quantization_pass.py 128.6 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
17 18 19 20
try:
    from tqdm import tqdm
except:
    from .utils import tqdm
W
WangZhen 已提交
21
from ..... import compat as cpt
W
WangZhen 已提交
22
from .... import core
23
from ....framework import IrGraph
24
from ....framework import IrNode
25
from ....framework import Operator
W
WangZhen 已提交
26 27
from .... import unique_name

28 29 30 31
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
32
from ....framework import _get_paddle_place
33
from . import utils
34

35
__all__ = [
36 37 38 39 40 41 42 43 44 45 46
    'QuantizationTransformPass',
    'QuantizationFreezePass',
    'ConvertToInt8Pass',
    'TransformForMobilePass',
    'OutScaleForTrainingPass',
    'OutScaleForInferencePass',
    'AddQuantDequantPass',
    'QuantizationTransformPassV2',
    'AddQuantDequantPassV2',
    'ReplaceFakeQuantDequantPass',
    'QuantWeightPass',
47
    'AddQuantDequantForInferencePass',
48
]
W
WangZhen 已提交
49

50 51 52 53 54 55 56 57 58
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

59
_fake_quant_dequant_op_list = [
60 61
    'fake_quantize_dequantize_moving_average_abs_max',
    "fake_channel_wise_quantize_dequantize_abs_max",
62
    "fake_quantize_dequantize_abs_max",
63 64
]

65 66
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

67
_SCALE_DEFAULT_VALUE = 0.001
68 69


70 71 72 73
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
74
        'The scope cannot be set None.'
75
    assert place is not None, \
76
        'The place cannot be set None.'
77 78 79 80
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


81 82 83 84 85
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
86
    for var_name in utils._get_op_input_var_names(op_node):
87 88 89
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
90 91 92
    return is_input_all_not_persistable


93 94 95 96 97 98 99 100 101 102 103 104 105 106
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


107
class QuantizationTransformPass(object):
108
    """
109 110
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
111
    """
112

W
WangZhen 已提交
113
    def __init__(self,
114
                 scope=None,
115
                 place=None,
W
WangZhen 已提交
116 117 118 119
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
120
                 window_size=10000,
121
                 moving_rate=0.9,
122
                 skip_pattern=['skip_quant'],
123 124 125 126 127 128
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
129 130
                 executor=None,
                 is_test=None):
131
        r"""
132
        Constructor.
133

W
WangZhen 已提交
134
        Args:
135
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
136 137
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
138 139
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
140
                where ``x`` is the index of the GPUs.
141
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
142
                the bias is not quantized.
143 144
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
145 146 147 148 149
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
150
            weight_quantize_type(str): quantization type for weights,
151 152 153
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
154 155
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
156
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
157
                will be presented in the name scope of an op. When the skip pattern is
158 159
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
160 161
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
189 190
                Default is None.

191

W
WangZhen 已提交
192 193
        Examples:
        .. code-block:: python
194 195 196 197
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
198
            from paddle.fluid.contrib.slim.graph import IrGraph
199 200
            from paddle.fluid import core

201
            graph = IrGraph(core.Graph(program.desc), for_test=False)
202
            place = fluid.CPUPlace()
203
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
204
            place)
205
            transform_pass.apply(graph)
W
WangZhen 已提交
206
        """
207
        self._scope = scope
208
        self._place = _get_paddle_place(place)
209 210
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
211
        self._skip_pattern = skip_pattern
212 213 214 215 216 217
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
218 219 220 221
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
222 223
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
224 225
        if activation_quantize_type not in quant_type:
            raise ValueError(
226 227 228
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
229 230
        if weight_quantize_type not in quant_type:
            raise ValueError(
231
                "Unknown weight_quantize_type: '%s'. It can only be "
232 233
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
234

235 236 237
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
238
        self._moving_rate = moving_rate
W
WangZhen 已提交
239

240 241
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
242
            assert op in utils._weight_supported_quantizable_op_type, \
243
                op + " is not supported for quantization."
244 245
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
246
        ]
247
        self._is_test = is_test
248
        self._global_step = None
W
WangZhen 已提交
249

