quantization_pass.py 61.4 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
25 26
    'TransformForMobilePass', 'ScaleForTrainingPass', 'ScaleForInferencePass',
    'AddQuantDequantPass'
27
]
W
WangZhen 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

_out_scale_op_list = [
    "mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d",
    "batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul",
    "dropout", "split", "prelu", "conv2d_transpose", "leaky_relu"
]

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
    "depthwise_conv2d": [["Input"], ["Output"]],
    "mul": [["X", "Y"], ["Out"]],
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
}

W
WangZhen 已提交
78

79 80 81 82
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
83
        'The scope cannot be set None.'
84
    assert place is not None, \
85
        'The place cannot be set None.'
86 87 88 89
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


90
class QuantizationTransformPass(object):
91 92
    _supported_quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul']

W
WangZhen 已提交
93
    def __init__(self,
94
                 scope=None,
95
                 place=None,
W
WangZhen 已提交
96 97 98 99
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
100
                 window_size=10000,
101
                 moving_rate=0.9,
102 103
                 skip_pattern='skip_quant',
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
W
WangZhen 已提交
104
        """
105
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
106
        activation quantization type.
107

W
WangZhen 已提交
108
        Args:
109
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
110 111
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
112
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
113
                parameters described above.
114
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
115
                the bias is not quantized.
116 117
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
118 119 120 121 122
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
123
            weight_quantize_type(str): quantization type for weights,
124 125 126
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
127 128
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
129 130 131
            skip_pattern(str): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
132
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
133 134
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
135

W
WangZhen 已提交
136 137
        Examples:
        .. code-block:: python
138 139 140 141
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
142
            from paddle.fluid.contrib.slim.graph import IrGraph
143 144
            from paddle.fluid import core

145
            graph = IrGraph(core.Graph(program.desc), for_test=False)
146
            place = fluid.CPUPlace()
147
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
148
            place)
149
            transform_pass.apply(graph)
W
WangZhen 已提交
150
        """
151
        self._scope = scope
152
        self._place = place
153 154
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
155
        self._skip_pattern = skip_pattern
W
WangZhen 已提交
156

157 158 159 160
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
161 162
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
163 164
        if activation_quantize_type not in quant_type:
            raise ValueError(
165 166 167
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
168 169
        if weight_quantize_type not in quant_type:
            raise ValueError(
170 171 172
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(weight_quantize_type)))
W
WangZhen 已提交
173

174 175 176
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
177
        self._moving_rate = moving_rate
W
WangZhen 已提交
178

179 180
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
181
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
182
                op + " is not supported for quantization."
183
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
184 185
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
186
        ]
187 188
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
189

190
    def apply(self, graph):
191 192 193 194 195 196 197
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
198 199
        Returns:
            None
200
        """
W
WangZhen 已提交
201
        assert isinstance(graph,
202 203
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
204 205
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
206
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
207

208 209 210 211 212
        def _quant_preprocess(op_node):
            user_skipped = isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1

213
            if user_skipped:
214 215
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
216 217
        def _transform_forward(graph, op):
            for var_node in op.inputs:
218 219
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
220 221 222
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
223
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
224 225
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
226
                        in persistable_vars else self._activation_quantize_type
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
247
                    dequantized_vars[var_node.name()] = dequant_var_node
248
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
249 250 251 252

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
253 254
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
255 256
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
257
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
258 259 260 261
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
262

263
        if not self._is_test:
W
WangZhen 已提交
264
            self._create_global_step(graph)
265
        ops = graph.all_op_nodes()
266 267 268 269 270 271
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
W
WangZhen 已提交
272 273
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
274
        for op in ops:
275
            if op.name() in self._quantizable_ops:
276 277 278 279
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
280
                _transform_forward(graph, op)
W
WangZhen 已提交
281 282
        # The loop for renaming the inputs of backward op.
        for op in ops:
283
            if op.name() in self._quantizable_grad_ops:
284 285 286 287
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
288
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
289
        graph.resolve_hazard()
290
        return graph
W
WangZhen 已提交
291

W
WangZhen 已提交
292
    def _create_global_step(self, graph):
293 294
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
295
            counter_name = cpt.to_text('@STEP_COUNTER@')
296
            for node in graph.all_var_nodes():
W
WangZhen 已提交
297
                if node.name() == counter_name:
298 299
                    self._global_step = node
            if self._global_step is None:
300
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
301 302 303 304
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
305 306 307 308 309 310
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
311 312
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
313
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
314 315
                increment_op = graph.create_op_node(
                    op_type='increment',
316 317 318 319 320
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
321 322
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
323 324 325
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
326

W
WangZhen 已提交
327 328 329 330 331 332 333
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
334 335
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
336 337 338
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
339 340 341 342 343 344 345 346 347

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
348 349 350
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
351 352
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
353
            var_type=var_node.type(),
354
            shape=[1],
355
            var_dtype=var_node.dtype())
W
WangZhen 已提交
356 357
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
358 359 360 361
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
362 363 364
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
365 366 367
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
368 369 370 371 372 373 374 375 376 377
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
378 379 380
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
381

382
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
383 384 385
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
386
            var_dtype=var_node.dtype())
387 388
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
389 390 391 392 393 394
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
395 396 397 398 399

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

400
        if not self._is_test:
W
WangZhen 已提交
401
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
402
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
403 404
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
405
                shape=[self._window_size],
406
                var_dtype=var_node.dtype())
407 408
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
409 410 411 412 413 414 415
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

416
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
417 418
            outputs['OutScales'] = scales_node
        attrs = {
419
            'window_size': self._window_size,
W
WangZhen 已提交
420
            'bit_length': quant_bits,
421 422
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
423 424 425 426 427 428 429
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

430 431 432 433
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
434

435 436 437
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
438 439 440

        return quant_var_node, scale_out_node

441 442 443 444 445 446 447 448 449 450 451 452 453 454
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
455 456
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
457 458 459 460 461 462
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
463 464 465 466 467 468 469 470 471 472

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
473 474
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
475
            _init_var_node(
476
                state_in_node,
477 478 479 480
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
481 482 483 484 485
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
486 487 488 489 490 491
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
558 559 560 561 562 563 564 565
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
566 567 568
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
569 570 571
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
572 573 574 575
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
576 577 578
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
579 580 581
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
582 583
        return dequant_var_node

584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

W
WangZhen 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
625
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
626 627
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
628 629 630


class QuantizationFreezePass(object):
631 632
    _supported_quantizable_op_type = \
        QuantizationTransformPass._supported_quantizable_op_type
633

W
WangZhen 已提交
634 635 636 637 638
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
639 640
                 weight_quantize_type='abs_max',
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        """
        The freeze pass is used to adjust the quantize operator order, for example:
            1) `activation -> quant -> dequant -> conv2d` will be freezed into
            `activation -> quant -> conv2d -> dequant`
            2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
            and weight will be sacled offline.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationTransformPass and ConvertToInt8Pass must be the same as this.
        """
W
WangZhen 已提交
660 661 662 663 664 665 666 667 668
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
669 670
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
671
            assert op in QuantizationFreezePass._supported_quantizable_op_type, \
672
                op + " is not supported for quantization."
673
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
674 675
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
676 677 678 679 680
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
681 682 683 684 685
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
686 687
        Returns:
            None
688
        """
689 690
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
691 692 693
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
694
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
695 696 697 698
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
699 700 701 702 703 704 705 706
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
707
                    else:
708 709
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
710 711 712 713 714
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
715
                                                    self._weight_bits)
W
WangZhen 已提交
716
                    self._restore_var(input_arg_name, quantized_param_v)
717
                else:
718 719
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
720
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
721

722
        ops = graph.all_op_nodes()
W
WangZhen 已提交
723 724 725 726 727
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

728
        ops = graph.all_op_nodes()
W
WangZhen 已提交
729 730 731
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
732 733 734 735
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
736 737 738 739
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
740 741 742 743

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
744 745 746
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
747 748 749 750
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
751
        graph.resolve_hazard()
752
        return graph
W
WangZhen 已提交
753 754

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
755 756
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
757 758
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
759
        else:
760 761
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
762
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
763

764 765 766 767
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
768 769 770 771 772
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
773 774 775 776 777 778 779 780 781 782 783 784 785 786
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

787
        if len(op_node.output_arg_names()) != 1:
788 789 790
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

791 792
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
793 794 795 796 797
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
798 799
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
800 801 802
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
823
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
824 825
        return dequant_var_node

W
WangZhen 已提交
826
    def _insert_post_dequant_op(self, graph, op_node):
827
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
828 829 830 831 832 833 834
        if len(op_node.input_arg_names()) >= 2 and len(persistable_vars) == 0:
            raise ValueError("The op %s has more than one inputs "
                             "and all of them are not persistable. "
                             "Now, it is not supported!" % (op_node.name()))
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
835
        for var_node in op_node.inputs:
W
WangZhen 已提交
836
            name = var_node.name()
837 838 839 840 841
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
842
                new_in.clear_outputs()
W
WangZhen 已提交
843 844
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
845
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
846 847 848 849
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
850
                max_range *= param_range / scale_v
W
WangZhen 已提交
851
            else:
852
                max_range *= act_range
853
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
854 855
                scale_var_node = self._var_scale_map[original_var_name]

856
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
857 858 859
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

860 861
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
862 863
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
864 865 866
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
867 868
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
869 870 871 872
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
873 874 875 876 877 878
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
879
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
880 881 882 883 884
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

885 886 887
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
888 889 890

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
891
        ops = graph.all_op_nodes()
W
WangZhen 已提交
892 893 894 895 896 897
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

898 899 900 901 902 903
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
927
    def _is_float(self, v):
W
WangZhen 已提交
928 929 930
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
931
    def _quant(self, x, scale, num_bits):
932 933 934 935 936 937
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
938 939 940


class ConvertToInt8Pass(object):
941 942
    _supported_quantizable_op_type = \
        QuantizationTransformPass._supported_quantizable_op_type
943

944 945 946 947
    def __init__(self,
                 scope,
                 place,
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul']):
948 949 950 951 952 953 954 955 956 957 958
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
                8bits weight tensors.
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationTransformPass and QuantizationFreezePass must be the same as this.
        """
959 960 961 962 963 964
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
965 966
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
967
            assert op in ConvertToInt8Pass._supported_quantizable_op_type, \
968
                op + " is not supported for quantization."
969 970

    def apply(self, graph):
971 972 973 974 975 976
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
977 978
        Returns:
            None
979
        """
980 981
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
982 983 984 985
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
986 987 988 989
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
990 991 992 993 994 995 996 997 998 999 1000 1001
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1002
        graph.resolve_hazard()
1003 1004 1005 1006
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1007
        int8_var_node = graph.create_persistable_node(
1008
            name=cpt.to_text(int8_var_node_name),
1009 1010
            var_type=var_node.type(),
            shape=var_node.shape(),
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1026
        ops = graph.all_op_nodes()
1027 1028 1029 1030 1031 1032
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1033 1034 1035 1036 1037 1038
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1039 1040 1041 1042 1043
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1044 1045 1046
        """
        This pass is used to convert the freezed graph for paddle-mobile execution.
        """
1047 1048
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1049 1050

    def apply(self, graph):
1051 1052 1053 1054 1055 1056 1057
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1058 1059
        Returns:
            None
1060
        """
1061
        ops = graph.all_op_nodes()
1062 1063 1064
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1065
                op_node.set_type('quantize')
1066 1067 1068 1069 1070 1071 1072
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1073
                op_node.set_type('dequantize')
1074 1075 1076 1077 1078 1079
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1080
        graph.resolve_hazard()
1081
        return graph
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098


class ScaleForTrainingPass(object):
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1099
        self._teller_set = _out_scale_op_list
1100 1101 1102 1103 1104 1105 1106 1107 1108

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1109 1110
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        self._is_test = graph.is_test()
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                in_node = graph._find_node_by_name(
                    op_node.outputs, op_node.output_arg_names()[0])
                out_node = graph.create_var_node_from_desc(in_node.var())
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
                ins = {'X': in_node}
                outs = {'Out': out_node, 'OutScale': scale_node}
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    data_type = 'float64' if in_node.dtype(
                    ) == core.VarDesc.VarType.FP64 else 'float32'
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, out_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


class ScaleForInferencePass(object):
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1201
        self._teller_set = _out_scale_op_list
1202 1203 1204 1205 1206 1207 1208 1209 1210

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1211 1212
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                scale_name = self._scale_name(op_node.output_arg_names()[0])
                scale_v = np.array(
                    self._scope.find_var(scale_name).get_tensor())[0]
                op_node.op()._set_attr("out_scale", float(scale_v))
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1231 1232 1233


class AddQuantDequantPass(object):
1234 1235 1236 1237 1238 1239 1240 1241 1242
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
        "squeeze", "elementwise_sub"
    ]
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1243 1244 1245 1246 1247
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1248
                 skip_pattern='skip_quant',
1249 1250
                 quantizable_op_type=["elementwise_add", "pool2d", "concat"],
                 is_full_quantized=False):
1251
        """
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        This pass add quant_dequant op for some ops, of which all the inputs must be 
        not persistable.
        The input scales can be obtained from the quant_dequant op.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
                parameters described above.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
                quantized. Default is ["elementwise_add", "pool2d", "concat"]. 
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1273 1274 1275 1276 1277 1278
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1279
        self._skip_pattern = skip_pattern
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type + \
                    AddQuantDequantPass._activation_type, \
                    op_type + " is not supported for quantization."
1290 1291 1292 1293
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1294 1295
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1296 1297 1298

    def apply(self, graph):
        """
1299 1300 1301
        Add quant_dequant before some ops, such as the 'elementwise_add', 
        'pool2d' and 'concat' op.

1302 1303
        Args:
            graph(IrGraph): the target graph.
1304 1305
        Returns:
            None
1306 1307 1308 1309
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1310 1311
        dequantized_vars_map = collections.OrderedDict()

1312 1313 1314
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1315
            if op_node.name() in self._quantizable_op_type:
1316 1317 1318 1319 1320
                if isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1:
                    continue

1321
                if not self._is_input_all_not_persistable(graph, op_node):
1322
                    continue
1323

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
                input_name_list = _op_real_in_out_name[op_node.name()][0]
                for input_name in input_name_list:
                    for arg_name in op_node.input(input_name):
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           arg_name)
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
1338

1339 1340
        # Backward stage, update input link
        for op_node in all_op_nodes:
1341
            if op_node.name() in self._quantizable_grad_op_type:
1342 1343 1344 1345 1346 1347 1348 1349
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1350 1351 1352
        graph.resolve_hazard()
        return graph

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    def _is_input_all_not_persistable(self, graph, op_node):
        '''
        Analyse the real inputs of the op node are all not persistable.
        '''
        is_input_all_not_persistable = True
        op_node_name = op_node.name()

        input_name_list = _op_real_in_out_name[op_node_name][0]
        for input_name in input_name_list:
            for arg_name in op_node.input(input_name):
                in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                is_input_all_not_persistable = (is_input_all_not_persistable and \
                    (not in_node.persistable()))
        return is_input_all_not_persistable

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node