quantization_pass.py 137.3 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17

18 19 20 21
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....executor import scope_guard
31
from ....framework import _get_paddle_place
32
from . import utils
2
201716010711 已提交
33
import paddle
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
    'AddQuantDequantForInferencePass',
48
]
W
WangZhen 已提交
49

50
_fake_quant_op_list = [
51 52 53 54
    'fake_quantize_abs_max',
    'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max',
    'fake_channel_wise_quantize_abs_max',
55 56 57
]

_fake_dequant_op_list = [
58 59
    'fake_dequantize_max_abs',
    'fake_channel_wise_dequantize_max_abs',
60 61
]

62
_fake_quant_dequant_op_list = [
63 64
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
65
    "fake_quantize_dequantize_abs_max",
66 67
]

68 69
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

70
_SCALE_DEFAULT_VALUE = 0.001
71 72


73
def _init_var_node(var_node, value, scope, place):
74 75 76 77 78
    assert isinstance(
        value, np.ndarray
    ), 'The type of value should be numpy array.'
    assert scope is not None, 'The scope cannot be set None.'
    assert place is not None, 'The place cannot be set None.'
79 80 81 82
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


83 84 85 86 87
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
88
    for var_name in utils._get_op_input_var_names(op_node):
89
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
90 91 92
        is_input_all_not_persistable = is_input_all_not_persistable and (
            not in_node.persistable()
        )
93 94 95
    return is_input_all_not_persistable


96 97 98 99 100 101 102 103 104 105 106 107 108 109
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


110
class QuantizationTransformPass:
111
    """
112 113
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
114
    """
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    def __init__(
        self,
        scope=None,
        place=None,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='abs_max',
        weight_quantize_type='abs_max',
        window_size=10000,
        moving_rate=0.9,
        skip_pattern=['skip_quant'],
        quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
        weight_quantize_func=None,
        act_quantize_func=None,
        weight_preprocess_func=None,
        act_preprocess_func=None,
        optimizer_func=None,
        executor=None,
        is_test=None,
    ):
136
        r"""
137
        Constructor.
138

W
WangZhen 已提交
139
        Args:
140
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
141 142
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
143 144
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
145
                where ``x`` is the index of the GPUs.
146
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
147
                the bias is not quantized.
148 149
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
150 151 152 153 154
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
155
            weight_quantize_type(str): quantization type for weights,
156 157 158
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
159 160
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
161
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
162
                will be presented in the name scope of an op. When the skip pattern is
163 164
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
165 166
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
194 195
                Default is None.

196

W
WangZhen 已提交
197 198
        Examples:
        .. code-block:: python
199 200 201 202
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
203
            from paddle.fluid.contrib.slim.graph import IrGraph
204 205
            from paddle.fluid import core

206
            graph = IrGraph(core.Graph(program.desc), for_test=False)
207
            place = fluid.CPUPlace()
208
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
209
            place)
210
            transform_pass.apply(graph)
W
WangZhen 已提交
211
        """
212
        self._scope = scope
213
        self._place = _get_paddle_place(place)
214 215
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
216
        self._skip_pattern = skip_pattern
217 218 219 220 221 222
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
223
        quant_type = [
224 225 226 227
            'abs_max',
            'channel_wise_abs_max',
            'range_abs_max',
            'moving_average_abs_max',
228
        ]
229 230 231
        assert (
            activation_quantize_type != 'channel_wise_abs_max'
        ), "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
232 233
        if activation_quantize_type not in quant_type:
            raise ValueError(
234
                "Unknown activation_quantize_type : '%s'. It can only be "
235 236 237
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(activation_quantize_type))
            )
W
WangZhen 已提交
238 239
        if weight_quantize_type not in quant_type:
            raise ValueError(
240
                "Unknown weight_quantize_type: '%s'. It can only be "
241
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
242 243
                "or 'moving_average_abs_max'." % (str(weight_quantize_type))
            )
W
WangZhen 已提交
244

245 246 247
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
248
        self._moving_rate = moving_rate
W
WangZhen 已提交
249

250 251
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
252
            assert op in utils._weight_supported_quantizable_op_type, (
253
                op + " is not supported for quantization."
254
            )
255 256
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
257
        ]
258
        self._is_test = is_test
259
        self._global_step = None
W
WangZhen 已提交
260

261 262 263
        self.create_var_map = {}
        self.create_op_map = {}

264
    def apply(self, graph):
265 266 267 268 269 270 271
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
272 273
        Returns:
            None
274
        """
275 276 277
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
278 279
        if self._is_test is None:
            self._is_test = graph.is_test()
W
WangZhen 已提交
280 281
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
282
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
283
        processed_vars = []
W
WangZhen 已提交
284

285
        def _quant_preprocess(op_node):
286 287
            user_skipped = False
            if isinstance(self._skip_pattern, list):
288 289 290 291
                user_skipped = op_node.op().has_attr("op_namescope") and any(
                    pattern in op_node.op().attr("op_namescope")
                    for pattern in self._skip_pattern
                )
292
            elif isinstance(self._skip_pattern, str):
293 294 295 296 297 298 299
                user_skipped = (
                    op_node.op().has_attr("op_namescope")
                    and op_node.op()
                    .attr("op_namescope")
                    .find(self._skip_pattern)
                    != -1
                )
300

301
            if user_skipped:
302
                op_node.op()._set_attr("skip_quant", True)
303
                op_node.op()._set_attr("with_quant_attr", True)
304

W
WangZhen 已提交
305
        def _transform_forward(graph, op):
306
            op.op()._set_attr("quantization_type", "qat_with_weight")
307
            op.op()._set_attr("with_quant_attr", True)
308 309
            inputs = op.inputs
            for var_node in inputs:
310 311
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
312 313 314
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
315 316 317
                    name = var_node.name()
                    if name in processed_vars:
                        continue
318 319 320
                    is_weight = (
                        True if var_node.name() in persistable_vars else False
                    )
321 322

                    # if var node is weight and weight_preprocess_func is not None,
323
                    # will insert weight preprocess func
324
                    # to preorocess weight before quantization
325 326
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
327 328 329
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
330 331 332 333 334 335 336 337
                            graph, self._weight_preprocess_func, var_node, op
                        )
                    elif (
                        not is_weight and self._act_preprocess_func is not None
                    ):
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op
                        )
338 339 340 341 342 343 344

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
345 346
                            graph, self._weight_quantize_func, var_node, op
                        )
347 348 349 350
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
351 352
                            graph, self._act_quantize_func, var_node, op
                        )
353 354 355
                        processed_vars.append(name)
                        continue

356 357 358
                    quant_bits = (
                        self._weight_bits
                        if var_node.name() in persistable_vars
359
                        else self._activation_bits
360 361 362 363
                    )
                    quant_type = (
                        self._weight_quantize_type
                        if is_weight
364
                        else self._activation_quantize_type
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
                    )
                    if (
                        quant_type == 'channel_wise_abs_max'
                    ):  # Weight quantization
                        quant_axis = (
                            1
                            if op.name() in utils._channelwise_quant_axis1_ops
                            else 0
                        )
                        (
                            quant_var_node,
                            scale_var_node,
                        ) = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis
                        )
380
                        dequant_var_node = self._insert_channel_dequant_op(
381 382 383 384 385 386
                            graph,
                            quant_var_node,
                            [scale_var_node],
                            [quant_bits],
                            quant_axis,
                        )
387 388
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
389 390
                            graph, var_node, name, quant_bits, quant_type
                        )
391
                        dequant_var_node = self._insert_dequant_op(
392 393
                            graph, quant_var_node, scale_var_node, quant_bits
                        )
394
                    dequantized_vars[name] = dequant_var_node
395
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
396 397 398

        def _transform_backward(graph, op):
            for var_node in op.inputs:
399 400
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
401 402
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
403
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
404

X
XGZhang 已提交
405 406 407 408 409 410 411 412 413 414
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

415
        if not self._is_test:
W
WangZhen 已提交
416
            self._create_global_step(graph)
417
        ops = graph.all_op_nodes()
418 419 420
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
421 422 423 424
            if (
                op.name() in self._quantizable_ops
                or op.name() in self._quantizable_grad_ops
            ):
425
                _quant_preprocess(op)
426 427
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
428 429
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
430 431 432 433 434
        with tqdm(
            total=len(ops),
            bar_format='Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
435 436 437 438 439
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
440 441
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
442
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
443
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
444
        graph.resolve_hazard()
445
        return graph
W
WangZhen 已提交
446