250 251 252
        self.create_var_map = {}
        self.create_op_map = {}

253
    def apply(self, graph):
254 255 256 257 258 259 260
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
261 262
        Returns:
            None
263
        """
W
WangZhen 已提交
264
        assert isinstance(graph,
265
                          IrGraph), 'graph must be the instance of IrGraph.'
266 267
        if self._is_test is None:
            self._is_test = graph.is_test()
W
WangZhen 已提交
268 269
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
270
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
271
        processed_vars = []
W
WangZhen 已提交
272

273
        def _quant_preprocess(op_node):
274 275 276
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
277 278
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
279 280
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
281 282
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
283

284
            if user_skipped:
285
                op_node.op()._set_attr("skip_quant", True)
286
                op_node.op()._set_attr("with_quant_attr", True)
287

W
WangZhen 已提交
288
        def _transform_forward(graph, op):
289
            op.op()._set_attr("quantization_type", "qat_with_weight")
290
            op.op()._set_attr("with_quant_attr", True)
291 292
            inputs = op.inputs
            for var_node in inputs:
293 294
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
295 296 297
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
298 299 300
                    name = var_node.name()
                    if name in processed_vars:
                        continue
301 302
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
303 304

                    # if var node is weight and weight_preprocess_func is not None,
305
                    # will insert weight preprocess func
306
                    # to preorocess weight before quantization
307 308
                    # if var node is activation and act_preprocess_func is not None,
                    # will insert activation preprocess func
309 310 311 312 313
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
314 315 316
                        var_node = self._insert_func(graph,
                                                     self._act_preprocess_func,
                                                     var_node, op)
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
333
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
334
                        else self._activation_bits
335 336
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
337 338
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
339
                            utils._channelwise_quant_axis1_ops else 0
340 341 342 343 344
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
345 346
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
347
                            graph, var_node, name, quant_bits, quant_type)
348 349
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
350
                    dequantized_vars[name] = dequant_var_node
351
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
352 353 354

        def _transform_backward(graph, op):
            for var_node in op.inputs:
355 356
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
357 358
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
359
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
360

X
XGZhang 已提交
361 362 363 364 365 366 367 368 369 370
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

371
        if not self._is_test:
W
WangZhen 已提交
372
            self._create_global_step(graph)
373
        ops = graph.all_op_nodes()
374 375 376 377 378 379
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
380 381
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
382 383
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
384 385 386 387 388 389 390 391 392
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph, op) and _has_weight(op):
                        _transform_forward(graph, op)
                t.update()
W
WangZhen 已提交
393 394
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
395
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
396
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
397
        graph.resolve_hazard()
398
        return graph
W
WangZhen 已提交
399

W
WangZhen 已提交
400
    def _create_global_step(self, graph):
401 402
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
403
            counter_name = cpt.to_text('@STEP_COUNTER@')
404
            for node in graph.all_var_nodes():
W
WangZhen 已提交
405
                if node.name() == counter_name:
406 407
                    self._global_step = node
            if self._global_step is None:
408
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
409 410 411 412
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
413 414
                _init_var_node(global_step_in, np.zeros([1], dtype='int64'),
                               self._scope, self._place)
W
WangZhen 已提交
415 416
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
417
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
418 419
                increment_op = graph.create_op_node(
                    op_type='increment',
420 421 422 423 424
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
425 426
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
427 428 429
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
430

431
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
432 433 434 435
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
436 437
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
438
        elif quant_type == 'range_abs_max':
439
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
440
                                                       quant_bits)
441
        elif quant_type == 'moving_average_abs_max':
442 443
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
444

445
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
446 447 448 449 450 451
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
452
            name=self._quantized_var_name(name),
453 454 455
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
456 457 458 459 460 461 462 463
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([1], dtype=data_type)
464
        scale_var_node = graph.create_persistable_node(
465
            name=scale_name,
466
            var_type=var_node.type(),
467
            shape=[1],
468
            var_dtype=var_node.dtype())
469 470
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)

W
WangZhen 已提交
471 472
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
473 474 475 476
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
477
            inputs={'X': var_node},
478 479 480 481
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
482 483 484
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
485 486
        return quant_var_node, scale_var_node

487
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
488 489 490 491 492 493
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
494
            name=self._quantized_var_name(name),
495 496 497
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
498

