nn.py 216.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
from ..framework import Variable
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
25 26 27
from .layer_function_generator import autodoc, templatedoc
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
Y
ying 已提交
32 33 34
    'fc',
    'embedding',
    'dynamic_lstm',
Y
Yibing Liu 已提交
35
    'dynamic_lstmp',
G
guosheng 已提交
36
    'dynamic_gru',
Y
ying 已提交
37 38 39 40 41 42 43 44 45
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
Y
yuyang18 已提交
46
    'conv3d',
Y
ying 已提交
47
    'sequence_pool',
48 49
    'sequence_softmax',
    'softmax',
Y
ying 已提交
50
    'pool2d',
Y
yuyang18 已提交
51
    'pool3d',
Y
ying 已提交
52 53 54
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
Y
yuyang18 已提交
55
    'conv3d_transpose',
Y
ying 已提交
56
    'sequence_expand',
F
fengjiayi 已提交
57
    'sequence_pad',
Y
ying 已提交
58 59 60 61 62
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
63
    'reduce_prod',
Y
ying 已提交
64 65 66 67
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
68 69
    'ctc_greedy_decoder',
    'edit_distance',
Y
ying 已提交
70 71
    'l2_normalize',
    'matmul',
Q
qingqing01 已提交
72
    'topk',
Y
ying 已提交
73 74
    'warpctc',
    'sequence_reshape',
75
    'transpose',
76
    'im2sequence',
77
    'nce',
W
weixing02 已提交
78
    'hsigmoid',
Q
Qiao Longfei 已提交
79
    'beam_search',
80
    'row_conv',
81
    'multiplex',
G
guosheng 已提交
82
    'layer_norm',
83 84
    'softmax_with_cross_entropy',
    'smooth_l1',
85
    'one_hot',
Y
Yu Yang 已提交
86
    'autoincreased_step_counter',
C
caoying03 已提交
87
    'reshape',
Y
Yibing Liu 已提交
88 89
    'squeeze',
    'unsqueeze',
Y
yangyaming 已提交
90
    'lod_reset',
D
dragonwarrior 已提交
91
    'lrn',
G
guosheng 已提交
92
    'pad',
C
chengduo 已提交
93
    'pad_constant_like',
94
    'label_smooth',
95
    'roi_pool',
W
whs 已提交
96
    'dice_loss',
F
fengjiayi 已提交
97 98
    'image_resize',
    'image_resize_short',
B
baiyf 已提交
99
    'resize_bilinear',
W
whs 已提交
100
    'gather',
101
    'scatter',
102
    'random_crop',
Y
yuyang18 已提交
103 104 105
    'mean_iou',
    'relu',
    'log',
106
    'crop',
107
    'rank_loss',
J
jerrywgz 已提交
108
    'prelu',
109
    'flatten',
Q
qingqing01 已提交
110
    'sequence_mask',
S
sneaxiy 已提交
111
    'stack',
W
whs 已提交
112
    'pad2d',
D
dzhwinter 已提交
113
    'unstack',
114
    'sequence_enumerate',
C
add api  
chengduoZH 已提交
115
    'sequence_concat',
Y
Yu Yang 已提交
116 117 118 119 120 121 122 123
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
124
       use_mkldnn=False,
Y
Yu Yang 已提交
125
       act=None,
J
Jacek Czaja 已提交
126
       is_test=False,
127
       name=None):
Y
Yu Yang 已提交
128
    """
129
    **Fully Connected Layer**
Y
Yu Yang 已提交
130

131 132 133 134 135 136 137 138
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
139
    to the output as well.
C
caoying03 已提交
140

C
caoying03 已提交
141
    This process can be formulated as follows:
142 143 144

    .. math::

145
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
146 147 148

    In the above equation:

C
caoying03 已提交
149 150 151 152
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
153
    * :math:`Act`: The activation function.
C
caoying03 已提交
154
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
155 156

    Args:
R
ranqiu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
172 173
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
174
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
175
        is_test(bool): A flag indicating whether execution is in test phase.
M
mozga-intel 已提交
176 177
        use_mkldnn(bool): Use mkldnn kernel or not, it is valid only when the mkldnn
            library is installed. Default: False
R
ranqiu 已提交
178
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
179

180
    Returns:
F
fengjiayi 已提交
181
        Variable: The transformation result.
182 183

    Raises:
C
caoying03 已提交
184
        ValueError: If rank of the input tensor is less than 2.
185 186 187 188

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
189
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
190
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
191
    """
C
caoying03 已提交
192

C
caoying03 已提交
193
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
194 195 196 197

    dtype = helper.input_dtype()

    mul_results = []
198 199
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
200 201 202
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
203

Y
Yu Yang 已提交
204
        w = helper.create_parameter(
205 206
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
207
        helper.append_op(
208 209 210
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
211
            outputs={"Out": tmp},
M
mozga-intel 已提交
212 213
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
214 215 216 217
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
218
    else:
219 220
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
221 222 223 224
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": use_mkldnn})
225 226 227 228
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
229 230


231 232 233
def embedding(input,
              size,
              is_sparse=False,
234
              is_distributed=False,
235 236 237
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
238
    """
239 240
    **Embedding Layer**

241
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
242 243
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
244 245 246

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
247 248

    Args:
249 250 251 252 253
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
254
        is_distributed(bool): Whether to run lookup table from remote parameter server.
255 256
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
257
            with zeros whenever lookup encounters it in :attr:`input`. If
258
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
259 260
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
261
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
262

263 264 265
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
266

267 268
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
269

C
chengduoZH 已提交
270
          dict_size = len(dataset.ids)
271
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
272
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
273 274 275 276 277 278
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
279 280
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
281 282 283 284 285
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
286 287 288 289 290
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
291 292 293
    return tmp


Y
yi.wu 已提交
294
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
295 296
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
297 298
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
299 300 301 302 303 304 305
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
306 307
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
308
    """
Y
yi.wu 已提交
309
    ${comment}
Y
Yibing Liu 已提交
310 311

    Args:
Y
yi.wu 已提交
312 313
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
314 315 316 317 318 319 320
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

321
        param_attr(ParamAttr|None): The parameter attribute for the learnable
322
                               hidden-hidden weights.
Y
Yibing Liu 已提交
323 324 325

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
326 327
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
328
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
329 330 331
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
332

333
                              1. `use_peepholes = False`
Y
yi.wu 已提交
334 335
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
336
                              2. `use_peepholes = True`
Y
yi.wu 已提交
337
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
338
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
339
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
340 341 342 343 344 345 346 347
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
348 349

    Returns:
Y
Yibing Liu 已提交
350 351
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
352

Y
Yibing Liu 已提交
353
    Examples:
Y
Yibing Liu 已提交
354 355
        .. code-block:: python

Y
Yibing Liu 已提交
356 357
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
358
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
359 360
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
361
    """
362

Y
Yu Yang 已提交
363
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
364
    size = size // 4
Y
Yu Yang 已提交
365 366 367 368 369 370 371 372 373 374 375 376
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
377 378 379 380 381 382 383 384 385 386
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
387 388 389

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
390
        inputs=inputs,
Y
Yu Yang 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
407 408 409 410 411 412 413 414 415 416 417
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
418 419
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
420 421 422
    """
    **Dynamic LSTMP Layer**

423 424 425 426 427 428
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
429 430 431 432 433

    The formula is as follows:

    .. math::

434
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
435

436
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
437

438
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
439

440
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
441

442
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
443

444
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
445

446
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
447

Y
Yibing Liu 已提交
448 449 450 451 452 453
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
454
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
455
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
456
          bias vector).
Y
Yibing Liu 已提交
457 458 459
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
460
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
461
    * :math:`h`: The hidden state.
462
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
463 464
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
465
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
466
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
467
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
468 469
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
470 471 472 473

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
474

Y
Yibing Liu 已提交
475 476 477 478 479 480 481 482 483 484 485 486
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
487
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
488 489
                               hidden-hidden weight and projection weight.

