quantization_pass.py 40.7 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24 25 26
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
    'TransformForMobilePass'
]
W
WangZhen 已提交
27

W
WangZhen 已提交
28

29
class QuantizationTransformPass(object):
W
WangZhen 已提交
30
    def __init__(self,
31
                 scope=None,
32
                 place=None,
W
WangZhen 已提交
33 34 35 36
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
37 38
                 window_size=10000,
                 moving_rate=0.9):
W
WangZhen 已提交
39
        """
40
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
41
        activation quantization type.
42

W
WangZhen 已提交
43
        Args:
44 45 46
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
47
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
48
            parameters described above.
W
WangZhen 已提交
49 50 51 52
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
53 54 55 56 57
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
58
            weight_quantize_type (str): quantization type for weights,
59 60 61
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
62
            window_size (int): the window size for 'range_abs_max' quantization.
63

W
WangZhen 已提交
64 65
        Examples:
        .. code-block:: python
66 67 68 69
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
70
            from paddle.fluid.contrib.slim.graph import IrGraph
71 72
            from paddle.fluid import core

73
            graph = IrGraph(core.Graph(program.desc), for_test=False)
74
            place = fluid.CPUPlace()
75
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
76
            place)
77
            transform_pass.apply(graph)
W
WangZhen 已提交
78
        """
79
        self._scope = scope
80
        self._place = place
81 82
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
W
WangZhen 已提交
83

84 85 86 87 88
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
89 90 91
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be ",
92 93
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
                str(activation_quantize_type))
W
WangZhen 已提交
94 95 96
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be ",
97
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'.",
98
                str(weight_quantize_type))
W
WangZhen 已提交
99

100 101 102
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
103
        self._moving_rate = moving_rate
W
WangZhen 已提交
104

105
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
106
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
107 108
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
109
        ]
110 111
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
112

113
    def apply(self, graph):
114 115 116 117 118 119 120 121
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
122
        assert isinstance(graph,
123
                          IrGraph), 'graph must be the instance of IrGraph.'
Z
Zhen Wang 已提交
124 125
        #sequential_execution = core.get_pass('sequential_execution_pass')
        #sequential_execution.apply(graph.graph)
126
        self._is_test = graph.is_test()
W
WangZhen 已提交
127 128
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
129
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
130 131 132

        def _transform_forward(graph, op):
            for var_node in op.inputs:
133 134
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
135 136 137
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
138
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
139 140
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
141
                        in persistable_vars else self._activation_quantize_type
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
162
                    dequantized_vars[var_node.name()] = dequant_var_node
163
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
164 165 166 167

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
168 169
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
170 171
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
172
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
173 174 175 176
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
177

178
        if not self._is_test:
W
WangZhen 已提交
179
            self._create_global_step(graph)
180
        ops = graph.all_op_nodes()
W
WangZhen 已提交
181 182
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
183
        for op in ops:
184
            if op.name() in self._quantizable_ops:
W
WangZhen 已提交
185
                _transform_forward(graph, op)
W
WangZhen 已提交
186 187
        # The loop for renaming the inputs of backward op.
        for op in ops:
188
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
189
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
190
        graph.resolve_hazard()
191
        return graph
W
WangZhen 已提交
192

W
WangZhen 已提交
193
    def _create_global_step(self, graph):
194 195
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
196
            counter_name = cpt.to_text('@STEP_COUNTER@')
197
            for node in graph.all_var_nodes():
W
WangZhen 已提交
198
                if node.name() == counter_name:
199 200
                    self._global_step = node
            if self._global_step is None:
201
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
202 203 204 205
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
206 207 208
                self._init_var_node(
                    global_step_in, np.zeros(
                        [1], dtype='int64'))
W
WangZhen 已提交
209 210
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
211
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
212 213
                increment_op = graph.create_op_node(
                    op_type='increment',
214 215 216 217 218
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
219 220
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
221 222 223
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
224

W
WangZhen 已提交
225 226 227 228 229 230 231
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
232 233
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
234 235 236
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
237 238 239 240 241 242 243 244 245

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
246 247 248
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
249 250
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
251
            var_type=var_node.type(),
252
            shape=[1],
253
            var_dtype=var_node.dtype())
W
WangZhen 已提交
254 255
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
256 257 258 259
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
260 261 262
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
263 264 265
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
266 267 268 269 270 271 272 273 274 275
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
276 277 278
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
279

280
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
281 282 283
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
284
            var_dtype=var_node.dtype())
285 286 287
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(scale_in_node, np.array([0.001], dtype=data_type))
W
WangZhen 已提交
288 289 290 291 292

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

293
        if not self._is_test:
W
WangZhen 已提交
294
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
295
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
296 297
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
298
                shape=[self._window_size],
299
                var_dtype=var_node.dtype())
300 301 302 303 304
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            self._init_var_node(
                scales_node, np.zeros(
                    [self._window_size], dtype=data_type))
305
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
306 307
            outputs['OutScales'] = scales_node
        attrs = {
308
            'window_size': self._window_size,
W
WangZhen 已提交
309
            'bit_length': quant_bits,
310 311
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
312 313 314 315 316 317 318
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

319 320 321 322
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
323

324 325 326
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
327 328 329

        return quant_var_node, scale_out_node

330 331 332 333 334 335 336 337 338 339 340 341 342 343
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
344 345 346
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(scale_in_node, np.array([0.001], dtype=data_type))
347 348 349 350 351 352 353 354 355 356

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
357 358 359
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            self._init_var_node(scale_in_node, np.ones([1], dtype=data_type))
360 361 362 363 364
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
365
            self._init_var_node(accum_in_node, np.ones([1], dtype=data_type))
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
432 433 434 435 436 437 438 439
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
440 441 442
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
443 444 445
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
446 447 448 449
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
450 451 452
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
453 454 455
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
456 457
        return dequant_var_node

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

485 486 487 488 489 490 491 492 493 494
    def _init_var_node(self, var_node, value):
        assert isinstance(
            value, np.ndarray), 'The type of value should be numpy array.'
        assert self._scope is not None, \
        'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
        assert self._place is not None, \
        'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
        tensor = self._scope.var(var_node.name()).get_tensor()
        tensor.set(value, self._place)

W
WangZhen 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
509
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
510 511
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
512 513 514


class QuantizationFreezePass(object):
515 516 517 518 519 520 521 522 523 524 525 526
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
527
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
528 529 530 531
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']
548
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
W
WangZhen 已提交
549
        self._fake_quant_op_names = [
550
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
551 552 553 554 555
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
W
WangZhen 已提交
556 557 558 559 560 561
        ]
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
562 563 564 565 566 567
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
568 569
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
570 571 572
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
573
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
574 575 576 577
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
578 579 580 581 582 583 584 585
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
586
                    else:
587 588
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
589 590 591 592 593
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
594
                                                    self._weight_bits)
W
WangZhen 已提交
595
                    self._restore_var(input_arg_name, quantized_param_v)
596
                else:
597 598
                    scale_v = self._to_node(op_node.outputs,
                                            op_node.output('OutScale')[0])
599
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
600

601
        ops = graph.all_op_nodes()
W
WangZhen 已提交
602 603 604 605 606
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

607
        ops = graph.all_op_nodes()
W
WangZhen 已提交
608 609 610
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
611 612 613 614
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
615 616 617 618

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
619 620 621
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
622 623 624 625
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
626
        graph.resolve_hazard()
627
        return graph
W
WangZhen 已提交
628 629

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
630 631 632 633
        k = self._to_node(op_node.outputs, op_node.output('Out')[0])
        v = self._to_node(op_node.inputs, op_node.input('X')[0])
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
634
        else:
635 636
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
637
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
638

639 640 641 642
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
643 644 645 646 647
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
648 649 650 651 652 653 654 655 656 657 658 659 660 661
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

662
        if len(op_node.output_arg_names()) != 1:
663 664 665
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

666 667
        output_var_node = self._to_node(op_node.outputs,
                                        op_node.output_arg_names()[0])
668 669 670 671 672
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
673 674 675
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        self._init_var_node(weight_scale_node, channel_scale.astype(data_type))
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
696
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
697 698
        return dequant_var_node

W
WangZhen 已提交
699
    def _insert_post_dequant_op(self, graph, op_node):
700
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
701
        for var_node in op_node.inputs:
W
WangZhen 已提交
702
            name = var_node.name()
703 704 705 706 707
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
708
                new_in.clear_outputs()
W
WangZhen 已提交
709 710
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
711
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
712 713 714 715 716 717 718 719
            if original_var_name in persistable_vars:
                param_range = (1 << (self._weight_bits - 1)) - 1
                act_range = (1 << (self._activation_bits - 1)) - 1
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
                max_range = param_range * act_range / scale_v
            else:
720
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
721 722
                scale_var_node = self._var_scale_map[original_var_name]

723
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
724 725 726
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

727 728
        output_var_node = self._to_node(op_node.outputs,
                                        op_node.output_arg_names()[0])
W
WangZhen 已提交
729 730
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
731 732 733
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
734 735
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
736 737 738 739
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
740 741 742 743 744 745
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
746
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
747 748
        return dequant_var_node

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def _init_var_node(self, var_node, value):
        assert isinstance(
            value, np.ndarray), 'The type of value should be numpy array.'
        assert self._scope is not None, \
        'The scope cannot be set None when activation_quantize_type equals to range_abs_max.'
        assert self._place is not None, \
        'The place cannot be set None when activation_quantize_type equals to range_abs_max.'
        tensor = self._scope.var(var_node.name()).get_tensor()
        tensor.set(value, self._place)

    def _to_node(self, nodes, node_name):
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

W
WangZhen 已提交
767 768 769
    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

770 771 772
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
773 774 775

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
776
        ops = graph.all_op_nodes()
W
WangZhen 已提交
777 778 779 780 781 782
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

783 784 785 786 787 788
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
812
    def _is_float(self, v):
W
WangZhen 已提交
813 814 815
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
816
    def _quant(self, x, scale, num_bits):
817 818 819 820 821 822
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
823 824 825


class ConvertToInt8Pass(object):
826 827 828 829 830 831 832 833 834
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

835 836 837 838 839 840 841 842 843 844
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._quantizable_ops = ['conv2d', 'depthwise_conv2d', 'mul']

    def apply(self, graph):
845 846 847 848 849 850 851
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
852 853
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
870
        graph.resolve_hazard()
871 872 873 874
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
875
        int8_var_node = graph.create_persistable_node(
876
            name=cpt.to_text(int8_var_node_name),
877 878
            var_type=var_node.type(),
            shape=var_node.shape(),
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
894
        ops = graph.all_op_nodes()
895 896 897 898 899 900
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

901 902 903 904 905 906
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
907 908 909 910
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
911 912 913 914
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

915 916
    def __init__(self):
        self._fake_quant_op_names = [
917 918 919 920 921 922
            'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
            'fake_quantize_moving_average_abs_max',
            'fake_channel_wise_quantize_abs_max'
        ]
        self._fake_dequant_op_names = [
            'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
923 924 925
        ]

    def apply(self, graph):
926 927 928 929 930 931 932 933
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
934
        ops = graph.all_op_nodes()
935 936 937
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
938
                op_node.set_type('quantize')
939 940 941 942 943 944 945
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
946
                op_node.set_type('dequantize')
947 948 949 950 951 952
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
953
        graph.resolve_hazard()
954
        return graph