499 500 501 502 503 504 505 506
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
507
        scale_in_node = graph.create_persistable_node(
508
            name=scale_name,
W
WangZhen 已提交
509 510
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
511
            var_dtype=var_node.dtype())
512
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
W
WangZhen 已提交
513 514 515 516 517

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

518
        if not self._is_test:
W
WangZhen 已提交
519
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
520
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
521 522
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
523
                shape=[self._window_size],
524
                var_dtype=var_node.dtype())
525 526
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
527 528 529
            _init_var_node(scales_node,
                           np.zeros([self._window_size], dtype=data_type),
                           self._scope, self._place)
530

531
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
532 533
            outputs['OutScales'] = scales_node
        attrs = {
534
            'window_size': self._window_size,
W
WangZhen 已提交
535
            'bit_length': quant_bits,
536 537
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
538 539 540 541 542 543 544
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

545 546 547 548
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
549

550 551 552
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
553 554 555

        return quant_var_node, scale_out_node

556
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
557 558 559 560
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
561
            name=self._quantized_var_name(name),
562 563 564
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
565 566 567 568 569 570 571 572
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
573
        scale_in_node = graph.create_persistable_node(
574
            name=scale_name,
575 576 577
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
578
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
579 580 581 582 583 584 585 586 587 588

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
589 590
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
591 592
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
593 594 595 596 597
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
598 599 600 601 602 603
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

636 637
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
638 639 640 641 642 643
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
644
            name=self._quantized_var_name(name),
645 646 647
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
648 649 650 651 652 653 654 655 656
        scale_name = self._quantized_scale_name(name)
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            scale_value = np.array(
                self._scope.find_var(scale_name).get_tensor())
        except:
            scale_value = np.zeros([var_node.shape()[quant_axis]],
                                   dtype=data_type)
657
        scale_var_node = graph.create_persistable_node(
658
            name=self._quantized_scale_name(name),
659
            var_type=var_node.type(),
660
            shape=[var_node.shape()[quant_axis]],
661
            var_dtype=var_node.dtype())
662
        _init_var_node(scale_var_node, scale_value, self._scope, self._place)
663 664 665 666
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
667
                'quant_axis': quant_axis,
668
                'is_test': self._is_test,
669 670 671
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
672 673 674 675
            outputs={
                'Out': quant_var_node,
                'OutScale': scale_var_node
            })
676 677 678 679 680
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
681 682 683 684 685 686 687 688
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
689 690 691
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
692 693 694
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
695 696 697 698
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
699 700 701 702
            inputs={
                'X': var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
703
            outputs={'Out': dequant_var_node})
704 705 706
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
707 708
        return dequant_var_node

709
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
710
                                   quant_bits, quant_axis):
711 712 713 714 715 716 717 718 719 720 721 722 723 724
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
725
                'quant_axis': quant_axis,
726 727
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
728 729 730 731
            inputs={
                'X': var_node,
                'Scales': scale_var_nodes
            },
732 733 734 735 736 737 738
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
767
        copy op_node in source_graph to graph. And will run recursively
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
819 820 821
                in_node = data(var_node.name() + '_tmp_input',
                               shape=var_node.shape(),
                               dtype='float32')
822
                out_node = func(in_node)
823
                graph.out_node_mapping_table[out_node.name] = var_node.name()
824 825 826 827 828 829 830 831 832 833
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

834 835
        tmp_graph = IrGraph(core.Graph(tmp_program.desc),
                            for_test=graph._for_test)
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
876 877
                graph.all_var_nodes(),
                target_out_node.name() + "@GRAD")
878
            in_node_grad = graph._find_node_by_name(
879 880
                graph.all_var_nodes(),
                target_in_node.name() + "@GRAD")
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927 928
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
929
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
930
        """
H
handiz 已提交
931
        return "%s@scale" % (var_name)
W
WangZhen 已提交
932

933
    def _is_skip_quant(self, graph, op_node):
934 935 936 937 938 939 940 941 942 943 944 945
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
946 947 948
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
949 950
        return is_skip

W
WangZhen 已提交
951 952

class QuantizationFreezePass(object):
953

W
WangZhen 已提交
954 955 956
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
957
                 bias_correction=False,
W
WangZhen 已提交
958 959
                 weight_bits=8,
                 activation_bits=8,
960
                 round_type='round',
961
                 weight_quantize_type='abs_max',
962
                 quantizable_op_type=None):
963 964
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
965
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
966
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
967 968
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
969 970 971

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
972 973
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
974 975
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
976 977
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
978
            round_type(str, optional): The method of converting the quantized weights
979 980 981
                value float->int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the integer.
                'adaround' is refer to https://arxiv.org/abs/2004.10568.
982 983
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight,
984
                since weights are fixed once the model is well trained.
985 986
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
987
        """
W
WangZhen 已提交
988 989 990 991 992
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
993
        self._bias_correction = bias_correction
994
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
995 996
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
997
        self._round_type = round_type
W
WangZhen 已提交
998
        self._weight_quantize_type = weight_quantize_type
999 1000
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1001 1002
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1003
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1004 1005

    def apply(self, graph):
1006 1007 1008 1009 1010
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1011 1012
        Returns:
            None
1013
        """
1014
        # Get input scales in fake quant op and process weights
1015 1016
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1017 1018 1019
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1020
                input_arg_name = op_node.input('X')[0]
1021 1022 1023 1024
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1025 1026
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
1027 1028
                        op_node.outputs,
                        op_node.output('OutScale')[0])
1029 1030 1031 1032 1033 1034 1035 1036 1037
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1038
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1039
                        scale_v = scale_v[0]
W
WangZhen 已提交
1040
                    else:
1041
                        scale_v = scale_v.tolist()
1042
                    self._quant_var_scale_map[input_arg_name] = scale_v
1043
                    # Quantize weight and restore
1044
                    if self._round_type == 'round':
1045
                        param_v = self._load_var(input_arg_name)
1046 1047
                        if any(
                                _check_grandchild_op_node(op_node, op)
1048
                                for op in utils._channelwise_quant_axis1_ops):
1049 1050 1051
                            quant_axis = 1
                        else:
                            quant_axis = 0
1052 1053
                        quantized_param_v = utils.quant_tensor(
                            param_v.copy(), scale_v, quant_axis,
1054 1055
                            self._weight_bits)
                        quantized_param_v = np.round(quantized_param_v)
1056
                        # Weight bias correction
1057
                        if self._bias_correction == True:
1058 1059 1060 1061 1062 1063
                            quantized_param_v = utils.bias_correction_w(
                                param_v,
                                quantized_param_v,
                                scale_v,
                                quant_axis,
                                weight_bits=self._weight_bits)
1064
                            quantized_param_v = np.round(quantized_param_v)
1065
                        self._restore_var(input_arg_name, quantized_param_v)
1066
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1067

1068
        # Remove all fake dequant op
1069
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1070 1071 1072 1073 1074
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1075
        # Insert post dequant op
1076
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1077
        for op_node in ops:
1078 1079 1080
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1081
                if self._weight_quantize_type == 'channel_wise_abs_max':
1082
                    quant_axis = 1 if op_node.name() in \
1083
                        utils._channelwise_quant_axis1_ops else 0
1084 1085
                    self._insert_post_channel_dequant_op(
                        graph, op_node, quant_axis)
1086 1087
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1088

1089
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1090 1091
        for op_node in ops:
            for var_node in op_node.inputs:
1092 1093 1094
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1095 1096 1097 1098
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1099
        graph.resolve_hazard()
1100
        return graph
W
WangZhen 已提交
1101 1102

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1103 1104
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1105 1106
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1107
        else:
1108 1109
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1110
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1111

1112
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1113 1114 1115
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1116 1117 1118 1119 1120
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1121 1122 1123
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1124
            scale_v = self._quant_var_scale_map[original_var_name]
1125 1126 1127 1128 1129 1130 1131 1132
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1133
                scale_var_node = self._quant_var_scale_map[original_var_name]
1134

1135
        if len(op_node.output_arg_names()) != 1:
1136 1137 1138
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1139
        output_var_node = graph._find_node_by_name(
1140 1141
            op_node.outputs,
            op_node.output_arg_names()[0])
1142 1143 1144 1145 1146
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1147 1148
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1149 1150
        _init_var_node(weight_scale_node, channel_scale.astype(data_type),
                       self._scope, self._place)
1151 1152 1153 1154 1155
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1156 1157 1158
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1159 1160
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1161 1162 1163 1164
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1165
                'quant_axis': quant_axis,
1166 1167
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1178
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1179 1180
        return dequant_var_node

W
WangZhen 已提交
1181
    def _insert_post_dequant_op(self, graph, op_node):
1182
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1183 1184 1185
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1186
        for var_node in op_node.inputs:
W
WangZhen 已提交
1187
            name = var_node.name()
1188 1189 1190 1191 1192
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1193
                new_in.clear_outputs()
W
WangZhen 已提交
1194 1195
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1196
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1197 1198 1199 1200
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1201
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1202
                max_range *= param_range / scale_v
W
WangZhen 已提交
1203
            else:
1204
                max_range *= act_range
1205
                assert isinstance(scale_v, IrNode)
1206
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1207

1208
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1209 1210 1211
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1212
        output_var_node = graph._find_node_by_name(
1213 1214
            op_node.outputs,
            op_node.output_arg_names()[0])
W
WangZhen 已提交
1215 1216
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1217 1218 1219
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1220 1221
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1222 1223 1224 1225
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
1226 1227 1228 1229
            inputs={
                'X': output_var_node,
                'Scale': scale_var_node
            },
W
WangZhen 已提交
1230 1231 1232 1233
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1234
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1235 1236 1237 1238 1239
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1240 1241 1242
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1243 1244 1245

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1246
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1247 1248 1249 1250 1251 1252
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1253 1254 1255 1256 1257 1258
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
H
handiz 已提交
1271 1272
        if var_name.endswith('@scale'):
            return var_name[:-len('@scale')]
W
WangZhen 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1282
    def _is_float(self, v):
W
WangZhen 已提交
1283 1284 1285
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1286 1287

class ConvertToInt8Pass(object):
1288

1289
    def __init__(self, scope, place, quantizable_op_type=None):
1290 1291 1292 1293 1294
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1295 1296 1297
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1298 1299
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1300
        """
1301 1302 1303 1304 1305
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1306
        self._place = _get_paddle_place(place)
1307 1308

    def apply(self, graph):
1309
        """
T
tianshuo78520a 已提交
1310 1311
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1312 1313 1314

        Args:
            graph(IrGraph): the applied graph.
1315 1316
        Returns:
            None
1317
        """
1318 1319
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1320 1321
        input_map = {}
        for op_node in ops:
1322 1323
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1324 1325 1326 1327
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
1328 1329
                            int8_var_node = self._convert_to_int8(
                                graph, var_node)
1330 1331 1332 1333 1334 1335
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1336
        graph.resolve_hazard()
1337 1338 1339 1340
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1341
        int8_var_node = graph.create_persistable_node(
1342
            name=cpt.to_text(int8_var_node_name),
1343 1344
            var_type=var_node.type(),
            shape=var_node.shape(),
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1360
        ops = graph.all_op_nodes()
1361 1362 1363 1364 1365 1366
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1367 1368 1369 1370 1371 1372
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1373 1374 1375 1376
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
1377

1378
    def __init__(self):
1379
        """
T
tianshuo78520a 已提交
1380
        This pass is used to convert the frozen graph for paddle-mobile execution.
1381
        """
1382 1383
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1384 1385

    def apply(self, graph):
1386 1387 1388 1389 1390 1391 1392
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1393 1394
        Returns:
            None
1395
        """
1396
        ops = graph.all_op_nodes()
1397 1398 1399
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1400
                op_node.set_type('quantize')
1401 1402 1403 1404 1405 1406 1407
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1408
                op_node.set_type('dequantize')
1409 1410 1411 1412 1413 1414
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1415
        graph.resolve_hazard()
1416
        return graph
1417 1418


1419
class OutScaleForTrainingPass(object):
1420

1421 1422 1423 1424 1425 1426
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 is_test=None,
                 scale_dict=None):
1427 1428 1429 1430 1431 1432
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1433 1434 1435
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1436 1437 1438
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1439
        self._place = _get_paddle_place(place)
1440
        self._moving_rate = moving_rate
1441
        self._is_test = is_test
1442
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1443
        self._scale_dict = scale_dict
1444 1445 1446 1447 1448 1449 1450 1451 1452

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1453 1454
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1455 1456
        if self._is_test is None:
            self._is_test = graph.is_test()
1457 1458 1459 1460
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        with tqdm(total=len(target_ops),
                  bar_format='Adding OutScale op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in target_ops:
                for output_var_name in utils._get_op_output_var_names(op):
                    in_node = graph._find_node_by_name(op.outputs,
                                                       output_var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
1471

1472 1473
                    data_type = 'float64' if in_node.dtype() \
                        == core.VarDesc.VarType.FP64 else 'float32'
1474
                    try:
1475
                        graph._find_node_by_name(
1476 1477
                            graph.all_var_nodes(),
                            self._scale_name(in_node.name()))
1478
                        continue
1479 1480 1481 1482 1483 1484
                    except:
                        scale_node = graph.create_persistable_node(
                            name=self._scale_name(in_node.name()),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            shape=[1],
                            var_dtype=in_node.dtype())
1485 1486 1487 1488 1489 1490 1491 1492
                        if self._scale_dict is not None:
                            try:
                                scale_value = np.array(
                                    [self._scale_dict[in_node.name()]])
                            except:
                                scale_value = np.ones([1], dtype=data_type)
                        else:
                            scale_value = np.ones([1], dtype=data_type)
1493 1494
                    _init_var_node(scale_node, scale_value, self._scope,
                                   self._place)
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
                    ins = {'X': in_node}
                    outs = {'OutScale': scale_node}
                    if not self._is_test:
                        state_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_state@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(state_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        accum_in_node = graph.create_persistable_node(
                            name=unique_name.generate('scale_accum@'),
                            var_type=core.VarDesc.VarType.LOD_TENSOR,
                            var_dtype=in_node.dtype(),
                            shape=[1])
                        _init_var_node(accum_in_node,
                                       np.ones([1], dtype=data_type),
                                       self._scope, self._place)
                        state_out_node = graph.create_var_node_from_desc(
                            state_in_node.var())
                        accum_out_node = graph.create_var_node_from_desc(
                            accum_in_node.var())

                        ins['InState'] = state_in_node
                        ins['InAccum'] = accum_in_node
                        outs['OutState'] = state_out_node
                        outs['OutAccum'] = accum_out_node

                    attrs = {
                        'moving_rate': self._moving_rate,
                        'is_test': self._is_test,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    }
                    scale_op_node = graph.create_op_node(
                        op_type='moving_average_abs_max_scale',
                        attrs=attrs,
                        inputs=ins,
                        outputs=outs)
C
ceci3 已提交
1536 1537 1538 1539 1540

                    next_op_node = None
                    if len(in_node.outputs) > 0:
                        next_op_node = in_node.outputs[0]

1541 1542
                    graph.link_to(in_node, scale_op_node)
                    graph.link_to(scale_op_node, scale_node)
C
ceci3 已提交
1543 1544 1545
                    if next_op_node:
                        graph.link_to(scale_node, next_op_node)

1546 1547 1548 1549 1550 1551
                    if not self._is_test:
                        graph.link_to(state_in_node, scale_op_node)
                        graph.link_to(accum_in_node, scale_op_node)
                        graph.link_to(scale_op_node, state_out_node)
                        graph.link_to(scale_op_node, accum_out_node)
                t.update()
1552 1553 1554 1555 1556 1557
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1558
        return "%s@scale" % (var_name)
1559 1560


1561
class OutScaleForInferencePass(object):
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1572
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST
1573 1574 1575 1576 1577 1578 1579 1580 1581

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1582 1583
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1584 1585 1586
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1587
                var_names = utils._get_op_output_var_names(op_node)
1588
                for var_name in var_names:
1589 1590 1591 1592 1593 1594
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1595
                    scale_name = self._scale_name(var_name)
1596 1597 1598 1599 1600 1601 1602
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1603

1604 1605
                    argname_index = utils._get_output_name_index(
                        op_node, var_name)
1606 1607 1608
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1609
                        + "_threshold", float(scale_value))
1610
                    op_node.op()._set_attr("with_quant_attr", True)
1611 1612 1613 1614 1615 1616 1617
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
1618
        return "%s@scale" % (var_name)
1619 1620 1621


class AddQuantDequantPass(object):
1622
    """
1623
    Quantize the ops that do not have weights, and add quant_dequant op for the
1624 1625
    quantized ops's inputs.
    """
1626

1627 1628 1629
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1630 1631 1632 1633 1634
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1635
                 skip_pattern=["skip_quant"],
1636
                 quantizable_op_type=["elementwise_add", "pool2d"],
1637 1638 1639
                 is_full_quantized=False,
                 is_test=None,
                 scale_dict=None):
1640
        """
1641
        Constructor.
1642 1643 1644

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1645 1646 1647
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1648
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
1649 1650 1651 1652 1653 1654
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
1655 1656 1657
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
1658
                quantization to all supported quantizable op type. If set is_full_quantized
1659
                as False, only apply quantization to the op type according to the input
1660
                quantizable_op_type.
1661 1662
        """
        self._scope = scope
1663
        self._place = _get_paddle_place(place)
1664 1665
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
1666
        self._is_test = is_test
1667
        self._skip_pattern = skip_pattern
1668
        self._scale_dict = scale_dict
1669 1670

        if is_full_quantized:
1671
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
1672 1673 1674
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1675
                assert op_type in utils._act_supported_quantizable_op_type, \
1676
                    op_type + " is not supported for quantization."
1677 1678 1679 1680
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1681 1682
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1683 1684 1685

    def apply(self, graph):
        """
1686 1687
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1688

1689 1690
        Args:
            graph(IrGraph): the target graph.
1691 1692
        Returns:
            None
1693 1694 1695
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1696 1697
        if self._is_test is None:
            self._is_test = graph.is_test()
1698 1699
        dequantized_vars_map = collections.OrderedDict()

1700 1701
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized or \
                        (not _is_input_all_not_persistable(graph, op_node)):
                        continue
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
                    op_node.op()._set_attr("quantization_type",
                                           "qat_without_weight")
                    op_node.op()._set_attr("activation_bits", self._quant_bits)
                    op_node.op()._set_attr("with_quant_attr", True)
                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if arg_name in dequantized_vars_map:
                            quant_var_node = dequantized_vars_map[arg_name]
                        else:
                            quant_var_node, _ = \
                                self._inser_quant_dequant_moving_average_abs_max_op(
                                graph, in_node, self._quant_bits)
                            dequantized_vars_map[arg_name] = quant_var_node
                        graph.update_input_link(in_node, quant_var_node,
                                                op_node)
            t.update()
1739

1740 1741
        # Backward stage, update input link
        for op_node in all_op_nodes:
1742
            if op_node.name() in self._quantizable_grad_op_type:
1743 1744
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
1745 1746
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
1747 1748 1749 1750
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1751 1752 1753 1754 1755 1756 1757
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
1758 1759 1760 1761 1762
        quant_var_node = graph.create_var_node(name="{}.quant_dequant".format(
            var_node.name()),
                                               var_type=var_node.type(),
                                               shape=var_node.shape(),
                                               var_dtype=var_node.dtype())
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
        scale_name = "{}.quant_dequant@scale".format(var_node.name())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        try:
            if self._scale_dict is not None and var_node.name(
            ) in self._scale_dict.keys():
                scale_value = np.array([self._scale_dict[var_node.name()]],
                                       dtype=data_type)
            else:
                scale_value = np.array(
                    self._scope.find_var(scale_name).get_tensor(),
                    dtype=data_type)
        except:
            scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)

1778
        scale_in_node = graph.create_persistable_node(
H
handiz 已提交
1779
            name="{}.quant_dequant@scale".format(var_node.name()),
1780 1781 1782 1783
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())

1784
        _init_var_node(scale_in_node, scale_value, self._scope, self._place)
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
1796 1797
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
1798 1799 1800 1801 1802
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
1803 1804 1805 1806 1807 1808
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854


class InsertQuantizeLinear(object):
    """
    Insert quantize_linear and dequantize_linear op before ops.

    Args:
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        scope(paddle.Scope): scope is used to get the weight tensor values.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        quant_axis(int, optional): quantization dimension of channels. When it is greater than or
            equal to 0, it will quantization with per channel, else quantization with per layer.
            Default is -1.
        channel_wise(bool, optional): