1842
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1843
  m.def("set_feed_variable",
1844 1845 1846 1847 1848
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1849
  m.def("get_fetch_variable",
1850 1851
        [](const Scope &scope,
           const std::string &var_name,
1852 1853 1854
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1855
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1856
          } else {
R
Ruibiao Chen 已提交
1857
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1858 1859
          }
        });
1860
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1861

X
Xin Pan 已提交
1862 1863
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1864 1865 1866 1867
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1868
  BindCostModel(&m);
1869
  BindConstValue(&m);
1870
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1871
  BindFleetExecutor(&m);
1872
  BindTCPStore(&m);
1873
  BindAutoParallel(&m);
1874
  BindJitProperty(&m);
Y
Yu Yang 已提交
1875

Y
Yu Yang 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1885
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1886
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1887 1888 1889

    Examples:
        .. code-block:: python
1890

Z
Zeng Jinle 已提交
1891 1892 1893
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1894 1895 1896 1897
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1898 1899
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1900 1901 1902 1903
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1904 1905
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1906
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1907 1908
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1909 1910 1911
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1912 1913 1914
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1915 1916
      .def(
          "append",
1917
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1918 1919 1920 1921
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1922 1923
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1924
             Append a LoDensor to LoDTensorArray.
1925

1926 1927 1928 1929 1930
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1942
           )DOC")
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1954

1955
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1956
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1957
        )DOC")
1958 1959 1960 1961 1962 1963
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
1964
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
1965
                res[i] = py::cast(std::move(data));
1966 1967 1968
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1969
              } else {
R
Ruibiao Chen 已提交
1970
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1982

1983 1984
      .def(
          "append",
1985
          [](FetchList &self, const phi::DenseTensor &t) {
1986
            self.emplace_back();
1987
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
1988 1989 1990 1991 1992 1993 1994 1995 1996
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1997
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1998 1999 2000 2001 2002 2003
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2004 2005

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2006
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2007
        )DOC")
2008 2009 2010 2011 2012 2013 2014 2015
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2016
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2017 2018
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2019
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2034

Y
Yu Yang 已提交
2035
  m.def("op_support_gpu", OpSupportGPU);
2036
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2037
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2038
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2039 2040 2041 2042 2043 2044 2045 2046
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2047 2048 2049 2050 2051 2052
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2053 2054

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2080
      });
D
dangqingqing 已提交
2081

2082
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2083 2084 2085
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2086 2087 2088
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2089 2090 2091
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2092
#endif
P
peizhilin 已提交
2093
#endif
Y
Yu Yang 已提交
2094

2095 2096
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2097
  m.def("npu_finalize", []() {
2098 2099
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2100 2101 2102
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2103
      platform::NPUDeviceGuard guard(devices[i]);
2104 2105 2106 2107
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2128 2129 2130 2131
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2132 2133 2134 2135
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2136 2137 2138 2139 2140 2141
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2142 2143 2144 2145
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2146
      .value("kAll", platform::ProfilerState::kAll)
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2158
  m.def("set_tracer_option", platform::SetTracerOption);
2159 2160
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2161
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2162
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2163
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2164
    PADDLE_ENFORCE_EQ(
2165 2166
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2167 2168 2169
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2170
    callable.inc_ref();
2171 2172 2173 2174 2175 2176 2177 2178
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2179
  });
2180
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2181 2182 2183
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2184

2185
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2186 2187
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2188 2189
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2190 2191
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2192 2193 2194 2195 2196 2197 2198 2199 2200
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2265 2266
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2267 2268 2269 2270
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2271 2272 2273
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2274 2275 2276 2277 2278
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2279 2280 2281
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2282 2283

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2284 2285
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2286
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2287
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2288 2289
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2290 2291 2292 2293 2294 2295
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2319 2320 2321 2322 2323 2324 2325 2326
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2345 2346
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2347 2348
  m.def("enable_op_info_recorder", &paddle::platform::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &paddle::platform::DisableOpInfoRecorder);
2349

2350
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2351 2352
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2353 2354
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2355
#endif  // PADDLE_WITH_CUDA
2356 2357 2358 2359 2360 2361 2362 2363
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2364

J
jianghaicheng 已提交
2365 2366
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2367 2368 2369
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2370 2371 2372 2373 2374 2375 2376
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2377
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2378 2379
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2380
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2391 2392 2393 2394
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2417 2418
                         option.get_type(),
                         option_name));
2419 2420 2421 2422 2423 2424 2425
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2426 2427
                         option_name,
                         option.first.cast<std::string>(),
2428 2429
                         option.second.cast<std::uint64_t>());
                   }
2430 2431 2432 2433 2434 2435
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2481 2482
                           option.second.get_type(),
                           option_key));
2483
                     }
2484 2485
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2486 2487 2488 2489 2490 2491
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2492 2493
                     element.second.get_type(),
                     option_name));
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2524 2525
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2526 2527 2528
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2529 2530
#endif

2531 2532 2533 2534 2535 2536 2537 2538
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2539
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2540 2541 2542 2543 2544 2545 2546 2547 2548
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2549
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2550 2551 2552 2553 2554 2555 2556
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2557 2558
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2559

2560 2561
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2562

2563 2564
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2565

D
dongdaxiang 已提交
2566
  BindFleetWrapper(&m);
2567
  BindIO(&m);
2568 2569 2570
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2571

T
Thunderbrook 已提交
2572
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2573
  BindHeterWrapper(&m);
2574
  BindMetrics(&m);
T
Thunderbrook 已提交
2575
#endif
T
Thunderbrook 已提交
2576
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2577
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2578 2579 2580
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2581
#endif
2582
  BindGlooWrapper(&m);
H
hutuxian 已提交
2583
  BindBoxHelper(&m);
H
hutuxian 已提交
2584 2585 2586
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2587
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2588
  BindNCCLWrapper(&m);
2589 2590 2591
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2592
#endif
F
flame 已提交
2593 2594
  BindGraph(&m);
  BindNode(&m);
2595
  BindPass(&m);
F
flame 已提交
2596
  BindInferenceApi(&m);
2597
  BindCompatible(&m);
2598
  BindDataset(&m);
Y
yaoxuefeng 已提交
2599
  BindGenerator(&m);
2600
#ifndef PADDLE_NO_PYTHON
2601 2602
  BindDistributed(&m);
#endif
2603 2604 2605
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2606
  BindAscendDevice(&m);
2607
#endif
Y
Yanghello 已提交
2608 2609 2610
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2611

T
tangwei12 已提交
2612
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2613 2614
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2615
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2616 2617
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2618 2619 2620 2621 2622
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2623 2624 2625 2626
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2627
#ifdef PADDLE_WITH_HETERPS
2628 2629
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2630 2631 2632
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2633
#endif
X
Xinger 已提交
2634
#if defined(PADDLE_WITH_RPC)
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2647
}
2648
}  // namespace pybind
2649
}  // namespace paddle