490 491
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
492 493
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
494 495
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
496 497
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
498 499 500 501 502 503
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
504
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
505 506 507
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
508
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
518
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
519 520
                              default "tanh".
        proj_activation(str): The activation for projection output.
521
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
522 523
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
524 525
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
526 527

    Returns:
528 529 530 531
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
532 533

    Examples:
534

Y
Yibing Liu 已提交
535 536
        .. code-block:: python

537 538 539 540
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
541
            hidden_dim, proj_dim = 512, 256
542
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
543
                                     act=None, bias_attr=None)
544 545 546
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
547 548 549 550
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
551
    """
552

Y
Yibing Liu 已提交
553
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
554
    size = size // 4
Y
Yibing Liu 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
599 600 601 602 603 604 605 606 607
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
608
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
609

610
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
611
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
612

G
guosheng 已提交
613 614 615 616 617 618 619 620 621
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
622

G
guosheng 已提交
623
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
624

G
guosheng 已提交
625
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
626 627
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
628 629 630 631
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
632
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
633 634

    Args:
635 636
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
637
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
638
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
639 640
            is the hidden size.
        size(int): The dimension of the gru cell.
641
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
642 643
            hidden-hidden weight matrix. Note:

644
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
645
              :math:`D` is the hidden size.
646
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
647
              The first part are weights of the update gate and reset gate with
648
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
649
              candidate hidden state with shape :math:`(D \\times D)`.
650
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
651
            hidden-hidden bias.
652
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
653 654 655
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
656
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
657
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
658 659 660 661
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
662 663

    Returns:
G
guosheng 已提交
664
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
665
            and sequence length is the same with the input.
666

G
guosheng 已提交
667
    Examples:
668

G
guosheng 已提交
669 670
        .. code-block:: python

671 672 673 674
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
675
            hidden_dim = 512
676
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
677 678 679 680 681 682 683 684 685 686
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
687
    batch_size = input.shape[0]
G
guosheng 已提交
688 689 690
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
691 692 693
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
717 718 719
def gru_unit(input,
             hidden,
             size,
720 721
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
722
             activation='tanh',
723
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
724
    """
725
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
726

727 728
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
729

730
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
731

732
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
733

734
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
735 736

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
737 738 739
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
740 741
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

742 743
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
744 745 746
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
747 748 749 750 751

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
752 753
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
754 755 756 757
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
758

759 760 761 762 763 764
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
765

766
             # assuming we have x_t_data and prev_hidden of size=10
767
             x_t = fluid.layers.fc(input=x_t_data, size=30)
768 769
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
770 771 772 773 774 775 776 777 778 779 780 781

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
782
    size = size // 3
Y
Yu Yang 已提交
783 784

    # create weight
785 786
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
787

788 789 790 791
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
792
    # create bias
793
    if helper.bias_attr:
Y
Yu Yang 已提交
794 795 796
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
797
        inputs['Bias'] = bias
Y
Yu Yang 已提交
798 799 800

    helper.append_op(
        type='gru_unit',
801
        inputs=inputs,
Y
Yu Yang 已提交
802 803 804 805 806 807
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
808 809
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
810 811 812 813 814
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
815
@templatedoc()
816
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
817 818 819 820 821 822 823
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
824
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
825 826 827 828
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
829 830 831
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
832 833

    """
Y
Yu Yang 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
859
@templatedoc()
860
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
861 862 863 864 865
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
866

Y
yuyang18 已提交
867
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
868

Y
yuyang18 已提交
869 870 871
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
872
        Variable: ${viterbi_path_comment}
873

Y
yi.wu 已提交
874 875 876 877 878
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
879
    """
Y
Yu Yang 已提交
880 881 882 883 884 885 886 887 888 889 890 891 892
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
893
@templatedoc()
F
fengjiayi 已提交
894
def cos_sim(X, Y):
Y
Yu Yang 已提交
895
    """
Y
yi.wu 已提交
896 897 898
    ${comment}

    Args:
899 900
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
901

Y
yi.wu 已提交
902
    Returns:
903
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
904
    """
F
fengjiayi 已提交
905
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


919
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
920 921 922 923 924
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
925
    training. The dropout operator randomly sets (according to the given dropout
926 927 928 929
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
930 931
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
932 933 934 935 936 937 938
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
939 940

    Returns:
941
        Variable: A tensor variable is the shape with `x`.
942 943

    Examples:
944

945 946
        .. code-block:: python

947 948
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
949 950
    """

F
fengjiayi 已提交
951
    helper = LayerHelper('dropout', **locals())
952 953
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
954 955 956 957

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

958 959 960 961 962
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
963 964 965 966 967 968
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
969 970 971
    return out


972
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
973
    """
Y
Yibing Liu 已提交
974 975
    **Cross Entropy Layer**

976 977 978
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
979 980

    1) One-hot cross-entropy:
F
fengjiayi 已提交
981
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
982

Y
Yibing Liu 已提交
983
        .. math::
Y
yangyaming 已提交
984

Y
Yibing Liu 已提交
985 986 987
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
988 989
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
990 991 992 993 994

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
995
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
996 997 998
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
999 1000
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1001
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1002

Y
Yibing Liu 已提交
1003
    Args:
Y
yangyaming 已提交
1004
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1005 1006 1007 1008
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1009
        label (Variable|list): the ground truth which is a 2-D tensor. When
1010 1011 1012 1013
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1014
        soft_label (bool): a flag indicating whether to
1015
                                           interpretate the given labels as soft
1016 1017 1018 1019
                                           labels. Default: `False`.
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1020 1021 1022 1023 1024

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1025 1026 1027 1028 1029
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1030 1031 1032 1033 1034 1035

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1036
    """
F
fengjiayi 已提交
1037
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1038 1039 1040 1041 1042 1043
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1044 1045
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1046 1047 1048
    return out


F
fengjiayi 已提交
1049
def square_error_cost(input, label):
Y
Yu Yang 已提交
1050
    """
1051 1052
    **Square error cost layer**

1053 1054
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1069 1070
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1071 1072

    Returns:
G
guosheng 已提交
1073
        Variable: The tensor variable storing the element-wise squared error \
1074
                  difference of input and label.
1075 1076 1077 1078 1079 1080 1081 1082

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1083
    """
F
fengjiayi 已提交
1084
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1094 1095
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1096 1097 1098
    return square_out


Y
yi.wu 已提交
1099
@templatedoc()
Y
Yu Yang 已提交
1100 1101 1102 1103
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1104
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1105
    """
Y
yi.wu 已提交
1106
    **Chunk Evaluator**
Y
yi.wu 已提交
1107

Y
yangyaming 已提交
1108
    This function computes and outputs the precision, recall and
1109
    F1-score of chunk detection.
Y
yi.wu 已提交
1110

Y
yi.wu 已提交
1111 1112 1113 1114 1115 1116 1117 1118
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1119

Y
yi.wu 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1145

Y
yi.wu 已提交
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1170
    Args:
1171 1172 1173 1174 1175
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1176

Y
yi.wu 已提交
1177
    Returns:
Y
update  
yi.wu 已提交
1178 1179 1180
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1181

Y
yi.wu 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1194
    """
F
fengjiayi 已提交
1195
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1196 1197 1198 1199 1200

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1201 1202 1203
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1204 1205 1206 1207 1208 1209 1210 1211

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1212 1213 1214 1215
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1216 1217 1218
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1219 1220
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1221
        })
1222 1223
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1224 1225