W
WangZhen 已提交
447
    def _create_global_step(self, graph):
448 449 450 451
        if (
            self._weight_quantize_type == 'range_abs_max'
            or self._activation_quantize_type == 'range_abs_max'
        ):
452
            counter_name = '@STEP_COUNTER@'
453
            for node in graph.all_var_nodes():
W
WangZhen 已提交
454
                if node.name() == counter_name:
455 456
                    self._global_step = node
            if self._global_step is None:
457
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
458 459 460
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
461 462 463 464 465 466 467 468
                    var_dtype=core.VarDesc.VarType.INT64,
                )
                _init_var_node(
                    global_step_in,
                    np.zeros([1], dtype='int64'),
                    self._scope,
                    self._place,
                )
W
WangZhen 已提交
469
                global_step_out = graph.create_var_node_from_desc(
470 471
                    global_step_in.var()
                )
472
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
473 474
                increment_op = graph.create_op_node(
                    op_type='increment',
475 476
                    attrs={
                        'step': 1.0,
477
                        'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
478
                    },
W
WangZhen 已提交
479
                    inputs={'X': global_step_in},
480 481
                    outputs={'Out': global_step_out},
                )
482 483 484
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
485

486
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
487 488 489 490
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
491 492 493
            return self._insert_quant_abs_max_op(
                graph, var_node, name, quant_bits
            )
W
WangZhen 已提交
494
        elif quant_type == 'range_abs_max':
495 496 497
            return self._insert_quant_range_abs_max_op(
                graph, var_node, name, quant_bits
            )
498
        elif quant_type == 'moving_average_abs_max':
499
            return self._insert_quant_moving_average_abs_max_op(
500 501
                graph, var_node, name, quant_bits
            )
W
WangZhen 已提交
502

503
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
504 505 506 507 508 509
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
510
            name=self._quantized_var_name(name),
511 512
            var_type=var_node.type(),
            shape=var_node.shape(),
513 514
            var_dtype=var_node.dtype(),
        )
515
        scale_name = self._quantized_scale_name(name)
516 517 518 519 520 521
        if var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
522 523
        try:
            scale_value = np.array(
524 525
                self._scope.find_var(scale_name).get_tensor()
            )
526 527
        except:
            scale_value = np.zeros([1], dtype=data_type)
528
        scale_var_node = graph.create_persistable_node(
529
            name=scale_name,
530
            var_type=var_node.type(),
531
            shape=[1],
532 533
            var_dtype=var_node.dtype(),
        )
534 535
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)

W
WangZhen 已提交
536 537
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
538 539
            attrs={
                'bit_length': quant_bits,
540
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
541
            },
W
WangZhen 已提交
542
            inputs={'X': var_node},
543 544
            outputs={'Out': quant_var_node, 'OutScale': scale_var_node},
        )
545 546 547
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
548 549
        return quant_var_node, scale_var_node

550
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
551 552 553 554 555 556
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
557
            name=self._quantized_var_name(name),
558 559
            var_type=var_node.type(),
            shape=var_node.shape(),
560 561
            var_dtype=var_node.dtype(),
        )
W
WangZhen 已提交
562

563
        scale_name = self._quantized_scale_name(name)
564 565 566 567 568 569
        if var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
570 571
        try:
            scale_value = np.array(
572 573
                self._scope.find_var(scale_name).get_tensor()
            )
574 575
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
576
        scale_in_node = graph.create_persistable_node(
577
            name=scale_name,
W
WangZhen 已提交
578 579
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
580 581
            var_dtype=var_node.dtype(),
        )
582
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
W
WangZhen 已提交
583 584 585 586 587

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

588
        if not self._is_test:
W
WangZhen 已提交
589
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
590
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
591 592
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
593
                shape=[self._window_size],
594 595
                var_dtype=var_node.dtype(),
            )
596 597 598 599 600 601
            if var_node.dtype() == core.VarDesc.VarType.FP64:
                data_type = 'float64'
            elif var_node.dtype() == core.VarDesc.VarType.FP32:
                data_type = 'float32'
            else:
                data_type = "float16"
602 603 604 605 606 607
            _init_var_node(
                scales_node,
                np.zeros([self._window_size], dtype=data_type),
                self._scope,
                self._place,
            )
608

609
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
610 611
            outputs['OutScales'] = scales_node
        attrs = {
612
            'window_size': self._window_size,
W
WangZhen 已提交
613
            'bit_length': quant_bits,
614
            'is_test': self._is_test,
615
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
W
WangZhen 已提交
616 617 618 619 620
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
621 622
            outputs=outputs,
        )
W
WangZhen 已提交
623

624 625 626 627
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
628

629 630 631
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
632 633 634

        return quant_var_node, scale_out_node

635 636 637 638
    def _insert_quant_moving_average_abs_max_op(
        self, graph, var_node, name, quant_bits
    ):
        """Insert fake_quantize_moving_average_abs_max"""
639
        quant_var_node = graph.create_var_node(
640
            name=self._quantized_var_name(name),
641 642
            var_type=var_node.type(),
            shape=var_node.shape(),
643 644
            var_dtype=var_node.dtype(),
        )
645
        scale_name = self._quantized_scale_name(name)
646 647 648 649 650 651
        if var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
652 653
        try:
            scale_value = np.array(
654 655
                self._scope.find_var(scale_name).get_tensor()
            )
656 657
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
658
        scale_in_node = graph.create_persistable_node(
659
            name=scale_name,
660 661
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
662 663
            var_dtype=var_node.dtype(),
        )
664
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
665 666 667 668 669 670 671 672 673

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
674 675
                shape=[1],
            )
676 677 678 679 680 681
            if var_node.dtype() == core.VarDesc.VarType.FP64:
                data_type = 'float64'
            elif var_node.dtype() == core.VarDesc.VarType.FP32:
                data_type = 'float32'
            else:
                data_type = "float16"
682 683 684 685 686 687
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
688 689 690 691
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
692 693 694 695 696 697 698 699
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
700
            state_out_node = graph.create_var_node_from_desc(
701 702
                state_in_node.var()
            )
703
            accum_out_node = graph.create_var_node_from_desc(
704 705
                accum_in_node.var()
            )
706 707 708 709 710 711 712 713 714 715

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
716
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
717 718 719 720 721 722
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
723 724
            outputs=outs,
        )
725 726 727 728 729 730 731 732 733 734 735 736 737 738

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

739 740 741
    def _insert_channel_quant_op(
        self, graph, var_node, name, quant_bits, quant_axis
    ):
742 743 744 745 746 747
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
748
            name=self._quantized_var_name(name),
749 750
            var_type=var_node.type(),
            shape=var_node.shape(),
751 752
            var_dtype=var_node.dtype(),
        )
753
        scale_name = self._quantized_scale_name(name)
754 755 756 757 758 759
        if var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
760 761
        try:
            scale_value = np.array(
762 763
                self._scope.find_var(scale_name).get_tensor()
            )
764
        except:
765 766 767
            scale_value = np.zeros(
                [var_node.shape()[quant_axis]], dtype=data_type
            )
768
        scale_var_node = graph.create_persistable_node(
769
            name=self._quantized_scale_name(name),
770
            var_type=var_node.type(),
771
            shape=[var_node.shape()[quant_axis]],
772 773
            var_dtype=var_node.dtype(),
        )
774
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)
775 776 777 778
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
779
                'quant_axis': quant_axis,
780
                'is_test': self._is_test,
781
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
782 783
            },
            inputs={'X': var_node},
784 785
            outputs={'Out': quant_var_node, 'OutScale': scale_var_node},
        )
786 787 788 789 790
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
791 792 793 794 795 796 797 798
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
799 800
            var_type=var_node.type(),
            shape=var_node.shape(),
801 802
            var_dtype=var_node.dtype(),
        )
W
WangZhen 已提交
803 804 805
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
806 807
            attrs={
                'max_range': float(max_range),
808
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
809
            },
810 811 812
            inputs={'X': var_node, 'Scale': scale_var_node},
            outputs={'Out': dequant_var_node},
        )
813 814 815
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
816 817
        return dequant_var_node

818 819 820
    def _insert_channel_dequant_op(
        self, graph, var_node, scale_var_nodes, quant_bits, quant_axis
    ):
821 822 823 824 825 826 827 828 829
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
830 831
            var_dtype=var_node.dtype(),
        )
832 833 834 835
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
836
                'quant_axis': quant_axis,
837
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
838
            },
839 840 841
            inputs={'X': var_node, 'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node},
        )
842 843 844 845 846 847
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
876
        copy op_node in source_graph to graph. And will run recursively
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
928 929 930 931 932
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32',
                )
933
                out_node = func(in_node)
934
                graph.out_node_mapping_table[out_node.name] = var_node.name()
935
                # loss shape must be 1 when minimize
2
201716010711 已提交
936
                loss = paddle.mean(out_node)
937
                if not graph._for_test:
938 939 940
                    assert (
                        self._optimizer
                    ), "optimizer_func must be set when graph is test graph"
941 942 943 944 945 946
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

947 948 949 950 951 952 953 954 955
        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test
        )
        in_node = tmp_graph._find_node_by_name(
            tmp_graph.all_var_nodes(), in_node.name
        )
        out_node = tmp_graph._find_node_by_name(
            tmp_graph.all_var_nodes(), out_node.name
        )
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

974 975 976 977 978 979
        target_in_node = graph._find_node_by_name(
            graph.all_var_nodes(), in_node.name()
        )
        target_out_node = graph._find_node_by_name(
            graph.all_var_nodes(), out_node.name()
        )
980 981 982 983 984 985 986 987 988
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
989 990 991
            op_out_grad = graph._find_node_by_name(
                graph.all_var_nodes(), op_out.name() + "@GRAD"
            )
992 993 994
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
995 996
                graph.all_var_nodes(), target_out_node.name() + "@GRAD"
            )
997
            in_node_grad = graph._find_node_by_name(
998 999
                graph.all_var_nodes(), target_in_node.name() + "@GRAD"
            )
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
1011 1012 1013
                graph.update_output_link(
                    op_grad_out, target_out_grad_node, op_grad
                )
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1049
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1050
        """
H
handiz 已提交
1051
        return "%s@scale" % (var_name)
W
WangZhen 已提交
1052

1053
    def _is_skip_quant(self, graph, op_node):
1054 1055 1056 1057
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
1058 1059 1060
        if op_node.op().has_attr("skip_quant") and op_node.op().attr(
            "skip_quant"
        ):
1061 1062 1063
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
1064 1065 1066 1067
        if op_node.name() in [
            "mul",
            "matmul",
        ] and _is_input_all_not_persistable(graph, op_node):
1068
            is_skip = True
1069 1070 1071 1072
        if (
            op_node.op().has_attr("quantization_type")
            and op_node.op().attr("quantization_type") == "qat_without_weight"
        ):
1073
            is_skip = True
1074 1075
        return is_skip

W
WangZhen 已提交
1076

1077
class QuantizationFreezePass:
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    def __init__(
        self,
        scope,
        place,
        bias_correction=False,
        weight_bits=8,
        activation_bits=8,
        round_type='round',
        weight_quantize_type='abs_max',
        quantizable_op_type=None,
    ):
1089 1090
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1091
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1092
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1093 1094
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1095 1096 1097

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1098 1099
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1100 1101
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1102 1103
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
1104
            round_type(str, optional): The method of converting the quantized weights
1105 1106 1107
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
1108 1109
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
1110
                since weights are fixed once the model is well trained.
1111 1112
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1113
        """
1114 1115
        assert scope is not None, 'The scope cannot be set None.'
        assert place is not None, 'The place cannot be set None.'
W
WangZhen 已提交
1116
        self._scope = scope
X
XGZhang 已提交
1117
        self._bias_correction = bias_correction
1118
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1119 1120
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
1121
        self._round_type = round_type
W
WangZhen 已提交
1122
        self._weight_quantize_type = weight_quantize_type
1123 1124
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1125 1126
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1127
        self._quant_var_scale_map = collections.OrderedDict()
C
Chang Xu 已提交
1128
        self._quantized_ops = set()
W
WangZhen 已提交
1129 1130

    def apply(self, graph):
1131 1132 1133 1134 1135
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1136 1137
        Returns:
            None
1138
        """
1139
        # Get input scales in fake quant op and process weights
1140 1141
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1142 1143 1144
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1145
                input_arg_name = op_node.input('X')[0]
1146 1147 1148
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
1149 1150
                            input_arg_name
                        ]
1151 1152
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1153 1154
                        op_node.outputs, op_node.output('OutScale')[0]
                    )
1155 1156 1157 1158 1159
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
1160 1161
                        1,
                        2,
1162 1163 1164
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
1165 1166 1167 1168
                    if (
                        scale_v.size == 1
                        and self._weight_quantize_type == 'abs_max'
                    ):
1169
                        scale_v = scale_v[0]
W
WangZhen 已提交
1170
                    else:
1171
                        scale_v = scale_v.tolist()
1172
                    self._quant_var_scale_map[input_arg_name] = scale_v
1173
                    # Quantize weight and restore
1174
                    if self._round_type == 'round':
1175
                        param_v = self._load_var(input_arg_name)
1176
                        if any(
1177 1178 1179
                            _check_grandchild_op_node(op_node, op)
                            for op in utils._channelwise_quant_axis1_ops
                        ):
1180 1181 1182
                            quant_axis = 1
                        else:
                            quant_axis = 0
C
Chang Xu 已提交
1183 1184 1185 1186
                        if input_arg_name not in self._quantized_ops:
                            self._quantized_ops.add(input_arg_name)
                            quantized_param_v = utils.quant_tensor(
                                param_v.copy(),
1187 1188
                                scale_v,
                                quant_axis,
C
Chang Xu 已提交
1189
                                self._weight_bits,
1190
                            )
1191
                            quantized_param_v = np.round(quantized_param_v)
C
Chang Xu 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
                            # Weight bias correction
                            if self._bias_correction == True:
                                quantized_param_v = utils.bias_correction_w(
                                    param_v,
                                    quantized_param_v,
                                    scale_v,
                                    quant_axis,
                                    weight_bits=self._weight_bits,
                                )
                                quantized_param_v = np.round(quantized_param_v)
                            self._restore_var(input_arg_name, quantized_param_v)

1204
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1205

1206
        # Remove all fake dequant op
1207
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1208 1209 1210 1211 1212
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1213
        # Insert post dequant op
1214
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1215
        for op_node in ops:
1216
            op_node_desc = op_node.op()
1217 1218 1219 1220
            if (
                op_node_desc.has_attr("quantization_type")
                and op_node_desc.attr("quantization_type") == "qat_with_weight"
            ):
1221
                if self._weight_quantize_type == 'channel_wise_abs_max':
1222 1223 1224 1225 1226
                    quant_axis = (
                        1
                        if op_node.name() in utils._channelwise_quant_axis1_ops
                        else 0
                    )
1227
                    self._insert_post_channel_dequant_op(
1228 1229
                        graph, op_node, quant_axis
                    )
1230 1231
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1232

1233
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1234 1235
        for op_node in ops:
            for var_node in op_node.inputs:
1236 1237 1238
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1239 1240 1241 1242
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1243
        graph.resolve_hazard()
1244
        return graph
W
WangZhen 已提交
1245 1246

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1247 1248
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1249 1250
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1251
        else:
1252
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
1253 1254
                v.node
            ]
W
WangZhen 已提交
1255
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1256

1257
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1258 1259 1260
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1261 1262 1263 1264 1265
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1266 1267 1268
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1269
            scale_v = self._quant_var_scale_map[original_var_name]
1270 1271
            if original_var_name in persistable_vars:
                assert isinstance(
1272 1273 1274 1275
                    scale_v, list
                ), 'The scale of parameter %s is not a list.' % (
                    original_var_name
                )
1276 1277 1278
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1279
                scale_var_node = self._quant_var_scale_map[original_var_name]
1280

1281
        if len(op_node.output_arg_names()) != 1:
1282 1283 1284 1285
            raise ValueError(
                "Only support one output, but op %s has"
                " more than one output." % (op_node.name())
            )
1286

1287
        output_var_node = graph._find_node_by_name(
1288 1289
            op_node.outputs, op_node.output_arg_names()[0]
        )
1290 1291 1292 1293
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
1294 1295
            var_dtype=output_var_node.dtype(),
        )
1296 1297 1298 1299 1300 1301 1302

        if output_var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif output_var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
1303 1304 1305 1306 1307 1308
        _init_var_node(
            weight_scale_node,
            channel_scale.astype(data_type),
            self._scope,
            self._place,
        )
1309 1310 1311 1312
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
1313 1314
            var_dtype=output_var_node.dtype(),
        )
X
XGZhang 已提交
1315 1316 1317
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1318 1319
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1320 1321 1322 1323
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1324
                'quant_axis': quant_axis,
1325
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1326
                'x_num_col_dims': x_num_col_dims,
1327 1328 1329
            },
            inputs={
                'X': output_var_node,
1330
                'Scales': [weight_scale_node, scale_var_node],
1331
            },
1332 1333
            outputs={'Out': dequant_var_node},
        )
1334 1335 1336 1337
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1338
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1339 1340
        return dequant_var_node

W
WangZhen 已提交
1341
    def _insert_post_dequant_op(self, graph, op_node):
1342
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1343 1344 1345
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1346
        for var_node in op_node.inputs:
W
WangZhen 已提交
1347
            name = var_node.name()
1348 1349 1350 1351 1352
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1353
                new_in.clear_outputs()
W
WangZhen 已提交
1354 1355
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1356
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1357 1358
            if original_var_name in persistable_vars:
                assert self._is_float(
1359 1360 1361 1362
                    scale_v
                ), 'The scale of parameter %s is not a float.' % (
                    original_var_name
                )
X
XGZhang 已提交
1363
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1364
                max_range *= param_range / scale_v
W
WangZhen 已提交
1365
            else:
1366
                max_range *= act_range
1367
                assert isinstance(scale_v, IrNode)
1368
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1369

1370
        if len(op_node.output_arg_names()) != 1:
1371 1372 1373 1374
            raise ValueError(
                "Only support one output, but op %s has"
                " more than one output." % (op_node.name())
            )
W
WangZhen 已提交
1375

1376
        output_var_node = graph._find_node_by_name(
1377 1378
            op_node.outputs, op_node.output_arg_names()[0]
        )
W
WangZhen 已提交
1379 1380
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1381 1382
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
1383 1384
            var_dtype=output_var_node.dtype(),
        )
W
WangZhen 已提交
1385 1386
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1387 1388
            attrs={
                'max_range': float(max_range),
1389
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1390
            },
1391 1392 1393
            inputs={'X': output_var_node, 'Scale': scale_var_node},
            outputs={'Out': dequant_var_node},
        )
W
WangZhen 已提交
1394 1395 1396
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1397
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1398 1399 1400 1401 1402
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1403 1404 1405
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1406 1407 1408

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1409
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1410 1411 1412 1413 1414 1415
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1416 1417 1418
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
1419 1420 1421 1422
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
1423
        }
W
WangZhen 已提交
1424 1425 1426 1427 1428 1429 1430
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
1431
            return var_name[: -len('.quantized.dequantized')]
W
WangZhen 已提交
1432
        if var_name.endswith('.quantized'):
1433
            return var_name[: -len('.quantized')]
W
WangZhen 已提交
1434
        if var_name.endswith('.dequantized'):
1435
            return var_name[: -len('.dequantized')]
H
handiz 已提交
1436
        if var_name.endswith('@scale'):
1437
            return var_name[: -len('@scale')]
W
WangZhen 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1447
    def _is_float(self, v):
1448 1449
        return (
            isinstance(v, float)
1450
            or isinstance(v, np.float16)
1451
            or isinstance(v, np.float32)
W
WangZhen 已提交
1452
            or isinstance(v, np.float64)
1453
        )
W
WangZhen 已提交
1454

1455

1456
class ConvertToInt8Pass:
1457
    def __init__(self, scope, place, quantizable_op_type=None):
1458 1459 1460 1461 1462
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1463 1464 1465
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1466 1467
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1468
        """
1469 1470
        assert scope is not None, 'The scope cannot be set None.'
        assert place is not None, 'The place cannot be set None.'
1471
        self._scope = scope
1472
        self._place = _get_paddle_place(place)
1473 1474

    def apply(self, graph):
1475
        """
T
tianshuo78520a 已提交
1476 1477
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1478 1479 1480

        Args:
            graph(IrGraph): the applied graph.
1481 1482
        Returns:
            None
1483
        """
1484 1485
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1486 1487
        input_map = {}
        for op_node in ops:
1488 1489 1490 1491
            if (
                op_node.op().has_attr("quantization_type")
                and op_node.op().attr("quantization_type") == "qat_with_weight"
            ):
1492 1493 1494 1495
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1496
                            int8_var_node = self._convert_to_int8(
1497 1498
                                graph, var_node
                            )
1499
                            input_map[name] = int8_var_node
1500 1501 1502
                        graph.update_input_link(
                            var_node, input_map[name], op_node
                        )
1503 1504 1505

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1506
        graph.resolve_hazard()
1507 1508 1509 1510
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1511
        int8_var_node = graph.create_persistable_node(
1512
            name=int8_var_node_name,
1513 1514
            var_type=var_node.type(),
            shape=var_node.shape(),
1515 1516
            var_dtype=core.VarDesc.VarType.INT8,
        )
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1531
        ops = graph.all_op_nodes()
1532 1533 1534 1535 1536 1537
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1538 1539 1540
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
1541 1542 1543 1544
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
1545
        }
1546 1547 1548
        graph.safe_remove_nodes(all_unused_vars)


1549
class TransformForMobilePass:
1550
    def __init__(self):
1551
        """
T
tianshuo78520a 已提交
1552
        This pass is used to convert the frozen graph for paddle-mobile execution.
1553
        """
1554 1555
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1556 1557

    def apply(self, graph):
1558 1559 1560 1561 1562 1563 1564
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1565 1566
        Returns:
            None
1567
        """
1568
        ops = graph.all_op_nodes()
1569 1570 1571
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1572
                op_node.set_type('quantize')
1573 1574 1575 1576 1577 1578 1579
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1580
                op_node.set_type('dequantize')
1581 1582 1583 1584 1585 1586
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1587
        graph.resolve_hazard()
1588
        return graph
1589 1590


1591
class OutScaleForTrainingPass:
1592 1593 1594 1595 1596 1597 1598 1599
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        is_test=None,
        scale_dict=None,
    ):
1600 1601 1602 1603 1604 1605
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1606 1607 1608
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1609 1610 1611
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1612
        self._place = _get_paddle_place(place)
1613
        self._moving_rate = moving_rate
1614
        self._is_test = is_test
1615
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1616
        self._scale_dict = scale_dict
1617 1618 1619 1620 1621 1622 1623 1624 1625

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1626 1627 1628
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1629 1630
        if self._is_test is None:
            self._is_test = graph.is_test()
1631 1632 1633 1634
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1635 1636 1637 1638 1639
        with tqdm(
            total=len(target_ops),
            bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
1640 1641
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
1642 1643 1644 1645 1646 1647
                    in_node = graph._find_node_by_name(
                        op.outputs, output_var_name
                    )
                    if in_node.dtype() not in [
                        core.VarDesc.VarType.FP64,
                        core.VarDesc.VarType.FP32,
1648
                        core.VarDesc.VarType.FP16,
1649
                    ]:
1650
                        continue
1651

1652 1653 1654 1655 1656 1657 1658
                    if in_node.dtype() == core.VarDesc.VarType.FP64:
                        data_type = 'float64'
                    elif in_node.dtype() == core.VarDesc.VarType.FP32:
                        data_type = 'float32'
                    else:
                        data_type = "float16"

1659
                    try:
1660
                        graph._find_node_by_name(
1661
                            graph.all_var_nodes(),
1662 1663
                            self._scale_name(in_node.name()),
                        )
1664
                        continue
1665 1666 1667 1668 1669
                    except:
                        scale_node = graph.create_persistable_node(
                            name=self._scale_name(in_node.name()),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            shape=[1],
1670 1671
                            var_dtype=in_node.dtype(),
                        )
1672 1673 1674
                        if self._scale_dict is not None:
                            try:
                                scale_value = np.array(
1675 1676
                                    [self._scale_dict[in_node.name()]]
                                )
1677 1678 1679 1680
                            except:
                                scale_value = np.ones([1], dtype=data_type)
                        else:
                            scale_value = np.ones([1], dtype=data_type)
1681 1682 1683
                    _init_var_node(
                        scale_node, scale_value, self._scope, self._place
                    )
1684

1685 1686 1687 1688 1689 1690 1691
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
1692 1693 1694 1695 1696 1697 1698 1699
                            shape=[1],
                        )
                        _init_var_node(
                            state_in_node,
                            np.ones([1], dtype=data_type),
                            self._scope,
                            self._place,
                        )
1700 1701 1702 1703
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
1704 1705 1706 1707 1708 1709 1710 1711
                            shape=[1],
                        )
                        _init_var_node(
                            accum_in_node,
                            np.ones([1], dtype=data_type),
                            self._scope,
                            self._place,
                        )
1712
                        state_out_node = graph.create_var_node_from_desc(
1713 1714
                            state_in_node.var()
                        )
1715
                        accum_out_node = graph.create_var_node_from_desc(
1716 1717
                            accum_in_node.var()
                        )
1718 1719 1720 1721 1722 1723 1724 1725 1726

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
1727
                        'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
1728 1729 1730 1731 1732
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
1733 1734
                        outputs=outs,
                    )
C
ceci3 已提交
1735 1736 1737 1738 1739

                    next_op_node = None
                    if len(in_node.outputs) > 0:
                        next_op_node = in_node.outputs[0]

1740 1741
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
C
ceci3 已提交
1742 1743 1744
                    if next_op_node:
                        graph.link_to(scale_node, next_op_node)

1745 1746 1747 1748 1749 1750
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1751 1752 1753 1754 1755 1756
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1757
        return "%s@scale" % (var_name)
1758 1759


1760
class OutScaleForInferencePass:
1761 1762 1763 1764 1765 1766 1767 1768 1769
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1770
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1771 1772 1773 1774 1775 1776 1777 1778 1779

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1780 1781 1782
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1783 1784 1785
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1786
                var_names = utils._get_op_output_var_names(op_node)
1787
                for var_name in var_names:
1788 1789 1790
                    in_node = graph._find_node_by_name(
                        op_node.outputs, var_name
                    )
C
ceci3 已提交
1791 1792 1793 1794 1795
                    if (in_node.node.var() is None) or (
                        in_node.dtype()
                        not in [
                            core.VarDesc.VarType.FP64,
                            core.VarDesc.VarType.FP32,
1796
                            core.VarDesc.VarType.FP16,
C
ceci3 已提交
1797 1798
                        ]
                    ):
1799 1800
                        continue

1801
                    scale_name = self._scale_name(var_name)
1802
                    scale_var = self._scope.find_var(scale_name)
1803 1804 1805 1806 1807
                    assert (
                        scale_var is not None
                    ), "Can not find {} variable in the scope".format(
                        scale_name
                    )
1808 1809 1810 1811
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1812

1813
                    argname_index = utils._get_output_name_index(
1814 1815 1816
                        op_node, var_name
                    )
                    assert argname_index is not None, (
1817
                        var_name + " is not the output of the op"
1818 1819 1820 1821 1822
                    )
                    op_node.op()._set_attr(
                        argname_index[0] + str(argname_index[1]) + "_threshold",
                        float(scale_value),
                    )
1823
                    op_node.op()._set_attr("with_quant_attr", True)
1824 1825 1826 1827 1828 1829 1830
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1831
        return "%s@scale" % (var_name)
1832 1833


1834
class AddQuantDequantPass:
1835
    """
1836
    Quantize the ops that do not have weights, and add quant_dequant op for the
1837 1838
    quantized ops's inputs.
    """
1839

1840 1841 1842
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        quant_bits=8,
        skip_pattern=["skip_quant"],
        quantizable_op_type=["elementwise_add", "pool2d"],
        is_full_quantized=False,
        is_test=None,
        scale_dict=None,
    ):
1855
        """
1856
        Constructor.
1857 1858 1859

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1860 1861 1862
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1863
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
1864 1865 1866 1867 1868 1869
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
1870 1871 1872
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
1873
                quantization to all supported quantizable op type. If set is_full_quantized
1874
                as False, only apply quantization to the op type according to the input
1875
                quantizable_op_type.
1876 1877
        """
        self._scope = scope
1878
        self._place = _get_paddle_place(place)
1879 1880
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
1881
        self._is_test = is_test
1882
        self._skip_pattern = skip_pattern
1883
        self._scale_dict = scale_dict
1884 1885

        if is_full_quantized:
1886
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1887 1888 1889
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1890
                assert op_type in utils._act_supported_quantizable_op_type, (
1891
                    op_type + " is not supported for quantization."
1892
                )
1893 1894 1895 1896
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1897 1898
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
1899 1900 1901

    def apply(self, graph):
        """
1902 1903
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1904

1905 1906
        Args:
            graph(IrGraph): the target graph.
1907 1908
        Returns:
            None
1909
        """
1910 1911 1912
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
1913 1914
        if self._is_test is None:
            self._is_test = graph.is_test()
1915 1916
        dequantized_vars_map = collections.OrderedDict()

1917 1918
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1919 1920 1921 1922 1923
        with tqdm(
            total=len(all_op_nodes),
            bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
1924 1925 1926 1927
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
1928 1929 1930 1931
                        is_skip = op_node.op().has_attr("op_namescope") and any(
                            pattern in op_node.op().attr("op_namescope")
                            for pattern in self._skip_pattern
                        )
1932
                    elif isinstance(self._skip_pattern, str):
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
                        is_skip = (
                            op_node.op().has_attr("op_namescope")
                            and op_node.op()
                            .attr("op_namescope")
                            .find(self._skip_pattern)
                            != -1
                        )
                    is_quantized = (
                        op_node.op().has_attr("quantization_type")
                        and op_node.op().attr("quantization_type")
                        == "qat_with_weight"
                    )
                    if (
                        is_skip
                        or is_quantized
                        or (not _is_input_all_not_persistable(graph, op_node))
                    ):
1950
                        continue
1951

1952 1953 1954
                    op_node.op()._set_attr(
                        "quantization_type", "qat_without_weight"
                    )
1955 1956 1957
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
1958 1959 1960 1961 1962 1963 1964 1965 1966
                    # If already quanted, skip it.
                    skip_quant = False
                    for arg_name in arg_names:
                        if "quantized.dequantized" in arg_name:
                            skip_quant = True
                            break
                    if skip_quant:
                        continue

1967 1968
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
1969 1970
                            op_node.inputs, arg_name
                        )
1971 1972 1973
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
1974 1975 1976 1977 1978 1979
                            (
                                quant_var_node,
                                _,
                            ) = self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits
                            )
1980
                            dequantized_vars_map[arg_name] = quant_var_node
1981 1982 1983
                        graph.update_input_link(
                            in_node, quant_var_node, op_node
                        )
1984
                t.update()
1985

1986 1987
        # Backward stage, update input link
        for op_node in all_op_nodes:
1988
            if op_node.name() in self._quantizable_grad_op_type:
1989 1990
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1991
                        in_node = graph._find_node_by_name(
1992 1993
                            op_node.inputs, input_name
                        )
1994
                        dequant_var_node = dequantized_vars_map[input_name]
1995 1996 1997
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
1998

1999 2000 2001
        graph.resolve_hazard()
        return graph

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    def _inser_quant_dequant_moving_average_abs_max_op(
        self, graph, var_node, quant_bits
    ):
        """Insert fake_quantize_dequantize_moving_average_abs_max op."""
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype(),
        )
2012
        scale_name = "{}.quant_dequant@scale".format(var_node.name())
2013 2014 2015 2016 2017 2018
        if var_node.dtype() == core.VarDesc.VarType.FP64:
            data_type = 'float64'
        elif var_node.dtype() == core.VarDesc.VarType.FP32:
            data_type = 'float32'
        else:
            data_type = "float16"
2019
        try:
2020 2021 2022 2023 2024 2025 2026
            if (
                self._scale_dict is not None
                and var_node.name() in self._scale_dict.keys()
            ):
                scale_value = np.array(
                    [self._scale_dict[var_node.name()]], dtype=data_type
                )
2027 2028 2029
            else:
                scale_value = np.array(
                    self._scope.find_var(scale_name).get_tensor(),
2030 2031
                    dtype=data_type,
                )
2032 2033 2034
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)

2035
        scale_in_node = graph.create_persistable_node(
H
handiz 已提交
2036
            name="{}.quant_dequant@scale".format(var_node.name()),
2037 2038
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
2039 2040
            var_dtype=var_node.dtype(),
        )
2041

2042
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
2043 2044 2045 2046 2047 2048 2049 2050
        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2051 2052
                shape=[1],
            )
2053 2054 2055 2056 2057 2058
            if var_node.dtype() == core.VarDesc.VarType.FP64:
                data_type = 'float64'
            elif var_node.dtype() == core.VarDesc.VarType.FP32:
                data_type = 'float32'
            else:
                data_type = "float16"
2059 2060 2061 2062 2063 2064
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2065 2066 2067 2068
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2069 2070 2071 2072 2073 2074 2075 2076
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2077
            state_out_node = graph.create_var_node_from_desc(
2078 2079
                state_in_node.var()
            )
2080
            accum_out_node = graph.create_var_node_from_desc(
2081 2082
                accum_in_node.var()
            )
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
2093
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
2094 2095 2096 2097 2098 2099
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
2100 2101
            outputs=outs,
        )
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
2115 2116


2117
class InsertQuantizeLinear:
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
2130
        moving_rate(float): the rate for 'moving average' method.
2131
        is_test(bool, optional): Whether quantization with training or not. Default is True.
2132
        scale_dict(dict, optional): calibration ranges of tensors output.
2133 2134
    """

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def __init__(
        self,
        place,
        scope,
        quant_bits=8,
        quant_axis=-1,
        channel_wise=False,
        moving_rate=0.9,
        is_test=True,
        scale_dict=None,
    ):
2146 2147 2148 2149 2150 2151
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
2152
        self._moving_rate = moving_rate
2153
        self._scale_dict = scale_dict
2154

2155 2156 2157
    def insert_quant_op(
        self, graph, var_node, var_name=None, scale_var_node=None
    ):
2158
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
2159 2160 2161 2162 2163
        var_name = var_node.name() if not var_name else var_name
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
2164 2165
            var_dtype=var_node.dtype(),
        )
2166
        if not scale_var_node:
2167 2168 2169 2170 2171 2172
            if var_node.dtype() == core.VarDesc.VarType.FP64:
                data_type = 'float64'
            elif var_node.dtype() == core.VarDesc.VarType.FP32:
                data_type = 'float32'
            else:
                data_type = "float16"
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
            scale_name = self._quantized_scale_name(var_name)
            if self.channel_wise:
                scale_var_shape = var_node.shape()[self.quant_axis]
                scale_var_type = core.VarDesc.VarType.LOD_TENSOR
                init_scale_value = (
                    np.ones(scale_var_shape, dtype=data_type)
                    * _SCALE_DEFAULT_VALUE
                )
            else:
                scale_var_shape = 1
                scale_var_type = var_node.type()
                init_scale_value = np.array(
                    [_SCALE_DEFAULT_VALUE], dtype=data_type
                )
2187

2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
            if (
                self._scale_dict is not None
                and var_node.name() in self._scale_dict.keys()
            ):
                init_scale_value = np.array(
                    [self._scale_dict[var_node.name()]], dtype=data_type
                )
            scale_var_node = graph.create_persistable_node(
                name=scale_name,
                var_type=scale_var_type,
                shape=[scale_var_shape],
                var_dtype=var_node.dtype(),
            )
            _init_var_node(
                scale_var_node, init_scale_value, self._scope, self._place
2203
            )
2204 2205 2206 2207 2208 2209 2210

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
2211 2212 2213 2214 2215 2216 2217 2218
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
2219 2220 2221 2222 2223

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

2224
        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
2225
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
2226 2227
        outputs = {"Y": quant_var_node}
        if not self._is_test:
2228
            scale_out_node = graph.create_var_node_from_desc(
2229 2230
                scale_var_node.var()
            )
2231 2232 2233 2234
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2235 2236
                shape=[1],
            )
2237 2238 2239 2240 2241 2242
            if var_node.dtype() == core.VarDesc.VarType.FP64:
                data_type = 'float64'
            elif var_node.dtype() == core.VarDesc.VarType.FP32:
                data_type = 'float32'
            else:
                data_type = "float16"
2243 2244 2245 2246 2247 2248
            _init_var_node(
                state_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2249 2250 2251 2252
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
2253 2254 2255 2256 2257 2258 2259 2260
                shape=[1],
            )
            _init_var_node(
                accum_in_node,
                np.ones([1], dtype=data_type),
                self._scope,
                self._place,
            )
2261
            state_out_node = graph.create_var_node_from_desc(
2262 2263
                state_in_node.var()
            )
2264
            accum_out_node = graph.create_var_node_from_desc(
2265 2266
                accum_in_node.var()
            )
2267

2268
            outputs["OutScale"] = scale_out_node
2269 2270 2271 2272 2273 2274
            inputs['InState'] = state_in_node
            inputs['InAccum'] = accum_in_node
            outputs['OutState'] = state_out_node
            outputs['OutAccum'] = accum_out_node
            attrs["is_test"] = self._is_test
            attrs['moving_rate'] = self._moving_rate
2275

2276 2277 2278 2279 2280 2281
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs=outputs,
        )
2282 2283 2284 2285 2286 2287 2288

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
2289 2290 2291 2292
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
2303 2304
            var_dtype=var_node.dtype(),
        )
2305 2306 2307 2308 2309 2310 2311

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
2312 2313 2314 2315 2316 2317 2318 2319
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
2320 2321 2322 2323 2324 2325

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
2326
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
2327

2328 2329 2330 2331 2332 2333
        quant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs={"Y": dequant_var_node},
        )
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
H
handiz 已提交
2358
        return "%s@scale" % (var_name)
2359 2360 2361 2362 2363 2364 2365 2366

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


2367
class QuantizationTransformPassV2(QuantizationTransformPass):
2368 2369
    """
    Quantize the ops that have weights. Add quant and dequant ops for
2370
    the quantized ops's inputs. It is used in the new format of quantization.
2371 2372
    """

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
    def __init__(
        self,
        scope=None,
        place=None,
        weight_bits=8,
        activation_bits=8,
        activation_quantize_type='abs_max',
        weight_quantize_type='abs_max',
        window_size=10000,
        moving_rate=0.9,
        skip_pattern=['skip_quant'],
        quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
        weight_quantize_func=None,
        act_quantize_func=None,
        weight_preprocess_func=None,
        act_preprocess_func=None,
        optimizer_func=None,
        executor=None,
        is_test=None,
    ):
2393 2394 2395 2396 2397 2398 2399
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
2400
                where ``x`` is the index of the GPUs.
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
2418 2419
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
2478 2479 2480 2481
            'abs_max',
            'channel_wise_abs_max',
            'range_abs_max',
            'moving_average_abs_max',
2482
        ]
2483 2484 2485
        assert (
            activation_quantize_type != 'channel_wise_abs_max'
        ), "The activation quantization type does not support 'channel_wise_abs_max'."
2486 2487 2488
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
2489 2490 2491
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(activation_quantize_type))
            )
2492 2493 2494 2495
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
2496 2497
                "or 'moving_average_abs_max'." % (str(weight_quantize_type))
            )
2498 2499 2500 2501 2502 2503 2504 2505

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
2506
            assert op in utils._weight_supported_quantizable_op_type, (
2507
                op + " is not supported for quantization."
2508
            )
2509 2510 2511
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
2512
        self._is_test = is_test
2513 2514 2515 2516 2517 2518 2519 2520
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
2521 2522 2523 2524
            user_skipped = op_node.op().has_attr("op_namescope") and any(
                pattern in op_node.op().attr("op_namescope")
                for pattern in self._skip_pattern
            )
2525
        elif isinstance(self._skip_pattern, str):
2526 2527 2528 2529 2530
            user_skipped = (
                op_node.op().has_attr("op_namescope")
                and op_node.op().attr("op_namescope").find(self._skip_pattern)
                != -1
            )
2531 2532 2533 2534 2535 2536 2537

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
2538
        weight_scale_node = None
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
2549 2550 2551
                is_weight = (
                    True if var_node.name() in self.persistable_vars else False
                )
2552 2553

                # if var node is weight and weight_preprocess_func is not None,
2554
                # will insert weight preprocess func
2555
                # to preorocess weight before quantization
2556 2557
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2558 2559
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2560 2561 2562
                    var_node = self._insert_func(
                        graph, self._weight_preprocess_func, var_node, op
                    )
2563
                elif not is_weight and self._act_preprocess_func is not None:
2564 2565 2566
                    var_node = self._insert_func(
                        graph, self._act_preprocess_func, var_node, op
                    )
2567 2568 2569 2570 2571 2572 2573

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
2574 2575
                        graph, self._weight_quantize_func, var_node, op
                    )
2576
                    self.processed_vars.append(name)
2577 2578
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2579 2580 2581
                    target_out_node = self._insert_func(
                        graph, self._act_quantize_func, var_node, op
                    )
2582
                    self.processed_vars.append(name)
2583 2584
                    continue

2585 2586 2587
                quant_bits = (
                    self._weight_bits
                    if var_node.name() in self.persistable_vars
2588
                    else self._activation_bits
2589 2590 2591 2592
                )
                quant_type = (
                    self._weight_quantize_type
                    if is_weight
2593
                    else self._activation_quantize_type
2594
                )
2595 2596 2597 2598
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
2599 2600 2601 2602 2603
                    quant_axis = (
                        1
                        if op.name() in utils._channelwise_quant_axis1_ops
                        else 0
                    )
2604 2605 2606 2607 2608 2609
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2610
                    moving_rate=self._moving_rate,
2611 2612 2613 2614 2615 2616 2617 2618
                    is_test=self._is_test,
                )
                (
                    quant_var_node,
                    scale_var_node,
                ) = insert_quant_pass.insert_quant_op(
                    graph, var_node, var_name=name
                )
2619
                dequant_var_node = insert_quant_pass.insert_dequant_op(
2620 2621
                    graph, quant_var_node, scale_var_node
                )
2622 2623

                self.dequantized_vars[name] = dequant_var_node
2624 2625
                if is_weight:
                    weight_scale_node = scale_var_node
2626
            graph.update_input_link(var_node, dequant_var_node, op)
2627
        return weight_scale_node
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
    def _quant_conv1d(self, graph, op):
        # conv1d in inference is a combination of unsqueeze2 + conv2d
        if ("conv2d" not in op.name()) or (
            "unsqueeze2" not in op.input("Filter")[0]
        ):
            return
        conv_weight_var_name = op.input("Filter")[0]
        # unsqueeze2 and conv2d will share weight scale
        weight_scale_node = None
        # quant unsqueeze2
        for _op in graph.all_op_nodes():
            var_names = utils._get_op_output_var_names(_op)
            if conv_weight_var_name in var_names and self._has_weight(_op):
                weight_scale_node = self._transform_forward(graph, _op)
        # insert qdq before conv2d
        for var_node in op.inputs:
            quant_bits = (
                self._weight_bits
                if var_node.name() == conv_weight_var_name
                else self._activation_bits
            )
            quant_type = (
                self._weight_quantize_type
                if var_node.name() == conv_weight_var_name
                else self._activation_quantize_type
            )
            quant_axis = -1
            channel_wise = False
            if quant_type == 'channel_wise_abs_max':
                channel_wise = True
                quant_axis = (
                    1 if op.name() in utils._channelwise_quant_axis1_ops else 0
                )
            insert_quant_pass = InsertQuantizeLinear(
                self._place,
                self._scope,
                quant_bits=quant_bits,
                quant_axis=quant_axis,
                channel_wise=channel_wise,
                moving_rate=self._moving_rate,
                is_test=self._is_test,
            )
            scale_var_node = (
                weight_scale_node
                if var_node.name() == conv_weight_var_name
                else None
            )
            (
                quant_var_node,
                scale_var_node,
            ) = insert_quant_pass.insert_quant_op(
                graph,
                var_node,
                var_name=var_node.name(),
                scale_var_node=scale_var_node,
            )
            dequant_var_node = insert_quant_pass.insert_dequant_op(
                graph, quant_var_node, scale_var_node
            )
            graph.update_input_link(var_node, dequant_var_node, op)

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
2718 2719 2720
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
2721 2722
        if self._is_test is None:
            self._is_test = graph.is_test()
2723 2724 2725 2726
        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []
2727 2728 2729 2730 2731 2732 2733 2734 2735

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
2736 2737 2738 2739
            if (
                op.name() in self._quantizable_ops
                or op.name() in self._quantizable_grad_ops
            ):
2740 2741 2742 2743 2744
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2745 2746 2747 2748 2749
        with tqdm(
            total=len(ops),
            bar_format='Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
2750 2751
            for op in ops:
                if op.name() in self._quantizable_ops:
2752 2753 2754
                    if not self._is_skip_quant(graph, op) and self._has_weight(
                        op
                    ):
2755
                        self._transform_forward(graph, op)
2756 2757 2758
                    else:  # op is not persistable
                        # support conv1d quantization
                        self._quant_conv1d(graph, op)
2759
                t.update()
2760 2761 2762 2763 2764 2765 2766
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


2767
class AddQuantDequantPassV2:
2768 2769
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
2770
    op for the quantized ops's inputs. It is used in the new format of quantization.
2771 2772 2773 2774 2775
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    def __init__(
        self,
        scope=None,
        place=None,
        moving_rate=0.9,
        quant_bits=8,
        skip_pattern=["skip_quant"],
        quantizable_op_type=["elementwise_add", "pool2d"],
        is_full_quantized=False,
        is_test=None,
        scale_dict=None,
    ):
2788 2789 2790 2791 2792 2793
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2794
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
2795 2796 2797 2798 2799 2800
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
2801 2802 2803
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
2804
                quantization to all supported quantizable op type. If set is_full_quantized
2805
                as False, only apply quantization to the op type according to the input
2806
                quantizable_op_type.
2807
            scale_dict(dict, optional): calibration ranges of tensors output.
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
2828
        self._is_test = is_test
2829
        self._skip_pattern = skip_pattern
2830
        self._scale_dict = scale_dict
2831 2832 2833 2834 2835 2836

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
2837
                assert op_type in utils._act_supported_quantizable_op_type, (
2838
                    op_type + " is not supported for quantization."
2839
                )
2840 2841 2842 2843
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

2844 2845
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
2858 2859 2860
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
2861 2862
        if self._is_test is None:
            self._is_test = graph.is_test()
2863 2864 2865 2866 2867 2868 2869 2870
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2871 2872 2873 2874 2875
        with tqdm(
            total=len(all_op_nodes),
            bar_format='Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
            ncols=80,
        ) as t:
2876 2877 2878 2879
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
2880 2881 2882 2883
                        is_skip = op_node.op().has_attr("op_namescope") and any(
                            pattern in op_node.op().attr("op_namescope")
                            for pattern in self._skip_pattern
                        )
2884
                    elif isinstance(self._skip_pattern, str):
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
                        is_skip = (
                            op_node.op().has_attr("op_namescope")
                            and op_node.op()
                            .attr("op_namescope")
                            .find(self._skip_pattern)
                            != -1
                        )
                    is_quantized = (
                        op_node.op().has_attr("quantization_type")
                        and op_node.op().attr("quantization_type")
                        == "qat_with_weight"
                    )
2897
                    if is_skip or is_quantized:
2898
                        continue
2899 2900

                    arg_names = utils._get_op_input_var_names(op_node)
2901 2902 2903 2904 2905 2906 2907 2908 2909
                    # If already quanted, skip it.
                    skip_quant = False
                    for arg_name in arg_names:
                        if "quantized.dequantized" in arg_name:
                            skip_quant = True
                            break
                    if skip_quant:
                        continue

2910 2911
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
2912 2913
                            op_node.inputs, arg_name
                        )
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2925
                                moving_rate=self._moving_rate,
2926
                                is_test=self._is_test,
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
                                scale_dict=self._scale_dict,
                            )
                            (
                                quant_var_node,
                                scale_var_node,
                            ) = insert_quant_pass.insert_quant_op(
                                graph, in_node
                            )
                            dequant_var_node = (
                                insert_quant_pass.insert_dequant_op(
                                    graph, quant_var_node, scale_var_node
                                )
                            )
2940
                            dequantized_vars_map[arg_name] = dequant_var_node
2941 2942 2943
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
2944
                t.update()
2945 2946 2947 2948 2949 2950

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2951
                        in_node = graph._find_node_by_name(
2952 2953
                            op_node.inputs, input_name
                        )
2954
                        dequant_var_node = dequantized_vars_map[input_name]
2955 2956 2957
                        graph.update_input_link(
                            in_node, dequant_var_node, op_node
                        )
2958 2959 2960 2961

        return graph


2962
class ReplaceFakeQuantDequantPass:
2963 2964 2965 2966
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

2967
    def __init__(self, scope, place, quant_bits=8):
2968 2969 2970 2971 2972 2973
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2974
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
2993
        self._quant_bits = quant_bits
2994 2995
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
2996 2997

    def apply(self, graph):
2998 2999 3000
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
3001
        fake_quant_dequant_ops = []
3002 3003 3004 3005 3006 3007
        remove_fake_quant_ops = []
        observer_out_node_names = []
        for op in graph.all_op_nodes():
            # collect observer node
            if op.name() == "moving_average_abs_max_scale":
                observer_out_node_names.append(op.output("Out")[0])
3008 3009

        for op in graph.all_op_nodes():
3010 3011 3012 3013
            if (
                op.name() in _fake_quant_dequant_op_list
                or op.name() == "moving_average_abs_max_scale"
            ):
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
                var_name = op.input("X")[0]
                if var_name in observer_out_node_names:
                    remove_fake_quant_ops.append(op)
                else:
                    fake_quant_dequant_ops.append(op)

        for _op in remove_fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            out_node = graph._find_node_by_name(
                _op.outputs, _op.output("Out")[0]
            )
            for next_op_node in out_node.outputs:
                graph.update_input_link(out_node, x_node, next_op_node)
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
        scale_node = graph._find_node_by_name(
            op.outputs, op.output("OutScale")[0]
        )

        quant_axis = (
            op.op().attr("quant_axis") if op.op().has_attr("quant_axis") else -1
        )
        bit_length = (
            op.op().attr("bit_length")
            if op.op().has_attr("bit_length")
            else self._quant_bits
        )
3050 3051 3052 3053 3054 3055 3056 3057

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(x_node.name()),
            var_type=x_node.type(),
            shape=x_node.shape(),
            var_dtype=x_node.dtype(),
        )
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs={"quant_axis": quant_axis, "bit_length": bit_length},
            inputs={
                "X": x_node,
                "Scale": scale_node,
                "ZeroPoint": zero_point_node,
            },
            outputs={"Y": quant_var_node},
        )
3083 3084 3085 3086 3087
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
        dequant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs={"quant_axis": quant_axis, "bit_length": bit_length},
            inputs={
                "X": quant_var_node,
                "Scale": scale_node,
                "ZeroPoint": zero_point_node,
            },
            outputs={"Y": out_node},
        )
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


3117
class QuantWeightPass:
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
3131

3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

3148 3149 3150 3151 3152 3153 3154 3155
    def __init__(
        self,
        scope,
        place,
        bias_correction=False,
        quant_bits=8,
        save_int_weight=True,
    ):
3156 3157 3158 3159 3160
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
3161 3162
        assert self._scope is not None, "scope must not be None."
        assert self._place is not None, "place must not be None."
C
Chang Xu 已提交
3163
        self._quantized_ops = set()
3164 3165

    def apply(self, graph):
3166 3167 3168
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
3169 3170 3171 3172 3173 3174 3175 3176
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
3177 3178 3179
                scale_node = graph._find_node_by_name(
                    _op.inputs, _op.input("Scale")[0]
                )
3180
                zero_point_node = graph._find_node_by_name(
3181 3182 3183 3184 3185
                    _op.inputs, _op.input("ZeroPoint")[0]
                )
                out_node = graph._find_node_by_name(
                    _op.outputs, _op.output("Y")[0]
                )
3186 3187

                scale_v = self._load_var(scale_node.name())
3188 3189 3190 3191
                assert scale_v.ndim in [
                    1,
                    2,
                ], "the dim of scale_v should be 1 or 2"
3192 3193 3194 3195 3196 3197 3198 3199 3200
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
C
Chang Xu 已提交
3201 3202 3203 3204
                if x_node.name() not in self._quantized_ops:
                    self._quantized_ops.add(x_node.name())
                    quantized_param_v = utils.quant_tensor(
                        param_v.copy(),
3205 3206
                        scale_v,
                        quant_axis,
C
Chang Xu 已提交
3207 3208
                        bits_length,
                        onnx_format=True,
3209
                    )
C
Chang Xu 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
                    if self._bias_correction == True:
                        quantized_param_v = utils.bias_correction_w(
                            param_v,
                            quantized_param_v,
                            scale_v,
                            quant_axis,
                            weight_bits=bits_length,
                        )
                    if self._save_int_weight:
                        # cast weight type to int
                        if self._quant_bits == 8:
                            save_weight_dtype = np.int8
                        quantized_param_v = quantized_param_v.astype(
                            save_weight_dtype
                        )
                    self._restore_var(x_node.name(), quantized_param_v)
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
3244 3245 3246 3247
            for n in filter(
                lambda node: node.node not in all_used_vars,
                graph.all_var_nodes(),
            )
3248 3249 3250 3251 3252 3253 3254 3255 3256
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
3257 3258


3259
class AddQuantDequantForInferencePass:
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
    """
    When export quant model, it will traverse to find the output of each op, and then insert the quant/dequant op after it.
    """

    def __init__(self, scope, place, quant_bits=8):
        """
        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, it can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
            quant_bits(int, optional): quantization bit number for weight. Default is 8.
        """
        self._scope = scope
        self._place = place
        self._quant_bits = quant_bits
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST

    def apply(self, graph):
        """
        Args:
            graph(IrGraph): the target graph.
        """
3282 3283 3284
        assert isinstance(
            graph, IrGraph
        ), 'graph must be the instance of IrGraph.'
3285 3286 3287 3288 3289 3290
        dequant_node_map = {}
        dequantized_vars_map = collections.OrderedDict()
        for op_node in graph.all_op_nodes():
            if op_node.name() in self._teller_set:
                var_names = utils._get_op_output_var_names(op_node)
                for var_name in var_names:
3291 3292 3293 3294 3295 3296
                    out_node = graph._find_node_by_name(
                        op_node.outputs, var_name
                    )
                    if out_node.dtype() not in [
                        core.VarDesc.VarType.FP64,
                        core.VarDesc.VarType.FP32,
3297
                        core.VarDesc.VarType.FP16,
3298
                    ]:
3299 3300 3301 3302 3303
                        continue
                    if var_name in dequantized_vars_map:
                        dequant_var_node = dequantized_vars_map[var_name]
                    else:
                        dequant_var_node = self._insert_quant_dequant_op(
3304 3305
                            graph, out_node
                        )
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
                        dequantized_vars_map[var_name] = dequant_var_node
                    dequant_node_map[var_name] = dequant_var_node

        # remove unuse node and link act quant/dequant linear to op node
        for op_node in graph.all_op_nodes():
            if op_node.name() == 'moving_average_abs_max_scale':
                graph.safe_remove_nodes(op_node)
            else:
                var_names = utils._get_op_input_var_names(op_node)
                for var_name in var_names:
                    if var_name in dequant_node_map:
                        in_node = graph._find_node_by_name(
3318 3319 3320 3321 3322
                            op_node.inputs, var_name
                        )
                        graph.update_input_link(
                            in_node, dequant_node_map[var_name], op_node
                        )
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339

        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)

    def _insert_quant_dequant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
        var_name = var_node.name()
        quant_axis = -1
        quant_var_node = graph.create_var_node(
            name="{}.quantized".format(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
3340 3341 3342 3343 3344
            var_dtype=var_node.dtype(),
        )
        scale_var_node = graph._find_node_by_name(
            graph.all_persistable_nodes(), self._scale_name(var_name)
        )
3345 3346 3347
        try:
            zero_point_node = graph._find_node_by_name(
                graph.all_persistable_nodes(),
3348 3349
                "{}@zero_point".format(quant_var_node.name()),
            )
3350 3351 3352 3353 3354
        except:
            zero_point_node = graph.create_persistable_node(
                name="{}@zero_point".format(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
3355 3356 3357 3358 3359 3360 3361 3362
                var_dtype=core.VarDesc.VarType.INT32,
            )
            _init_var_node(
                zero_point_node,
                np.zeros(scale_var_node.shape(), dtype="int32"),
                self._scope,
                self._place,
            )
3363 3364 3365 3366 3367 3368 3369 3370 3371

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": quant_axis, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
        outputs = {"Y": quant_var_node}

3372 3373 3374 3375 3376 3377
        quant_op_node = graph.create_op_node(
            op_type="quantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs=outputs,
        )
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)

        # add dequant_linear node
        dequant_var_node = graph.create_var_node(
            name="{}.dequantized".format(quant_var_node.name()),
            var_type=quant_var_node.type(),
            shape=quant_var_node.shape(),
3390 3391
            var_dtype=quant_var_node.dtype(),
        )
3392 3393 3394 3395 3396 3397 3398 3399

        inputs = {"X": quant_var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": -1, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

3400 3401 3402 3403 3404 3405
        dequant_op_node = graph.create_op_node(
            op_type="dequantize_linear",
            attrs=attrs,
            inputs=inputs,
            outputs={"Y": dequant_var_node},
        )
3406 3407 3408 3409 3410 3411 3412

        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node