Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
491b87b4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
491b87b4
编写于
6月 24, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
6月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix quantization clip and round Attribute (#43764)
上级
2739bd73
变更
12
展开全部
隐藏空白更改
内联
并排
Showing
12 changed file
with
997 addition
and
726 deletion
+997
-726
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+358
-192
paddle/fluid/operators/fake_quantize_op.cu.h
paddle/fluid/operators/fake_quantize_op.cu.h
+268
-168
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+181
-136
paddle/fluid/operators/quantize_linear_op.cc
paddle/fluid/operators/quantize_linear_op.cc
+39
-26
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
...d/contrib/slim/quantization/post_training_quantization.py
+24
-28
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+18
-72
python/paddle/fluid/contrib/slim/quantization/utils.py
python/paddle/fluid/contrib/slim/quantization/utils.py
+24
-22
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
.../slim/tests/test_post_training_quantization_lstm_model.py
+8
-8
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
...ntrib/slim/tests/test_post_training_quantization_mnist.py
+29
-30
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
...slim/tests/test_post_training_quantization_mobilenetv1.py
+16
-17
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
...ib/slim/tests/test_post_training_quantization_resnet50.py
+4
-4
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+28
-23
未找到文件。
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
491b87b4
此差异已折叠。
点击以展开。
paddle/fluid/operators/fake_quantize_op.cu.h
浏览文件 @
491b87b4
此差异已折叠。
点击以展开。
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
491b87b4
此差异已折叠。
点击以展开。
paddle/fluid/operators/quantize_linear_op.cc
浏览文件 @
491b87b4
...
...
@@ -26,14 +26,17 @@ namespace operators {
template
<
typename
T
>
struct
ChannelDequantizeFunctorV2
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
*
scale
,
T
max_range
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
*
scale
,
T
max_range
,
const
int
quant_axis
,
framework
::
Tensor
*
out
)
{
// Dequant op is before quantized op
// Dequantize the weight of quantized op
auto
in_dims
=
in
->
dims
();
const
int64_t
channel
=
in_dims
[
quant_axis
];
const
T
*
scale_factor
=
scale
->
data
<
T
>
();
const
T
*
scale_factor
=
scale
->
data
<
T
>
();
if
(
quant_axis
==
0
)
{
for
(
int64_t
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_factor
[
i
];
...
...
@@ -41,7 +44,7 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
in_e
*
s
/
max_range
;
}
}
else
if
(
quant_axis
==
1
)
{
...
...
@@ -51,12 +54,12 @@ struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, T> {
}
int64_t
step_i
=
in
->
numel
()
/
out_iter
;
int64_t
step_j
=
in
->
numel
()
/
(
out_iter
*
channel
);
auto
*
in_data
=
in
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
*
in_data
=
in
->
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
out_iter
;
i
++
)
{
for
(
int64_t
j
=
0
;
j
<
channel
;
j
++
)
{
auto
*
cur_in
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
cur_out
=
out_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
cur_in
=
in_data
+
i
*
step_i
+
j
*
step_j
;
auto
*
cur_out
=
out_data
+
i
*
step_i
+
j
*
step_j
;
T
s
=
scale_factor
[
j
];
for
(
int64_t
k
=
0
;
k
<
step_j
;
k
++
)
{
*
cur_out
=
(
*
cur_in
)
*
s
/
max_range
;
...
...
@@ -75,11 +78,11 @@ template struct ChannelDequantizeFunctorV2<platform::CPUDeviceContext, double>;
class
QuantizeLinearOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"QuantizeLinear"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Scale"
),
"Input"
,
"Scale"
,
"QuantizeLinear"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ZeroPoint"
),
"Input"
,
"ZeroPoint"
,
"QuantizeLinear"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ZeroPoint"
),
"Input"
,
"ZeroPoint"
,
"QuantizeLinear"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Y"
),
"Output"
,
"Y"
,
"QuantizeLinear"
);
ctx
->
SetOutputDim
(
"Y"
,
ctx
->
GetInputDim
(
"X"
));
int
quant_axis
=
ctx
->
Attrs
().
Get
<
int
>
(
"quant_axis"
);
...
...
@@ -95,7 +98,7 @@ class QuantizeLinearOp : public framework::OperatorWithKernel {
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
());
}
...
...
@@ -116,9 +119,10 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
"For conv2d, depthwise_conv2d, conv2d_transpose "
"and mul, the quant_axis is equal to the cout axis."
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
quant_axis
)
{
.
AddCustomChecker
([](
const
int
&
quant_axis
)
{
PADDLE_ENFORCE_EQ
(
quant_axis
==
0
||
quant_axis
==
1
||
quant_axis
==
-
1
,
true
,
quant_axis
==
0
||
quant_axis
==
1
||
quant_axis
==
-
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'quant_axis' should be 0 or 1, but "
"the received is %d"
,
...
...
@@ -126,8 +130,9 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
});
AddAttr
<
int
>
(
"bit_length"
,
"(int, default 8)"
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE_EQ
(
bit_length
>=
1
&&
bit_length
<=
16
,
true
,
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE_EQ
(
bit_length
>=
1
&&
bit_length
<=
16
,
true
,
platform
::
errors
::
InvalidArgument
(
"'bit_length' should be between 1 and 16, but "
"the received is %d"
,
...
...
@@ -140,13 +145,17 @@ class QuantizeLinearOpMaker : public framework::OpProtoAndCheckerMaker {
"1: rounding to nearest ties away from zero. Eg: round(1.5)=2, "
"round(2.5)=3"
)
.
SetDefault
(
0
)
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
>=
0
&&
round_type
<=
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be between 0 and 1, but "
"the received is %d"
,
round_type
));
});
.
AddCustomChecker
([](
const
int
&
round_type
)
{
PADDLE_ENFORCE_EQ
(
round_type
==
0
||
round_type
==
1
,
true
,
platform
::
errors
::
InvalidArgument
(
"'round_type' should be 0 or 1, 0 rounding to "
"nearest ties to even and 1 is rounding to nearest "
"ties away from zero.but the received is %d"
,
round_type
));
})
.
AsExtra
();
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
...
...
@@ -170,14 +179,18 @@ namespace ops = paddle::operators;
using
CPU
=
paddle
::
platform
::
CPUDeviceContext
;
REGISTER_OPERATOR
(
quantize_linear
,
ops
::
QuantizeLinearOp
,
ops
::
QuantizeLinearOpMaker
,
quantize_linear
,
ops
::
QuantizeLinearOp
,
ops
::
QuantizeLinearOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
quantize_linear
,
ops
::
QuantizeLinearKernel
<
CPU
,
float
>
);
REGISTER_OPERATOR
(
dequantize_linear
,
ops
::
QuantizeLinearOp
,
ops
::
QuantizeLinearOpMaker
,
dequantize_linear
,
ops
::
QuantizeLinearOp
,
ops
::
QuantizeLinearOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
...
...
python/paddle/fluid/contrib/slim/quantization/post_training_quantization.py
浏览文件 @
491b87b4
...
...
@@ -121,8 +121,7 @@ class PostTrainingQuantization(object):
algo
=
"KL"
,
hist_percent
=
0.99999
,
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
],
weight_round_algo
=
'round'
,
round_type
=
'TiesToEven'
,
round_type
=
'round'
,
learning_rate
=
0.001
,
is_full_quantize
=
False
,
bias_correction
=
False
,
...
...
@@ -181,14 +180,10 @@ class PostTrainingQuantization(object):
quantizable_op_type(list[str], optional): List the type of ops
that will be quantized. Default is ["conv2d", "depthwise_conv2d",
"mul"].
weight_round_algo
(str, optional): The method of converting the quantized weights
round_type
(str, optional): The method of converting the quantized weights
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
learning_rate(float, optional): The learning rate of adaround method.
is_full_quantized(bool, optional): If set is_full_quantized as True,
apply quantization to all supported quantizable op type. If set
...
...
@@ -269,10 +264,8 @@ class PostTrainingQuantization(object):
self
.
_support_algo_type
=
[
'KL'
,
'hist'
,
'avg'
,
'mse'
,
'emd'
,
'abs_max'
,
'min_max'
]
assert
round_type
in
[
'
TiesToEven'
,
'TiesAwayFromZero
'
]
assert
round_type
in
[
'
adaround'
,
'round
'
]
self
.
_round_type
=
round_type
assert
weight_round_algo
in
[
'adaround'
,
'round'
]
self
.
_weight_round_algo
=
weight_round_algo
self
.
_learning_rate
=
learning_rate
self
.
_dynamic_quantize_op_type
=
[
'lstm'
]
self
.
_support_quantize_op_type
=
\
...
...
@@ -414,7 +407,7 @@ class PostTrainingQuantization(object):
if
self
.
_algo
in
[
"KL"
,
"hist"
]:
self
.
_calculate_kl_hist_threshold
()
if
self
.
_
weight_round_algo
==
'adaround'
:
if
self
.
_
round_type
==
'adaround'
:
self
.
_adaround_apply
()
self
.
_reset_activation_persistable
()
...
...
@@ -651,7 +644,6 @@ class PostTrainingQuantization(object):
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"MSE searching stage ..."
)
distribution
=
np
.
round
if
self
.
_round_type
==
'TiesToEven'
else
utils
.
round_c
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
...
...
@@ -664,9 +656,14 @@ class PostTrainingQuantization(object):
scale
=
s
*
abs_max_value
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
-
bins
-
1
,
bins
)
quant_dequant_var
=
quant_var
/
bins
*
scale
if
self
.
_onnx_format
:
quant_var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
-
bins
-
1
,
bins
)
quant_dequant_var
=
quant_var
/
bins
*
scale
else
:
quant_dequant_var
=
np
.
round
(
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
bins
)
/
bins
*
scale
mse_loss
=
((
var_tensor
-
quant_dequant_var
)
**
2
).
mean
()
if
mse_loss
<=
self
.
_best_calibration_loss
[
var_name
]:
self
.
_best_calibration_loss
[
var_name
]
=
mse_loss
...
...
@@ -691,7 +688,6 @@ class PostTrainingQuantization(object):
float
(
np
.
max
(
np
.
abs
(
var_tensor
[
i
]))))
self
.
_quantized_threshold
[
var_name
]
=
abs_max_value
_logger
.
info
(
"EMD searching stage ..."
)
distribution
=
np
.
round
if
self
.
_round_type
==
'TiesToEven'
else
utils
.
round_c
for
var_name
in
self
.
_quantized_act_var_name
:
var_tensor
=
utils
.
load_variable_data
(
self
.
_scope
,
var_name
)
var_tensor
=
var_tensor
.
flatten
()
...
...
@@ -704,9 +700,14 @@ class PostTrainingQuantization(object):
scale
=
s
*
abs_max_value
s
+=
0.02
bins
=
2
**
(
self
.
_activation_bits
-
1
)
-
1
quant_var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
-
bins
-
1
,
bins
)
quant_dequant_var
=
quant_var
/
bins
*
scale
if
self
.
_onnx_format
:
quant_var
=
np
.
clip
(
distribution
(
var_tensor
/
scale
*
bins
),
-
bins
-
1
,
bins
)
quant_dequant_var
=
quant_var
/
bins
*
scale
else
:
quant_dequant_var
=
np
.
round
(
np
.
clip
(
var_tensor
,
0.0
,
scale
)
/
scale
*
bins
)
/
bins
*
scale
emd_loss
=
np
.
abs
(
np
.
mean
(
var_tensor
)
-
np
.
mean
(
quant_dequant_var
))
+
np
.
abs
(
np
.
std
(
var_tensor
)
-
np
.
std
(
quant_dequant_var
))
...
...
@@ -918,8 +919,7 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
,
round_type
=
self
.
_round_type
)
quantizable_op_type
=
major_quantizable_op_types
)
else
:
transform_pass
=
QuantizationTransformPassV2
(
scope
=
self
.
_scope
,
...
...
@@ -928,8 +928,7 @@ class PostTrainingQuantization(object):
activation_bits
=
self
.
_activation_bits
,
activation_quantize_type
=
self
.
_activation_quantize_type
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
quantizable_op_type
=
major_quantizable_op_types
,
round_type
=
self
.
_round_type
)
quantizable_op_type
=
major_quantizable_op_types
)
for
sub_graph
in
graph
.
all_sub_graphs
():
# Insert fake_quant/fake_dequantize op must in test graph, so
...
...
@@ -946,15 +945,13 @@ class PostTrainingQuantization(object):
add_quant_dequant_pass
=
AddQuantDequantPass
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
round_type
=
self
.
_round_type
)
quantizable_op_type
=
minor_quantizable_op_types
)
else
:
add_quant_dequant_pass
=
AddQuantDequantPassV2
(
scope
=
self
.
_scope
,
place
=
self
.
_place
,
quantizable_op_type
=
minor_quantizable_op_types
,
is_full_quantized
=
self
.
_is_full_quantize
,
round_type
=
self
.
_round_type
)
is_full_quantized
=
self
.
_is_full_quantize
)
for
sub_graph
in
graph
.
all_sub_graphs
():
sub_graph
.
_for_test
=
True
...
...
@@ -979,7 +976,6 @@ class PostTrainingQuantization(object):
place
=
self
.
_place
,
bias_correction
=
self
.
_bias_correction
,
weight_bits
=
self
.
_weight_bits
,
weight_round_algo
=
self
.
_weight_round_algo
,
round_type
=
self
.
_round_type
,
activation_bits
=
self
.
_activation_bits
,
weight_quantize_type
=
self
.
_weight_quantize_type
,
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
491b87b4
...
...
@@ -119,7 +119,6 @@ class QuantizationTransformPass(object):
moving_rate
=
0.9
,
skip_pattern
=
[
'skip_quant'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
round_type
=
'TiesToEven'
,
weight_quantize_func
=
None
,
act_quantize_func
=
None
,
weight_preprocess_func
=
None
,
...
...
@@ -157,10 +156,6 @@ class QuantizationTransformPass(object):
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_func(function): Function that defines how to quantize weight.
Using this can quickly test if user's quantization method works or not.
In this function, user should both define quantization function and
...
...
@@ -211,7 +206,6 @@ class QuantizationTransformPass(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
...
...
@@ -465,12 +459,10 @@ class QuantizationTransformPass(object):
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_abs_max'
,
attrs
=
{
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
},
...
...
@@ -525,11 +517,9 @@ class QuantizationTransformPass(object):
inputs
[
'Iter'
]
=
self
.
_global_step
outputs
[
'OutScales'
]
=
scales_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
'window_size'
:
self
.
_window_size
,
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
}
...
...
@@ -600,10 +590,8 @@ class QuantizationTransformPass(object):
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
...
@@ -650,12 +638,10 @@ class QuantizationTransformPass(object):
_init_var_node
(
scale_var_node
,
np
.
zeros
(
scale_var_node
.
shape
(),
dtype
=
data_type
),
self
.
_scope
,
self
.
_place
)
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_quantize_abs_max'
,
attrs
=
{
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'quant_axis'
:
quant_axis
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
...
@@ -949,8 +935,7 @@ class QuantizationFreezePass(object):
bias_correction
=
False
,
weight_bits
=
8
,
activation_bits
=
8
,
weight_round_algo
=
'round'
,
round_type
=
'TiesToEven'
,
round_type
=
'round'
,
weight_quantize_type
=
'abs_max'
,
quantizable_op_type
=
None
):
"""
...
...
@@ -968,14 +953,10 @@ class QuantizationFreezePass(object):
https://arxiv.org/abs/1810.05723.
weight_bits(int): quantization bit number for weights.
activation_bits(int): quantization bit number for activation.
weight_round_algo
(str, optional): The method of converting the quantized weights
round_type
(str, optional): The method of converting the quantized weights
value float->int. Currently supports ['round', 'adaround'] methods.
Default is `round`, which is rounding nearest to the integer.
'adaround' is refer to https://arxiv.org/abs/2004.10568.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_type(str): quantization type for weights, support 'abs_max' and
'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
since weights are fixed once the model is well trained.
...
...
@@ -991,7 +972,6 @@ class QuantizationFreezePass(object):
self
.
_place
=
_get_paddle_place
(
place
)
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_weight_round_algo
=
weight_round_algo
self
.
_round_type
=
round_type
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_fake_quant_op_names
=
_fake_quant_op_list
...
...
@@ -1039,7 +1019,7 @@ class QuantizationFreezePass(object):
scale_v
=
scale_v
.
tolist
()
self
.
_quant_var_scale_map
[
input_arg_name
]
=
scale_v
# Quantize weight and restore
if
self
.
_
weight_round_algo
==
'round'
:
if
self
.
_
round_type
==
'round'
:
param_v
=
self
.
_load_var
(
input_arg_name
)
if
any
(
_check_grandchild_op_node
(
op_node
,
op
)
...
...
@@ -1049,7 +1029,8 @@ class QuantizationFreezePass(object):
quant_axis
=
0
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quant_axis
,
self
.
_weight_bits
,
self
.
_round_type
)
self
.
_weight_bits
)
quantized_param_v
=
np
.
round
(
quantized_param_v
)
# Weight bias correction
if
self
.
_bias_correction
==
True
:
quantized_param_v
=
utils
.
bias_correction_w
(
...
...
@@ -1058,6 +1039,7 @@ class QuantizationFreezePass(object):
scale_v
,
quant_axis
,
weight_bits
=
self
.
_weight_bits
)
quantized_param_v
=
np
.
round
(
quantized_param_v
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
...
...
@@ -1600,8 +1582,7 @@ class AddQuantDequantPass(object):
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
,
round_type
=
'TiesToEven'
):
is_full_quantized
=
False
):
"""
Constructor.
...
...
@@ -1623,10 +1604,6 @@ class AddQuantDequantPass(object):
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
quantizable_op_type.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
"""
self
.
_scope
=
scope
self
.
_place
=
_get_paddle_place
(
place
)
...
...
@@ -1634,7 +1611,6 @@ class AddQuantDequantPass(object):
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
if
is_full_quantized
:
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
...
...
@@ -1769,10 +1745,8 @@ class AddQuantDequantPass(object):
outs
[
'OutState'
]
=
state_out_node
outs
[
'OutAccum'
]
=
accum_out_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
'bit_length'
:
quant_bits
,
'round_type'
:
round_type
,
'moving_rate'
:
self
.
_moving_rate
,
'is_test'
:
self
.
_is_test
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
...
...
@@ -1812,10 +1786,6 @@ class InsertQuantizeLinear(object):
Default is -1.
channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
is_test(bool, optional): Whether quantization with training or not. Default is True.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
"""
def
__init__
(
self
,
...
...
@@ -1824,15 +1794,13 @@ class InsertQuantizeLinear(object):
quant_bits
=
8
,
quant_axis
=-
1
,
channel_wise
=
False
,
is_test
=
True
,
round_type
=
'TiesToEven'
):
is_test
=
True
):
self
.
_place
=
place
self
.
_scope
=
scope
self
.
quant_bits
=
quant_bits
self
.
quant_axis
=
quant_axis
self
.
channel_wise
=
channel_wise
self
.
_is_test
=
is_test
self
.
_round_type
=
round_type
def
insert_quant_op
(
self
,
graph
,
var_node
):
assert
var_node
.
is_var
(),
'{} is not a var'
.
format
(
var_node
.
name
())
...
...
@@ -1875,12 +1843,7 @@ class InsertQuantizeLinear(object):
if
zero_point_node
is
not
None
:
inputs
[
"ZeroPoint"
]
=
zero_point_node
round_type
=
0
if
self
.
_round_type
==
'TiesToEven'
else
1
attrs
=
{
"quant_axis"
:
self
.
quant_axis
,
"bit_length"
:
self
.
quant_bits
,
"round_type"
:
round_type
}
attrs
=
{
"quant_axis"
:
self
.
quant_axis
,
"bit_length"
:
self
.
quant_bits
}
outputs
=
{
"Y"
:
quant_var_node
}
if
not
self
.
_is_test
:
attrs
[
"is_test"
]
=
self
.
_is_test
...
...
@@ -1985,7 +1948,6 @@ class QuantizationTransformPassV2(object):
moving_rate
=
0.9
,
skip_pattern
=
[
'skip_quant'
],
quantizable_op_type
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
],
round_type
=
'TiesToEven'
,
weight_quantize_func
=
None
,
act_quantize_func
=
None
,
weight_preprocess_func
=
None
,
...
...
@@ -2021,10 +1983,6 @@ class QuantizationTransformPassV2(object):
quantizable_op_type(list[str]): List the type of ops that will be quantized.
Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
weight_quantize_func(function): Function that defines how to quantize weight.
Using this can quickly test if user's quantization method works or not.
In this function, user should both define quantization function and
...
...
@@ -2074,7 +2032,6 @@ class QuantizationTransformPassV2(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
self
.
_weight_quantize_func
=
weight_quantize_func
self
.
_act_quantize_func
=
act_quantize_func
self
.
_weight_preprocess_func
=
weight_preprocess_func
...
...
@@ -2198,8 +2155,7 @@ class QuantizationTransformPassV2(object):
quant_bits
=
quant_bits
,
quant_axis
=
quant_axis
,
channel_wise
=
channel_wise
,
is_test
=
self
.
_is_test
,
round_type
=
self
.
_round_type
)
is_test
=
self
.
_is_test
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
var_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
...
...
@@ -2307,8 +2263,7 @@ class AddQuantDequantPassV2(object):
quant_bits
=
8
,
skip_pattern
=
[
"skip_quant"
],
quantizable_op_type
=
[
"elementwise_add"
,
"pool2d"
],
is_full_quantized
=
False
,
round_type
=
'TiesToEven'
):
is_full_quantized
=
False
):
"""
Args:
scope(paddle.Scope): The scope is used to initialize these new parameters.
...
...
@@ -2328,10 +2283,6 @@ class AddQuantDequantPassV2(object):
quantization to all supported quantizable op type. If set is_full_quantized
as False, only apply quantization to the op type according to the input
quantizable_op_type.
round_type(str, optional): The method of converting the tensor value float->int.
Currently supports ['TiesToEven', 'TiesAwayFromZero'] methods.
Default is `TiesToEven`, which is rounding to nearest ties to even.
'TiesAwayFromZero' is rounding to nearest ties away from zero.
Examples:
.. code-block:: python
...
...
@@ -2354,7 +2305,6 @@ class AddQuantDequantPassV2(object):
self
.
_quant_bits
=
quant_bits
self
.
_is_test
=
None
self
.
_skip_pattern
=
skip_pattern
self
.
_round_type
=
round_type
if
is_full_quantized
:
self
.
_quantizable_op_type
=
utils
.
_act_supported_quantizable_op_type
...
...
@@ -2427,8 +2377,7 @@ class AddQuantDequantPassV2(object):
quant_bits
=
self
.
_quant_bits
,
quant_axis
=-
1
,
channel_wise
=
False
,
is_test
=
self
.
_is_test
,
round_type
=
self
.
_round_type
)
is_test
=
self
.
_is_test
)
quant_var_node
,
scale_var_node
=
insert_quant_pass
.
insert_quant_op
(
graph
,
in_node
)
dequant_var_node
=
insert_quant_pass
.
insert_dequant_op
(
...
...
@@ -2511,8 +2460,6 @@ class ReplaceFakeQuantDequantPass(object):
"quant_axis"
)
else
-
1
bit_length
=
op
.
op
().
attr
(
"bit_length"
)
if
op
.
op
().
has_attr
(
"bit_length"
)
else
8
round_type
=
op
.
op
().
attr
(
"round_type"
)
if
op
.
op
().
has_attr
(
"round_type"
)
else
0
zero_point_node
=
None
quanted_node
=
x_node
...
...
@@ -2534,8 +2481,7 @@ class ReplaceFakeQuantDequantPass(object):
quant_op_node
=
graph
.
create_op_node
(
op_type
=
"quantize_linear"
,
attrs
=
{
"quant_axis"
:
quant_axis
,
"bit_length"
:
bit_length
,
"round_type"
:
round_type
"bit_length"
:
bit_length
},
inputs
=
{
"X"
:
x_node
,
...
...
@@ -2654,11 +2600,11 @@ class QuantWeightPass(object):
param_v
=
self
.
_load_var
(
x_node
.
name
())
quant_axis
=
_op
.
op
().
attr
(
"quant_axis"
)
bits_length
=
_op
.
op
().
attr
(
"bit_length"
)
round_type
=
_op
.
op
().
attr
(
"round_type"
)
if
_op
.
op
().
has_attr
(
"round_type"
)
else
0
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quant_axis
,
bits_length
,
round_typ
e
)
quantized_param_v
=
utils
.
quant_tensor
(
param_v
.
copy
(),
scale_v
,
quant_axis
,
bits_length
,
onnx_format
=
Tru
e
)
if
self
.
_bias_correction
==
True
:
quantized_param_v
=
utils
.
bias_correction_w
(
param_v
,
...
...
python/paddle/fluid/contrib/slim/quantization/utils.py
浏览文件 @
491b87b4
...
...
@@ -321,39 +321,41 @@ def set_variable_data(scope, place, var_name, np_value):
tensor
.
set
(
np_value
,
place
)
def
round_c_single_element
(
val
):
dtype
=
type
(
val
)
if
val
>=
0
:
return
dtype
(
np
.
floor
(
val
+
0.5
))
return
dtype
(
np
.
ceil
(
val
-
0.5
))
def
quant_tensor
(
x
,
scale
,
quant_axis
=
0
,
weight_bits
=
8
,
onnx_format
=
False
):
# symmetry quant
def
_clip
(
x
,
scale
):
x
[
x
>
scale
]
=
scale
x
[
x
<
-
scale
]
=
-
scale
return
x
# rounding to nearest ties away from zero
round_c
=
np
.
vectorize
(
round_c_single_element
)
def
quant_tensor
(
x
,
scale
,
quant_axis
=
0
,
weight_bits
=
8
,
round_type
=
'TiesToEven'
):
assert
quant_axis
in
[
0
,
1
],
'quant_axis should be 0 or 1 for now.'
distribution
=
np
.
round
if
round_type
==
'TiesToEven'
else
round_c
bnt
=
(
1
<<
(
weight_bits
-
1
))
-
1
if
isinstance
(
scale
,
list
):
for
i
,
s
in
enumerate
(
scale
):
if
s
==
0.0
:
s
=
1e-8
if
quant_axis
==
0
:
x
[
i
]
=
distribution
(
x
[
i
]
/
s
*
bnt
)
x
[
i
]
=
np
.
clip
(
x
[
i
],
-
bnt
-
1
,
bnt
)
if
onnx_format
:
x
[
i
]
=
np
.
round
(
x
[
i
]
/
s
*
bnt
)
x
[
i
]
=
np
.
clip
(
x
[
i
],
-
bnt
-
1
,
bnt
)
else
:
x
[
i
]
=
_clip
(
x
[
i
],
s
)
x
[
i
]
=
x
[
i
]
/
s
*
bnt
else
:
x
[:,
i
]
=
distribution
(
x
[:,
i
]
/
s
*
bnt
)
x
[:,
i
]
=
np
.
clip
(
x
[:,
i
],
-
bnt
-
1
,
bnt
)
if
onnx_format
:
x
[:,
i
]
=
np
.
round
(
x
[:,
i
]
/
s
*
bnt
)
x
[:,
i
]
=
np
.
clip
(
x
[:,
i
],
-
bnt
-
1
,
bnt
)
else
:
x
[:,
i
]
=
_clip
(
x
[:,
i
],
s
)
x
[:,
i
]
=
x
[:,
i
]
/
s
*
bnt
else
:
scale
=
1e-8
if
scale
==
0.0
else
scale
x
=
distribution
(
x
/
scale
*
bnt
)
x
=
np
.
clip
(
x
,
-
bnt
-
1
,
bnt
)
if
onnx_format
:
x
=
np
.
round
(
x
/
scale
*
bnt
)
x
=
np
.
clip
(
x
,
-
bnt
-
1
,
bnt
)
else
:
x
=
_clip
(
x
,
scale
)
x
=
x
/
scale
*
bnt
return
x
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_lstm_model.py
浏览文件 @
491b87b4
...
...
@@ -165,7 +165,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_path
,
data_path
,
algo
=
"KL"
,
weight_round_algo
=
"round"
,
round_type
=
"round"
,
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
...
...
@@ -185,7 +185,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_nums
=
batch_nums
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
weight_round_algo
=
weight_round_algo
,
round_type
=
round_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
...
...
@@ -201,7 +201,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -224,7 +224,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start post training quantization for {0} on {1} samples ..."
.
format
(
model_name
,
quant_iterations
))
self
.
generate_quantized_model
(
fp32_model_path
,
data_path
,
algo
,
weight_round_algo
,
quantizable_op_type
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
quant_iterations
,
onnx_format
)
...
...
@@ -255,7 +255,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -264,7 +264,7 @@ class TestPostTrainingAvgForLSTM(TestPostTrainingQuantization):
infer_iterations
=
100
quant_iterations
=
10
self
.
run_test
(
model_name
,
model_url
,
model_md5
,
data_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
quantizable_op_type
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
infer_iterations
,
quant_iterations
)
...
...
@@ -279,7 +279,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
data_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/quant_lstm_input_data.tar.gz"
data_md5
=
"add84c754e9b792fea1fbd728d134ab7"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"mul"
,
"lstm"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -295,7 +295,7 @@ class TestPostTrainingAvgForLSTMONNXFormat(TestPostTrainingQuantization):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mnist.py
浏览文件 @
491b87b4
...
...
@@ -108,7 +108,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
def
generate_quantized_model
(
self
,
model_path
,
algo
=
"KL"
,
weight_round_algo
=
"round"
,
round_type
=
"round"
,
quantizable_op_type
=
[
"conv2d"
],
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
...
...
@@ -130,7 +130,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
batch_nums
=
batch_nums
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
weight_round_algo
=
weight_round_algo
,
round_type
=
round_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
bias_correction
=
bias_correction
,
...
...
@@ -145,7 +145,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -169,11 +169,10 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model_name
,
quant_iterations
*
batch_size
))
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
weight_round_algo
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
,
onnx_format
,
self
.
generate_quantized_model
(
origin_model_path
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
batch_size
,
quant_iterations
,
onnx_format
,
skip_tensor_list
,
bias_correction
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
...
...
@@ -204,7 +203,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -213,7 +212,7 @@ class TestPostTrainingKLForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -226,7 +225,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"hist"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -235,7 +234,7 @@ class TestPostTraininghistForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -248,7 +247,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -257,7 +256,7 @@ class TestPostTrainingmseForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -270,7 +269,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"emd"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -279,7 +278,7 @@ class TestPostTrainingemdForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -292,7 +291,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -301,7 +300,7 @@ class TestPostTrainingavgForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -314,7 +313,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"abs_max"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"mul"
]
is_full_quantize
=
True
is_use_cache_file
=
False
...
...
@@ -323,7 +322,7 @@ class TestPostTrainingAbsMaxForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
10
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -336,7 +335,7 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
weight_round_algo
=
"adaround"
round_type
=
"adaround"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -350,7 +349,7 @@ class TestPostTrainingmseAdaroundForMnist(TestPostTrainingQuantization):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -369,7 +368,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"KL"
weight_round_algo
=
"adaround"
round_type
=
"adaround"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -378,7 +377,7 @@ class TestPostTrainingKLAdaroundForMnist(TestPostTrainingQuantization):
batch_size
=
10
infer_iterations
=
50
quant_iterations
=
5
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
weight_round_algo
,
self
.
run_test
(
model_name
,
data_url
,
data_md5
,
algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
,
batch_size
,
infer_iterations
,
quant_iterations
)
...
...
@@ -391,7 +390,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -405,7 +404,7 @@ class TestPostTrainingmseForMnistONNXFormat(TestPostTrainingQuantization):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -425,7 +424,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"mse"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
True
is_use_cache_file
=
False
...
...
@@ -439,7 +438,7 @@ class TestPostTrainingmseForMnistONNXFormatFullQuant(
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
@@ -458,7 +457,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
data_url
=
"http://paddle-inference-dist.bj.bcebos.com/int8/mnist_model.tar.gz"
data_md5
=
"be71d3997ec35ac2a65ae8a145e2887c"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
quantizable_op_type
=
[
"conv2d"
,
"depthwise_conv2d"
,
"mul"
]
is_full_quantize
=
False
is_use_cache_file
=
False
...
...
@@ -472,7 +471,7 @@ class TestPostTrainingavgForMnistSkipOP(TestPostTrainingQuantization):
data_url
,
data_md5
,
algo
,
weight_round_algo
,
round_type
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_mobilenetv1.py
浏览文件 @
491b87b4
...
...
@@ -242,7 +242,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_path
,
quantizable_op_type
,
algo
=
"KL"
,
weight_round_algo
=
"round"
,
round_type
=
"round"
,
is_full_quantize
=
False
,
is_use_cache_file
=
False
,
is_optimize_model
=
False
,
...
...
@@ -264,7 +264,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
model_dir
=
model_path
,
algo
=
algo
,
quantizable_op_type
=
quantizable_op_type
,
weight_round_algo
=
weight_round_algo
,
round_type
=
round_type
,
is_full_quantize
=
is_full_quantize
,
optimize_model
=
is_optimize_model
,
onnx_format
=
onnx_format
,
...
...
@@ -275,7 +275,7 @@ class TestPostTrainingQuantization(unittest.TestCase):
def
run_test
(
self
,
model
,
algo
,
weight_round_algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
...
...
@@ -299,10 +299,9 @@ class TestPostTrainingQuantization(unittest.TestCase):
print
(
"Start INT8 post training quantization for {0} on {1} images ..."
.
format
(
model
,
sample_iterations
*
batch_size
))
self
.
generate_quantized_model
(
model_cache_folder
+
"/model"
,
quantizable_op_type
,
algo
,
weight_round_algo
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
onnx_format
)
quantizable_op_type
,
algo
,
round_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
onnx_format
)
print
(
"Start INT8 inference for {0} on {1} images ..."
.
format
(
model
,
infer_iterations
*
batch_size
))
...
...
@@ -330,7 +329,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_kl_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"KL"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
...
...
@@ -345,7 +344,7 @@ class TestPostTrainingKLForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
...
...
@@ -355,7 +354,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_avg_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
...
...
@@ -369,7 +368,7 @@ class TestPostTrainingavgForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
...
...
@@ -379,7 +378,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_hist_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"hist"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
...
...
@@ -393,7 +392,7 @@ class TestPostTraininghistForMobilenetv1(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
True
diff_threshold
=
0.03
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
...
...
@@ -403,7 +402,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_abs_max_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"abs_max"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
...
...
@@ -417,7 +416,7 @@ class TestPostTrainingAbsMaxForMobilenetv1(TestPostTrainingQuantization):
is_optimize_model
=
False
# The accuracy diff of post-training quantization (abs_max) maybe bigger
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
...
...
@@ -427,7 +426,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
def
test_post_training_onnx_format_mobilenetv1
(
self
):
model
=
"MobileNet-V1"
algo
=
"avg"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/mobilenetv1_int8_model.tar.gz'
]
...
...
@@ -444,7 +443,7 @@ class TestPostTrainingAvgONNXFormatForMobilenetv1(TestPostTrainingQuantization):
diff_threshold
=
0.05
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
...
...
python/paddle/fluid/contrib/slim/tests/test_post_training_quantization_resnet50.py
浏览文件 @
491b87b4
...
...
@@ -25,7 +25,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"min_max"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
...
...
@@ -35,7 +35,7 @@ class TestPostTrainingForResnet50(TestPostTrainingQuantization):
is_use_cache_file
=
False
is_optimize_model
=
False
diff_threshold
=
0.025
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
data_urls
,
data_md5s
,
self
.
run_test
(
model
,
algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
is_full_quantize
,
is_use_cache_file
,
is_optimize_model
,
diff_threshold
)
...
...
@@ -45,7 +45,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
def
test_post_training_resnet50
(
self
):
model
=
"ResNet-50"
algo
=
"min_max"
weight_round_algo
=
"round"
round_type
=
"round"
data_urls
=
[
'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
]
...
...
@@ -58,7 +58,7 @@ class TestPostTrainingForResnet50ONNXFormat(TestPostTrainingQuantization):
onnx_format
=
True
self
.
run_test
(
model
,
algo
,
weight_round_algo
,
round_type
,
data_urls
,
data_md5s
,
quantizable_op_type
,
...
...
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
491b87b4
...
...
@@ -49,7 +49,7 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
dtype
,
input_shape
,
distribution
,
round_type
=
'Ties
ToEven
'
):
round_type
=
'Ties
AwayFromZero
'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
scale
=
np
.
max
(
np
.
abs
(
input_data
))
...
...
@@ -58,12 +58,12 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
*
inv_scale
*
bnt
)
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
output_data
=
round_c
(
input_data
.
astype
(
compute_type
)
*
inv_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
inputs
=
{
'X'
:
input_data
}
self
.
outputs
=
{
'Out'
:
output_data
,
'OutScale'
:
scale
}
self
.
dtype
=
dtype
...
...
@@ -75,7 +75,7 @@ class TestFakeQuantizeAbsMaxOp(OpTest):
def
test_fake_quantize_abs_max_round1
(
self
):
self
.
_fake_quantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
,
round_type
=
'Ties
AwayFromZero
'
)
round_type
=
'Ties
ToEven
'
)
def
test_fake_quantize_abs_max_float16
(
self
):
self
.
_fake_quantize_abs_max
(
np
.
float16
,
(
124
,
240
),
np
.
random
.
random
)
...
...
@@ -110,12 +110,12 @@ class TestFakeChannelWiseQuantizeAbsMaxOp(OpTest):
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
scale_broadcast
*
bnt
)
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
.
astype
(
compute_type
)
/
scale_broadcast
*
bn
t
)
output_data
=
round_c
(
bnt
*
input_data
.
astype
(
compute_type
)
/
scale_broadcas
t
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
if
quant_axis
==
1
:
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
(
1
,
)
+
compute_axis
)
...
...
@@ -169,11 +169,15 @@ class TestFakeQuantizeRangeAbsMaxOp(OpTest):
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
self
.
attrs
[
'round_type'
]
=
0
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
else
:
round_out
=
round_c
(
input_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
if
is_test
:
clip_data
=
np
.
clip
(
input_data
,
-
in_scale
,
in_scale
)
else
:
clip_data
=
input_data
output_data
=
round_c
(
clip_data
.
astype
(
compute_type
)
/
out_scale
[
0
]
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
inputs
=
{
'X'
:
input_data
,
'Iter'
:
np
.
zeros
(
1
).
astype
(
np
.
int64
),
...
...
@@ -250,7 +254,7 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
distribution
,
dequantize
=
False
,
with_gradient
=
False
,
round_type
=
'Ties
ToEven
'
):
round_type
=
'Ties
AwayFromZero
'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
compute_type
=
get_compute_type
(
dtype
)
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
...
...
@@ -267,12 +271,12 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
.
astype
(
compute_type
)
/
out_scale
*
bnt
)
quant_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
quant_data
=
round_c
(
input_data
.
astype
(
compute_type
)
/
out_scale
*
bnt
)
self
.
attrs
[
'round_type'
]
=
1
quant_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
if
dequantize
:
output_data
=
(
quant_data
*
out_scale
/
bnt
).
astype
(
dtype
)
self
.
op_type
=
'fake_quantize_dequantize_moving_average_abs_max'
...
...
@@ -307,10 +311,9 @@ class TestFakeQuantizeMovingAverageAbsMaxOp(OpTest):
np
.
random
.
random
)
def
test_fake_quantize_moving_average_abs_max_round1
(
self
):
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
np
.
random
.
random
,
round_type
=
'TiesAwayFromZero'
)
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
np
.
random
.
random
,
round_type
=
'TiesToEven'
)
def
test_fake_quantize_dequantize_moving_average_abs_max
(
self
):
self
.
_fake_quantize_moving_average_abs_max
(
np
.
float32
,
(
8
,
16
,
7
,
7
),
...
...
@@ -329,17 +332,17 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
dtype
,
input_shape
,
distribution
,
round_type
=
'Ties
ToEven
'
):
round_type
=
'Ties
AwayFromZero
'
):
input_data
=
distribution
(
input_shape
).
astype
(
dtype
)
scale
=
np
.
max
(
np
.
abs
(
input_data
)).
astype
(
dtype
)
bnt
=
(
1
<<
(
self
.
attrs
[
'bit_length'
]
-
1
))
-
1
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
input_data
/
scale
*
bnt
)
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale
/
bnt
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
input_data
/
scale
*
bnt
)
output_data
=
round_c
(
input_data
/
scale
*
bnt
)
*
scale
/
bnt
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale
/
bnt
self
.
inputs
=
{
'X'
:
input_data
}
self
.
outputs
=
{
'Out'
:
output_data
,
...
...
@@ -357,7 +360,7 @@ class TestFakeQuantizeDequantizeAbsMaxOp(OpTest):
def
test_fake_quantize_dequantize_abs_max_round1
(
self
):
self
.
_fake_quantize_dequantize_abs_max
(
np
.
float32
,
(
124
,
240
),
np
.
random
.
random
,
round_type
=
'Ties
AwayFromZero
'
)
round_type
=
'Ties
ToEven
'
)
class
TestChannelWiseFakeQuantizeDequantizeAbsMaxOp
(
OpTest
):
...
...
@@ -382,11 +385,13 @@ class TestChannelWiseFakeQuantizeDequantizeAbsMaxOp(OpTest):
scale_broadcast
=
np
.
amax
(
input_data
,
axis
=
compute_axis
,
keepdims
=
True
)
if
round_type
==
'TiesToEven'
:
round_out
=
np
.
round
(
bnt
*
output_data
/
scale_broadcast
)
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale_broadcast
/
bnt
self
.
attrs
[
'round_type'
]
=
0
else
:
round_out
=
round_c
(
bnt
*
output_data
/
scale_broadcast
)
output_data
=
round_c
(
bnt
*
output_data
/
scale_broadcast
)
*
scale_broadcast
/
bnt
self
.
attrs
[
'round_type'
]
=
1
output_data
=
np
.
clip
(
round_out
,
-
bnt
-
1
,
bnt
)
*
scale_broadcast
/
bnt
if
quant_axis
==
1
:
scale_broadcast
=
np
.
transpose
(
scale_broadcast
,
(
1
,
)
+
compute_axis
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录