1226
@templatedoc()
Y
Yu Yang 已提交
1227 1228 1229 1230 1231 1232 1233
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1234
                  act=None):
Y
Yu Yang 已提交
1235 1236 1237 1238
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1249

1250 1251
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1270
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1271 1272 1273 1274 1275 1276
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1277
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=True):
1278 1279 1280
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1281
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed. Default: True
1301

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1324
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1325
    """
1326
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1327
    has the same shape as the input.
Q
qiaolongfei 已提交
1328

1329 1330 1331 1332 1333 1334
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1335
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1336 1337 1338 1339 1340 1341 1342

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1343
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1378 1379 1380
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1381 1382
           stride=1,
           padding=0,
1383
           dilation=1,
Y
Yu Yang 已提交
1384 1385 1386
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1387
           use_cudnn=True,
1388
           use_mkldnn=False,
1389 1390
           act=None,
           name=None):
Y
Yu Yang 已提交
1391
    """
C
chengduoZH 已提交
1392
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1393 1394
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1395
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1396 1397 1398 1399 1400 1401 1402
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1403 1404 1405
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1406

1407
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1408

C
chengduoZH 已提交
1409 1410
    .. math::

C
refine  
chengduoZH 已提交
1411
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1412

T
tensor-tang 已提交
1413
    Where:
C
chengduoZH 已提交
1414

1415 1416 1417 1418 1419
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1420
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1421 1422 1423

    Example:

1424 1425
        - Input:

W
weixing02 已提交
1426
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1427

W
weixing02 已提交
1428
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1429

1430
        - Output:
T
tensor-tang 已提交
1431

W
weixing02 已提交
1432
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1433

C
chengduoZH 已提交
1434
        Where
1435 1436

        .. math::
C
chengduoZH 已提交
1437

W
weixing02 已提交
1438 1439
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1440 1441

    Args:
1442
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1443
        num_filters(int): The number of filter. It is as same as the output
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
T
tensor-tang 已提交
1466 1467
        use_mkldnn (bool): Use mkldnn kernels or not, it is valid only when compiled
            with mkldnn library. Default: False
1468 1469 1470
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1471 1472

    Returns:
G
guosheng 已提交
1473
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1474 1475
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1476
    Raises:
1477 1478
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1479

C
chengduoZH 已提交
1480 1481 1482
    Examples:
        .. code-block:: python

1483 1484
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1485 1486 1487
    """

    num_channels = input.shape[1]
1488 1489

    l_type = 'conv2d'
X
xzl 已提交
1490 1491
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1492
        l_type = 'depthwise_conv2d'
1493 1494 1495 1496

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1497 1498 1499 1500 1501
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1502
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1503

C
chengduoZH 已提交
1504 1505 1506
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1507
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1508

C
chengduoZH 已提交
1509 1510
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1511 1512

    input_shape = input.shape
M
minqiyang 已提交
1513
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1528
        type=l_type,
Y
Yu Yang 已提交
1529 1530 1531 1532 1533
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1534 1535 1536
        attrs={
            'strides': stride,
            'paddings': padding,
1537
            'dilations': dilation,
C
chengduoZH 已提交
1538
            'groups': groups,
1539 1540
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
C
chengduoZH 已提交
1541
        })
Y
Yu Yang 已提交
1542 1543 1544 1545 1546 1547

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           use_mkldnn=False,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1566 1567 1568 1569 1570 1571
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1581 1582
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1583 1584 1585
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1586
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1612
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1613 1614
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1615
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1616 1617
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1618
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1619 1620
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1621
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        use_mkldnn (bool): Use mkldnn kernels or not.
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1648 1649
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1664
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': use_mkldnn
        })

1705
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1706 1707 1708 1709

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1710
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1711
    """
Y
yangyaming 已提交
1712 1713 1714
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1726
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1727 1728 1729 1730 1731
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1732
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1733 1734 1735 1736 1737 1738 1739

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1740 1741
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1742

L
Luo Tao 已提交
1743 1744
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1745
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1746 1747 1748 1749 1750 1751 1752 1753
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1754

Y
yangyaming 已提交
1755
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1756 1757 1758 1759 1760
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1761 1762
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1763
    """
F
fengjiayi 已提交
1764
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1776 1777 1778 1779 1780
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1781 1782 1783
    return pool_out


C
add doc  
chengduoZH 已提交
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1809
def sequence_first_step(input):
L
Luo Tao 已提交
1810
    """
L
Luo Tao 已提交
1811
    This function gets the first step of sequence.
L
Luo Tao 已提交
1812 1813 1814 1815

    .. code-block:: text

       x is a 1-level LoDTensor:
1816
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1817 1818 1819 1820 1821
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1822
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1823
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1824

L
Luo Tao 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1834

Y
yangyaming 已提交
1835
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1836 1837 1838
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1839 1840 1841
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1842
def sequence_last_step(input):
L
Luo Tao 已提交
1843
    """
L
Luo Tao 已提交
1844
    This function gets the last step of sequence.
L
Luo Tao 已提交
1845 1846 1847 1848

    .. code-block:: text

       x is a 1-level LoDTensor:
1849
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1850 1851 1852 1853 1854
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1855
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1856
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1857

L
Luo Tao 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1867

Y
yangyaming 已提交
1868
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1869 1870 1871
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1872 1873 1874
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1875
@templatedoc()
Y
Yu Yang 已提交
1876
def pool2d(input,
C
chengduoZH 已提交
1877 1878
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1879 1880
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1881
           global_pooling=False,
C
chengduoZH 已提交
1882
           use_cudnn=True,
1883
           ceil_mode=False,
1884
           use_mkldnn=False,
C
caoying03 已提交
1885
           name=None):
Y
Yu Yang 已提交
1886
    """
F
fengjiayi 已提交
1887
    ${comment}
1888 1889

    Args:
1890 1891 1892
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1893
                          feature, and W is the width of the feature.
1894
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1895
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1896
        pool_type: ${pooling_type_comment}
1897 1898
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1899 1900 1901 1902
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
        use_mkldnn: ${use_mkldnn_comment}
1903
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1904 1905
                        layer will be named automatically.

1906
    Returns:
F
fengjiayi 已提交
1907
        Variable: The pooling result.
F
fengjiayi 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1921 1922 1923 1924
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1925
                            global_pooling=False)
Y
Yu Yang 已提交
1926 1927 1928 1929 1930
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1931

C
chengduoZH 已提交
1932 1933 1934 1935 1936
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1937 1938 1939 1940
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1941 1942
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1943

C
Add doc  
chengduoZH 已提交
1944
    l_type = 'pool2d'
1945 1946

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1947 1948 1949 1950
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           use_mkldnn=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
1980
    pooling configurations mentioned in input parameters.
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        use_mkldnn (bool): ${use_mkldnn_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
1994

1995
    Returns:
1996
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
1997 1998 1999 2000 2001
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2002

C
chengduoZH 已提交
2003 2004 2005 2006 2007
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2008 2009 2010
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2011

C
chengduoZH 已提交
2012 2013
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2014

2015 2016
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2017 2018 2019 2020
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2021
        type=l_type,
Y
Yu Yang 已提交
2022 2023 2024 2025 2026 2027 2028
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2029
            "paddings": pool_padding,
2030
            "use_cudnn": use_cudnn,
2031 2032
            "ceil_mode": ceil_mode,
            "use_mkldnn": use_mkldnn
Y
Yu Yang 已提交
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2045
               data_layout='NCHW',
Y
Yang Yang 已提交
2046
               in_place=False,
2047
               use_mkldnn=False,
2048 2049
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2050
               moving_variance_name=None,
2051 2052
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2053
    """
Q
qiaolongfei 已提交
2054 2055 2056 2057
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2058

Q
qiaolongfei 已提交
2059
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2060

Q
qiaolongfei 已提交
2061 2062
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2063 2064 2065
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2078 2079

    Args:
Q
qiaolongfei 已提交
2080
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2081 2082 2083 2084
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2085 2086 2087
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2088
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2089 2090 2091 2092 2093
        use_mkldnn(bool, Default false): ${use_mkldnn_comment}
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2094
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2095
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2096 2097

    Returns:
Q
qiaolongfei 已提交
2098
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2099 2100 2101 2102 2103 2104 2105

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2129
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2130

2131 2132
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2133 2134 2135
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2136
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2137
        shape=param_shape,
2138 2139 2140 2141 2142 2143 2144
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2145
            trainable=False,
W
wanghaoshuang 已提交
2146
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2147
        shape=param_shape,
2148 2149
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2150 2151 2152 2153 2154 2155

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2156 2157
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2158

2159
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2177 2178 2179 2180
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2181 2182
            "use_mkldnn": use_mkldnn,
            "fuse_with_relu": fuse_with_relu
2183
        })
Y
Yu Yang 已提交
2184 2185 2186 2187

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2188
@templatedoc()
G
guosheng 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2199
    ${comment}
G
guosheng 已提交
2200 2201 2202

    The formula is as follows:

Y
yuyang18 已提交
2203
    ..  math::
G
guosheng 已提交
2204 2205 2206 2207 2208 2209 2210

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2211 2212 2213 2214 2215 2216 2217 2218
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2219

G
guosheng 已提交
2220 2221
    Args:
        input(Variable): The input tensor variable.
2222
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2223
            normalization.
2224
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2225
            normalization.
2226
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2227
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2228
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2229 2230 2231 2232 2233 2234
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2235
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2236 2237

    Returns:
Y
yuyang18 已提交
2238
        ${y_comment}
G
guosheng 已提交
2239 2240 2241

    Examples:

Y
yuyang18 已提交
2242 2243 2244
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2260
    if shift:
G
guosheng 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2285 2286 2287 2288
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2289 2290 2291
                     padding=0,
                     stride=1,
                     dilation=1,
2292
                     groups=None,
C
caoying03 已提交
2293
                     param_attr=None,
2294
                     bias_attr=None,
C
chengduoZH 已提交
2295
                     use_cudnn=True,
2296
                     act=None,
C
caoying03 已提交
2297
                     name=None):
Y
Yu Yang 已提交
2298
    """
2299 2300 2301 2302 2303 2304 2305 2306
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2307 2308
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2309 2310 2311
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2312 2313 2314 2315 2316

    For each input :math:`X`, the equation is:

    .. math::

2317
        Out = \sigma (W \\ast X + b)
2318

2319
    Where:
2320 2321 2322

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2323 2324 2325 2326
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2327

2328 2329 2330 2331
    Example:

        - Input:

2332
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2333

2334
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2335 2336 2337

        - Output:

2338
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2339 2340

        Where
Y
Yu Yang 已提交
2341

2342 2343 2344 2345
        .. math::

           H_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
Y
Yu Yang 已提交
2346 2347

    Args:
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2381 2382

    Returns:
2383
        Variable: The tensor variable storing the convolution transpose result.
2384 2385

    Raises:
2386 2387
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2388 2389 2390 2391

    Examples:
       .. code-block:: python

2392 2393
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2394
    """
2395 2396 2397 2398 2399 2400 2401 2402 2403

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2404 2405 2406
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2407 2408 2409
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2410

C
chengduoZH 已提交
2411 2412
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2413

Y
Yu Yang 已提交
2414 2415 2416 2417 2418
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2419

Y
Yu Yang 已提交
2420 2421
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2422

C
chengduoZH 已提交
2423
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2424
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2425
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2426
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2427
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2428 2429 2430
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2431

2432
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2433
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2434 2435 2436
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2437
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2438
    helper.append_op(
2439
        type=op_type,
Y
Yu Yang 已提交
2440 2441
        inputs={'Input': [input],
                'Filter': [img_filter]},
2442
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2443
        attrs={
2444 2445 2446 2447 2448
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2449 2450
        })

2451 2452 2453
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2454 2455


2456
def conv3d_transpose(input,
Y
Yu Yang 已提交
2457 2458 2459
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2460 2461 2462
                     padding=0,
                     stride=1,
                     dilation=1,
2463
                     groups=None,
C
caoying03 已提交
2464
                     param_attr=None,
2465
                     bias_attr=None,
C
chengduoZH 已提交
2466
                     use_cudnn=True,
2467
                     act=None,
C
caoying03 已提交
2468
                     name=None):
Y
Yu Yang 已提交
2469
    """
2470
    **Convlution3D transpose layer**
2471

2472
    The convolution3D transpose layer calculates the output based on the input,
2473
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2474 2475 2476 2477 2478 2479
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2480 2481 2482
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2483 2484 2485 2486 2487

    For each input :math:`X`, the equation is:

    .. math::

2488
        Out = \sigma (W \\ast X + b)
2489 2490 2491

    In the above equation:

2492 2493
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2494 2495 2496 2497
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2498

2499 2500 2501 2502
    Example:

        - Input:

2503
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2504

2505
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2506 2507 2508

        - Output:

2509
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2510 2511

        Where
Y
Yu Yang 已提交
2512

2513 2514
        .. math::

2515 2516 2517
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2518 2519

    Args:
2520
        input(Variable): The input image with [N, C, D, H, W] format.
2521 2522 2523
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2524
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2525 2526
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2527
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2528 2529 2530
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2531 2532
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2533
        stride(int|tuple): The stride size. If stride is a tuple, it must
2534 2535
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2536
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2537 2538 2539
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2540 2541 2542 2543 2544
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2545 2546 2547
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2548 2549 2550 2551 2552
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2553 2554

    Returns:
2555
        Variable: The tensor variable storing the convolution transpose result.
2556 2557

    Raises:
2558 2559
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2560 2561 2562 2563

    Examples:
       .. code-block:: python

2564 2565
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2566
    """
2567 2568
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2569
    if not isinstance(input, Variable):
2570
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2571 2572
    input_channel = input.shape[1]

2573 2574 2575
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2576

C
chengduoZH 已提交
2577 2578 2579
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2580 2581 2582 2583 2584 2585
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2586 2587 2588
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2589

2590
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2591
                         padding[0] - 1) // dilation[0] + 1
2592
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2593
                         padding[1] - 1) // dilation[1] + 1
2594
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2595
                         padding[2] - 1) // dilation[2] + 1
2596
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2597
    else:
2598 2599
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2600

2601
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2602
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2603 2604 2605
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2606
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2607
    helper.append_op(
2608
        type=l_type,
Y
Yu Yang 已提交
2609 2610
        inputs={'Input': [input],
                'Filter': [img_filter]},
2611
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2612 2613 2614 2615
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2616
            'groups': groups,
C
chengduoZH 已提交
2617 2618
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2619

2620 2621
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2622
    return out
Y
yangyaming 已提交
2623 2624


Y
yangyaming 已提交
2625
def sequence_expand(x, y, ref_level=-1, name=None):
2626
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2627 2628 2629 2630
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2631 2632 2633 2634 2635

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2636
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2637
                x.data = [[a], [b], [c], [d]]
2638 2639 2640
                x.dims = [4, 1]

            y is a LoDTensor:
2641 2642
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2643

Y
yangyaming 已提交
2644
            ref_level: 0
2645

Y
yangyaming 已提交
2646
            then output is a 1-level LoDTensor:
2647
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2648
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2649 2650 2651 2652
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2653
                x.data = [[a], [b], [c]]
2654 2655 2656
                x.dims = [3, 1]

            y is a LoDTensor:
2657
                y.lod = [[2, 0, 3]]
2658

Y
yangyaming 已提交
2659
            ref_level: -1
2660

Y
yangyaming 已提交
2661 2662 2663
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2664 2665 2666
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2667 2668
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2669
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2670
                        will be named automatically.
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2681
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2682
    """
Y
yangyaming 已提交
2683
    helper = LayerHelper('sequence_expand', input=x, **locals())
2684 2685 2686
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2687 2688 2689 2690 2691
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2692
    return tmp
2693 2694


F
fengjiayi 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
        pad_value(Variable): The Variable that holds values that will be fill 
            into padded steps. It can be a scalar or a tensor whose shape 
            equals to time steps in sequences. If it's a scalar, it will be 
            automatically broadcasted to the shape of time step.
        maxlen(int, default None): The length of padded sequences. It can be 
            None or any positive int. When it is None, all sequences will be 
            padded up to the length of the longest one among them; when it a 
            certain positive value, it must be greater than the length of the 
            longest original sequence."
    
    Returns:
        Variable: The padded sequence batch. All sequences has the same length.
    
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
        outputs={'Out': out},
        attrs={'padded_length': maxlen})
    return out


2740 2741 2742 2743 2744 2745 2746 2747 2748
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2749 2750
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2751 2752 2753

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2754 2755

    This layer does the search in beams for one time step. Specifically, it
2756 2757 2758 2759 2760 2761
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2762

2763 2764 2765 2766 2767 2768 2769 2770
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2771

2772
    Args:
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2798

2799
    Returns:
2800 2801
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2802 2803 2804 2805

    Examples:
        .. code-block:: python

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2834
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2852 2853 2854 2855 2856 2857 2858
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2869

2870 2871 2872 2873 2874 2875
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2876

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
2902 2903 2904 2905
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
2906
              param_attr=None,
C
caoying03 已提交
2907 2908
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
2909 2910 2911 2912
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

2913
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
2914

2915
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
2916

2917
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
2918

2919
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
2920 2921 2922

            h_t & = o_t tanh(c_t)

2923 2924 2925 2926 2927 2928
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
2929 2930 2931

        .. math::

2932
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
2933 2934 2935 2936 2937 2938 2939 2940

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
2941
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
2942 2943

    Args:
Y
yangyaming 已提交
2944 2945 2946 2947 2948 2949
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
2950
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
2951 2952
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
2953 2954
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
2955 2956
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
2957 2958

    Returns:
Y
yangyaming 已提交
2959
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
2960 2961

    Raises:
2962 2963 2964 2965
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
2966 2967 2968 2969 2970 2971

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
2972
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
2973
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
2974
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
2991
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
2992 2993 2994 2995
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
2996 2997
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
2998 2999 3000
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3001
    size = cell_t_prev.shape[1]
3002
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3003 3004
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3005
                param_attr=param_attr,
3006
                bias_attr=bias_attr)
Y
yangyaming 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3019
    return h, c
G
guosheng 已提交
3020 3021


C
caoying03 已提交
3022
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3023
    """
Y
yangyaming 已提交
3024
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3025 3026 3027

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3028
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3029 3030
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3031 3032
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3033
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3034
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3035
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3036 3037
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3038 3039 3040

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3041

G
guosheng 已提交
3042 3043 3044 3045 3046 3047
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3048
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3049 3050 3051 3052
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3053 3054 3055 3056

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3057
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3058 3059 3060
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3061 3062 3063
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3064 3065
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3066 3067 3068 3069 3070
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3071
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3072 3073 3074 3075
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3076 3077


C
caoying03 已提交
3078
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3079
    """
Y
Yibing Liu 已提交
3080
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3081 3082 3083

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3084 3085 3086
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3087
            must be in the range :math:`[-rank(input), rank(input))`. If
3088
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3089
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3090 3091
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3092
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3093
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3094
                       will be named automatically.
G
guosheng 已提交
3095 3096

    Returns:
Y
Yibing Liu 已提交
3097
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3098

G
guosheng 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3109 3110
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3111 3112 3113 3114 3115 3116 3117

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3118 3119 3120
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3121 3122
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3123 3124 3125 3126 3127
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3128
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3129 3130 3131 3132
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3133 3134


C
caoying03 已提交
3135
def reduce_max(input, dim=None, keep_dim=False, name=None):
3136
    """
Y
yangyaming 已提交
3137
    Computes the maximum of tensor elements over the given dimension.
3138 3139 3140

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3141
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3142 3143 3144
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3145
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3146 3147
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3148
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3149 3150
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3151 3152 3153

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3166 3167 3168 3169 3170 3171 3172

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3173 3174 3175
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3176 3177
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3178 3179 3180 3181 3182
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3183
            'dim': dim if dim != None else [0],
3184 3185 3186 3187 3188 3189
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3190
def reduce_min(input, dim=None, keep_dim=False, name=None):
3191
    """
Y
yangyaming 已提交
3192
    Computes the minimum of tensor elements over the given dimension.
3193 3194 3195

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3196
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3197 3198 3199
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3200
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3201 3202
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3203
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3204 3205
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3206 3207 3208

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3209

3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3221 3222 3223 3224 3225 3226 3227

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3228 3229 3230
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3231 3232
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3233 3234 3235 3236 3237
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3238
            'dim': dim if dim != None else [0],
3239 3240 3241 3242
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3243 3244


3245 3246 3247 3248 3249 3250
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3251
        dim (list|int|None): The dimensions along which the product is performed. If
3252 3253
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3254 3255
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3256 3257 3258
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3259
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3260
            layer will be named automatically.
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3275
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3276
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3277 3278 3279 3280 3281 3282 3283

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3284 3285 3286
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3287 3288
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3289 3290 3291 3292 3293
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3294
            'dim': dim if dim != None else [0],
3295 3296 3297 3298 3299 3300
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3301
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3302
    """
C
caoying03 已提交
3303
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3304 3305 3306

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3307 3308 3309 3310 3311
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3312
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3313
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3314
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3315 3316
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3317 3318

    Returns:
D
dzhwinter 已提交
3319
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3329 3330
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3360 3361 3362 3363 3364 3365 3366 3367 3368


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3369
    .. math::
3370 3371

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3372 3373 3374 3375 3376

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3377
        x(Variable|list): The input tensor to l2_normalize layer.
3378
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3379 3380
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3381
        epsilon(float): The epsilon value is used to avoid division by zero, \
3382
            the defalut value is 1e-10.
3383
        name(str|None): A name for this layer(optional). If set None, the layer \
3384
            will be named automatically.
C
caoying03 已提交
3385 3386

    Returns:
3387
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3388 3389

    Examples:
3390

C
caoying03 已提交
3391 3392
        .. code-block:: python

3393 3394 3395 3396
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3397 3398
    """

F
fengjiayi 已提交
3399 3400
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3401 3402
    helper = LayerHelper("l2_normalize", **locals())

3403 3404
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3405
    helper.append_op(
3406 3407 3408 3409
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3410
        attrs={
3411 3412
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3413 3414
        })
    return out
3415 3416


3417
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
G
guosheng 已提交
3418
    """
Y
ying 已提交
3419 3420 3421 3422
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3423

C
chengduoZH 已提交
3424
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3425
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3426

3427 3428 3429 3430 3431
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3432
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3433

C
chengduoZH 已提交
3434
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3435
      performs in the following way.
G
guosheng 已提交
3436

3437
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3438
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3439
        last two dimensions and a batched matrix multiply supporting broadcast
3440
        applies on the two tensors.
G
guosheng 已提交
3441

Y
ying 已提交
3442 3443
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3444
    removed after matrix multiplication.
G
guosheng 已提交
3445 3446 3447

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3448 3449 3450
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
3451
        name(str|None): A name for this layer(optional). If set None, the layer
3452
            will be named automatically.
G
guosheng 已提交
3453 3454

    Returns:
3455
        Variable: The product Tensor variable.
G
guosheng 已提交
3456

G
guosheng 已提交
3457 3458 3459
    Examples:
        .. code-block:: python

3460
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3461 3462
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3463

3464 3465
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3466

3467 3468
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3469

3470 3471
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3472 3473 3474 3475

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3476 3477
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3478

Y
ying 已提交
3479
            # x: [M], y: [N]
3480
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3481
    """
Y
ying 已提交
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3494
            y_shape = y_shape + [1]
Y
ying 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3511
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3512
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3513
    helper.append_op(
3514 3515 3516 3517 3518 3519 3520
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'transpose_X': transpose_x,
               'transpose_Y': transpose_y})
    return out
3521 3522


3523
def topk(input, k, name=None):
Q
qingqing01 已提交
3524 3525 3526 3527
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3528
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3529 3530 3531 3532 3533 3534
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3556 3557 3558
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3559
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3560
                 of input.
3561
        name(str|None): A name for this layer(optional). If set None, the layer
3562
                       will be named automatically.
F
fengjiayi 已提交
3563
                       Default: None
Q
qingqing01 已提交
3564 3565

    Returns:
3566 3567 3568
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3569
        within the last dimension of input.
Q
qingqing01 已提交
3570

F
fengjiayi 已提交
3571 3572
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3593
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3594
    """
Y
ying 已提交
3595 3596 3597 3598 3599 3600 3601 3602 3603
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3604

Y
ying 已提交
3605
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3606

3607
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3608 3609
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3610
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3611

3612
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3613 3614
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3615

3616 3617 3618
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3619
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3620
                          the length of reference string.
3621
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3622
                                     calculating edit distance.
3623
        name (str): The name of this layer. It is optional.
3624

W
wanghaoshuang 已提交
3625
    Returns:
W
wanghaoshuang 已提交
3626
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3627 3628 3629 3630 3631

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3632
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3633
            cost = fluid.layers.edit_distance(input=x,label=y)
3634
    """
3635
    helper = LayerHelper("edit_distance", **locals())
3636

3637
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3638
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3639 3640 3641 3642 3643 3644 3645
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3646
            attrs={"tokens": ignored_tokens})
3647 3648 3649 3650 3651
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3652
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3653
            attrs={"tokens": ignored_tokens})
3654 3655
        label = erased_label

3656 3657
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3658
    sequence_num = helper.create_tmp_variable(dtype="int64")
3659 3660 3661 3662
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3663 3664
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3665 3666
        attrs={"normalized": normalized})

3667
    return edit_distance_out, sequence_num
3668 3669 3670 3671 3672


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3673

Y
ying 已提交
3674 3675 3676 3677
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3695
        input.lod = [[4, 4]]
3696 3697 3698 3699 3700 3701 3702

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3703
        output.lod = [[2, 1]]
3704 3705 3706

    Args:

Y
ying 已提交
3707 3708 3709 3710 3711 3712 3713 3714 3715
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3716
        name (str): The name of this layer. It is optional.
3717 3718

    Returns:
3719
        Variable: CTC greedy decode result. If all the sequences in result were
3720
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3721 3722 3723 3724 3725

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3726

3727
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3728
    """
3729
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3730
    _, topk_indices = topk(input, k=1)
3731 3732 3733 3734 3735 3736

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3737
        outputs={"Output": [ctc_out]},
3738 3739
        attrs={"merge_repeated": True,
               "blank": blank})
3740
    return ctc_out
3741 3742


F
fengjiayi 已提交
3743
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3744
    """
3745 3746
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3747
    to compute Connectionist Temporal Classification (CTC) loss.
3748 3749
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3750 3751 3752
    input tensor.

    Args:
3753
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3754 3755 3756 3757
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3758
       label (Variable): The ground truth of variable-length sequence,
3759 3760 3761
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3762 3763
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3764 3765 3766
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3767
         follewed by a mean_op.
W
wanghaoshuang 已提交
3768 3769

    Returns:
3770 3771
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3772 3773

    Examples:
3774

W
wanghaoshuang 已提交
3775
        .. code-block:: python
3776

3777 3778 3779
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3780 3781

    """
F
fengjiayi 已提交
3782
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3809 3810 3811
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3812 3813 3814 3815 3816
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3817

3818
            out.lod  = [[0, 1, 3]]
3819 3820 3821 3822

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3823 3824 3825 3826 3827 3828 3829
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3830 3831 3832

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3833 3834

    Returns:
3835

3836 3837 3838 3839 3840
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3841
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3842
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3843 3844 3845 3846 3847 3848 3849 3850 3851
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3852 3853


3854 3855 3856 3857
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3858 3859 3860 3861 3862 3863 3864
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3865 3866 3867 3868 3869 3870 3871
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3872 3873
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3874
            sample is 1.0.
3875 3876 3877
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3878

3879
    Returns:
Y
Yibing Liu 已提交
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
3907
    """
Y
Yang Yu 已提交
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
3952
    return cost / (num_neg_samples + 1)
3953 3954


G
guosheng 已提交
3955
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
3956 3957
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
3958
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
3959 3960 3961 3962 3963 3964 3965 3966 3967
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
3968

W
weixing02 已提交
3969
    Args:
M
minqiyang 已提交
3970
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
3971 3972 3973 3974 3975
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
3976 3977
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
3978
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
3979 3980
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
3981 3982 3983 3984 3985 3986 3987 3988

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
3989 3990 3991
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
3992 3993 3994 3995 3996 3997 3998 3999
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4000
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4001 4002 4003 4004 4005
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4006 4007 4008 4009 4010 4011 4012 4013
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4014 4015
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4016
        inputs=inputs,
W
weixing02 已提交
4017 4018 4019 4020 4021 4022
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4023
def transpose(x, perm, name=None):
Y
ying 已提交
4024 4025 4026 4027 4028 4029 4030
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4031 4032 4033
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4034 4035 4036 4037 4038 4039 4040 4041

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4042
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4043 4044
    """

Y
fix ci.  
ying 已提交
4045
    if len(perm) != len(x.shape):
Y
ying 已提交
4046 4047 4048
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4049 4050 4051 4052 4053 4054
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4055 4056

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4057
    out = helper.create_tmp_variable(x.dtype)
4058
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4059
    helper.append_op(
4060
        type='transpose2',
Y
fix ci.  
ying 已提交
4061
        inputs={'X': [x]},
4062 4063
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4064 4065
        attrs={'axis': perm})
    return out
4066 4067


4068 4069 4070 4071 4072 4073 4074
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4075
    """
4076 4077 4078 4079 4080 4081 4082
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4111 4112 4113 4114 4115 4116 4117 4118 4119
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4120 4121 4122
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4123 4124 4125 4126 4127
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4155 4156 4157
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4170
            output.dims = {8, 8}
4171

4172
            output.lod = [[4, 4]]
4173

D
dzhwinter 已提交
4174
     Examples:
4175 4176 4177

        .. code-block:: python

4178 4179
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4180 4181

    """
W
wanghaoshuang 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4192 4193 4194 4195 4196 4197 4198
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4199
    helper = LayerHelper('im2sequence', **locals())
4200 4201
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4202
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4203
    return out
4204 4205


Y
yuyang18 已提交
4206
@templatedoc()
4207
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4208 4209
    """
    ${comment}
4210 4211

    Args:
Y
yuyang18 已提交
4212
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4213 4214
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4215 4216 4217 4218 4219
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4220
        ${out_comment}.
4221 4222

    Examples:
Y
yuyang18 已提交
4223 4224 4225 4226
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4239
    return helper.append_activation(out)
4240 4241


Y
yuyang18 已提交
4242
@templatedoc()
4243 4244
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4245 4246 4247 4248 4249 4250 4251
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4252 4253

    Args:
Y
yuyang18 已提交
4254 4255
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4256 4257

    Returns:
Y
yuyang18 已提交
4258
        ${out_comment}.
4259 4260
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4261 4262 4263 4264 4265 4266

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4267 4268 4269 4270 4271 4272
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4273 4274


4275 4276 4277 4278
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4279 4280
    """
    **Softmax With Cross Entropy Operator.**
4281

4282 4283 4284 4285
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4286

4287 4288 4289
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4290

4291 4292 4293
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4294

4295
    The equation is as follows:
4296

4297
    1) Hard label (one-hot label, so every sample has exactly one class)
4298

4299 4300 4301 4302
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4303

4304 4305 4306
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4307

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
4320 4321 4322 4323
        ignore_index (int): Specifies a target value that is ignored and does 
                            not contribute to the input gradient. Only valid 
                            if soft_label is set to False. Default: -100

4324 4325 4326 4327 4328 4329 4330 4331 4332
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4333 4334
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4345 4346
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4347 4348 4349 4350 4351
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4352 4353
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4354
    For each instance, it computes the smooth L1 loss element by element first
4355
    and then sums all the losses. So the shape of ouput Variable is
4356
    [batch_size, 1].
4357

4358 4359
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4360
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4361
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4362
            L1 loss op with same shape as :attr:`x`.
4363
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4364 4365
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4366
            by this tensor element by element.
4367
        outside_weight (Variable|None): A tensor with rank at least 2. This
4368 4369
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4370
            element by element.
4371
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4372 4373
           scalar with default value 1.0.

4374
    Returns:
4375
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4376 4377 4378 4379 4380

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4381 4382
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4383
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4384
            out = fluid.layers.smooth_l1(x=fc, y=label)
4385
    """
4386

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4402 4403 4404 4405


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4406
    This layer creates the one-hot representations for input indices.
4407 4408

    Args:
Y
Yibing Liu 已提交
4409 4410
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4411 4412

    Returns:
Y
Yibing Liu 已提交
4413
        Variable: The one-hot representations of input.
4414 4415

    Examples:
C
caoying03 已提交
4416
        .. code-block:: python
4417

Y
Yibing Liu 已提交
4418 4419
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4420 4421 4422 4423 4424 4425 4426 4427 4428
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4429 4430


Y
Yu Yang 已提交
4431
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4432
    """
Y
yi.wu 已提交
4433 4434 4435
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4436 4437 4438 4439 4440 4441

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4442 4443
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4444 4445 4446 4447 4448 4449

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4450 4451
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4452 4453
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4454 4455 4456 4457 4458
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4459
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4460
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4461 4462
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4463 4464
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4465 4466 4467
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4468 4469


4470
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4471
    """
C
caoying03 已提交
4472 4473
    Gives a new shape to the input Tensor without changing its data.

4474 4475 4476 4477 4478
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4479

4480
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4481

4482 4483 4484 4485
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4486
    2. 0 means the actual dimension value is going to be copied from the
4487 4488 4489 4490
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4491 4492

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4493
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4494
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4495

4496
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4497 4498
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4499 4500
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4501
    dimensions.
C
caoying03 已提交
4502

4503
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4504 4505 4506 4507
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4508 4509

    Args:
4510
        x(variable): The input tensor.
C
caoying03 已提交
4511 4512
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4513 4514 4515 4516 4517
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4518
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4519 4520 4521 4522
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4523
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4524

4525 4526
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4527

X
Xin Pan 已提交
4528 4529 4530
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4531 4532
    Examples:
        .. code-block:: python
G
guosheng 已提交
4533

4534
            data = fluid.layers.data(
4535
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4536
            reshaped = fluid.layers.reshape(
4537
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4538 4539 4540
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4541
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4542 4543 4544 4545 4546
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4547

4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4563
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4564
    out = helper.create_tmp_variable(dtype=x.dtype)
4565
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4566
    helper.append_op(
4567
        type="reshape2",
X
Xin Pan 已提交
4568
        inputs=inputs,
D
dzhwinter 已提交
4569
        attrs={"shape": shape},
4570 4571
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4572

D
dzhwinter 已提交
4573
    return helper.append_activation(out)
4574

4575

4576
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
    """
    Remove single-dimensional entries from the shape of a tensor. Takes a 
    parameter axes with a list of axes to squeeze. If axes is not provided, all 
    the single dimensions will be removed from the shape. If an axis is 
    selected with shape entry not equal to one, an error is raised.
        
    Examples:
    Case 1:
      Given 
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
        and 
          axes = []
        we get:
          Out.shape = (3, 5)
    
    Args:
4600
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4601
        axes (list): List of integers, indicating the dimensions to be squeezed.
4602
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4603 4604 4605 4606 4607 4608 4609 4610

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4611
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4612 4613
    """
    helper = LayerHelper("squeeze", **locals())
4614
    out = helper.create_tmp_variable(dtype=input.dtype)
4615
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4616
    helper.append_op(
4617
        type="squeeze2",
4618
        inputs={"X": input},
Y
Yibing Liu 已提交
4619
        attrs={"axes": axes},
4620 4621
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4622

4623 4624 4625
    return out


4626
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
    """
    Insert single-dimensional entries to the shape of a tensor. Takes one 
    required argument axes, a list of dimensions that will be inserted. 
    Dimension indices in axes are as seen in the output tensor. 

    For example: 
      Given a tensor such that tensor with shape [3, 4, 5], 
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
    
    Args:
4637
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4638
        axes (list): List of integers, indicating the dimensions to be inserted.
4639
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4640 4641 4642 4643 4644 4645 4646 4647

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4648
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4649 4650
    """
    helper = LayerHelper("unsqueeze", **locals())
4651
    out = helper.create_tmp_variable(dtype=input.dtype)
4652
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4653
    helper.append_op(
4654
        type="unsqueeze2",
4655
        inputs={"X": input},
Y
Yibing Liu 已提交
4656
        attrs={"axes": axes},
4657 4658
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4659

4660 4661
    return out

4662

Y
yangyaming 已提交
4663
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4664
    """
Y
Yibing Liu 已提交
4665
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4666 4667 4668 4669
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4670
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4671 4672 4673 4674 4675 4676

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4677
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4678 4679 4680
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4681
            target_lod: [4, 2]
Y
yangyaming 已提交
4682 4683

            then we get a 1-level LoDTensor:
4684
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4685 4686 4687 4688 4689 4690
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4691
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4692 4693 4694 4695
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4696
                y.data = [[2, 4]]
Y
yangyaming 已提交
4697 4698 4699
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4700
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4701 4702 4703 4704 4705 4706
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4707
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4708 4709 4710 4711
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4712
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4713 4714 4715 4716
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4717
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4718 4719 4720 4721 4722
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4723
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4724
                           from :attr:`y`.
Y
yangyaming 已提交
4725
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4726
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4727 4728

    Returns:
Y
Yibing Liu 已提交
4729
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4730 4731

    Raises:
Y
Yibing Liu 已提交
4732
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4768
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4797 4798
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4826 4827 4828 4829


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4830
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4831
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4832

G
guosheng 已提交
4833 4834 4835 4836
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4859
                         The length of :attr:paddings must be
G
guosheng 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4870

G
guosheng 已提交
4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4885 4886


C
chengduo 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


4967 4968 4969 4970 4971 4972 4973
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
4974 4975
    called label-smoothing regularization (LSR).

4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
4999
                              be :math:`(1, class\_num)`.
5000 5001
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5002
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5030 5031


Y
yi.wu 已提交
5032
@templatedoc()
5033 5034
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5035
    ${comment}
5036 5037

    Args:
Y
yi.wu 已提交
5038 5039
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5040 5041 5042
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5043 5044

    Returns:
Y
update  
yi.wu 已提交
5045
        Variable: ${out_comment}.
5046 5047

    Examples:
5048 5049
        .. code-block:: python

5050
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5096 5097
        .. code-block:: python

W
whs 已提交
5098 5099 5100 5101
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5102
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5103 5104 5105 5106 5107 5108
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5109 5110


5111 5112 5113 5114 5115
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5116
    """
Q
qiaolongfei 已提交
5117
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5118

5119
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5120 5121 5122
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5123

5124
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5125

5126
    Args:
5127
        input (Variable): The input tensor of image resize layer,
5128 5129
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5130
        out_shape(list|tuple|Variable|None): Output shape of image resize
5131 5132
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5133
        scale(float|None): The multiplier for the input height or width.
5134 5135 5136
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5137 5138
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5139 5140
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5141 5142

    Returns:
Q
update  
qiaolongfei 已提交
5143 5144
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5145

5146 5147 5148
    Examples:
        .. code-block:: python

5149
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5150
    """
5151 5152 5153 5154
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5155 5156
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5157 5158
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5159 5160 5161 5162

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5163 5164 5165
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5166
    if out_shape is not None:
B
baiyf 已提交
5167 5168 5169
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5170 5171 5172 5173 5174 5175
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5176 5177 5178 5179
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5180 5181
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5182
        type=resample_methods[resample],
5183
        inputs=inputs,
5184 5185 5186 5187
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5188 5189


Y
yuyang18 已提交
5190
@templatedoc(op_type="bilinear_interp")
5191 5192
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5193 5194 5195 5196 5197 5198
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5199

Y
yuyang18 已提交
5200 5201 5202 5203 5204 5205 5206 5207
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5208 5209 5210 5211 5212 5213 5214
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5215 5216 5217
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5218 5219 5220 5221 5222 5223 5224
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5225
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5226

5227
    Returns:
Q
update  
qiaolongfei 已提交
5228
        Variable: The output is a 4-D tensor of the shape
5229
        (num_batches, channls, out_h, out_w).
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5240 5241 5242
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5243 5244 5245
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5246 5247
def gather(input, index):
    """
Q
qiaolongfei 已提交
5248 5249
    **Gather Layer**

5250
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5251 5252 5253 5254
    of X indexed by `index` and concatenate them together.

    .. math::

5255
        Out = X[Index]
W
whs 已提交
5256 5257 5258 5259 5260 5261 5262


    .. code-block:: text


                Given:

5263 5264
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5275
        input (Variable): The source input with rank>=1.
W
whs 已提交
5276 5277 5278 5279 5280 5281
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5282

W
whs 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5352

5353 5354 5355
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5356
    """
F
stash  
fengjiayi 已提交
5357
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5358
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5359
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5360
    if seed is None:
5361
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5362
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5363
    if isinstance(seed, int):
F
fengjiayi 已提交
5364 5365 5366 5367 5368
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5369 5370 5371 5372
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5373
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5374 5375
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5376 5377
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5378
    return out
W
whs 已提交
5379 5380


5381
def log(x, name=None):
W
wanghaoshuang 已提交
5382 5383 5384 5385 5386
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5387
        Out = \\ln(x)
W
wanghaoshuang 已提交
5388 5389

    Args:
5390
        x (Variable): Input tensor.
5391 5392
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5393 5394 5395 5396 5397 5398 5399 5400

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5401
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5402 5403
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5404
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5405
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5406
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5407 5408 5409
    return out


5410
def relu(x, name=None):
W
wanghaoshuang 已提交
5411 5412
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5413
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5414 5415 5416 5417
    the tensor elementwise.

    .. math::

5418
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5419 5420

    Args:
5421
        x (Variable): The input tensor.
5422 5423
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5424 5425 5426 5427 5428 5429 5430 5431

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5432
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5433 5434
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5435
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5436
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5437
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5438
    return out
5439 5440


W
whs 已提交
5441 5442 5443
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5444 5445 5446 5447
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5448
    .. math::
5449 5450

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5451

5452
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5453 5454 5455 5456 5457
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5458
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5459
                           Its shape should be the same as input.
5460
        num_classes (int): The possible number of labels.
W
whs 已提交
5461 5462 5463 5464

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5465
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5466 5467 5468 5469

    Examples:

        .. code-block:: python
5470

W
whs 已提交
5471 5472 5473 5474 5475 5476 5477 5478 5479
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5480 5481
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5482
        outputs={
W
whs 已提交
5483 5484 5485
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5486 5487 5488
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5563
                    isinstance(shape, Variable)):
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5597

5598 5599
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5600

5601 5602 5603 5604
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5605

5606 5607 5608 5609 5610
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5611 5612 5613

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5658 5659


W
whs 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
      
      X = [[1, 2, 3],
           [4, 5, 6]]
      
      Case 0:
      
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
        
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
      
      Case 1:
      
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
        
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
        
      Case 2:
      
        paddings = [0, 1, 2, 1],
        mode = 'edge'
        
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
    
  
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


J
jerrywgz 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
5762 5763
	name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically. 
J
jerrywgz 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
5814

5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
5825 5826
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
5842
        ValueError: If axis is not in range [0, rank(x)].
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
5860
    x_shape = helper.create_tmp_variable(x.dtype)
5861
    helper.append_op(
5862
        type='flatten2',
5863
        inputs={"X": x},
5864 5865
        outputs={'Out': out,
                 'XShape': x_shape},
5866 5867
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
5868 5869


C
chenweihang 已提交
5870
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
5871
    """
C
chenweihang 已提交
5872
    Generate a new sequence for the input index sequence, which enumerates all the
C
chenweihang 已提交
5873 5874 5875
    sub-sequences with length `win_size` of the input. 
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
C
chenweihang 已提交
5876 5877 5878 5879 5880
    
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
5881
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
5882 5883 5884 5885 5886 5887
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
5888
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
5889 5890 5891
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
5892 5893 5894
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
5906
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
5907 5908 5909 5910 5911 5912
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
5913

5914

S
sneaxiy 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
5924

S
sneaxiy 已提交
5925
    .. math::
5926

S
sneaxiy 已提交
5927 5928 5929
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
5930
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
5931 5932 5933 5934
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
5935 5936 5937
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
5938 5939
    Returns:
        Variable: The output sequence mask.
5940

S
sneaxiy 已提交
5941 5942
    """

Q
qingqing01 已提交
5943
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
5944 5945 5946 5947 5948
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
5949 5950 5951
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
5952 5953 5954 5955 5956 5957
        outputs={'Y': out},
        attrs={
            'max_len': maxlen if maxlen is not None else -1,
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
5958 5959


X
Xin Pan 已提交
5960
def stack(x, axis=0):
S
sneaxiy 已提交
5961 5962 5963 5964
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
5965 5966 5967 5968 5969 5970 5971

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
5972
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
5973
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
5974 5975

    Args:
5976
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
5977
        axis (int|None): The axis along which all inputs are stacked.
5978

S
sneaxiy 已提交
5979 5980
    Returns:
        Variable: The stacked variable.
5981

S
sneaxiy 已提交
5982 5983
    """

X
Xin Pan 已提交
5984 5985 5986 5987 5988 5989 5990 5991
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
5992 5993
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
5994

X
Xin Pan 已提交
5995
    return out
D
dzhwinter 已提交
5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
   
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
    raised. 

    Args:
        x (Variable): Input variable. 
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
    
    Returns:
        list(Variable): The unstacked variables.
    
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs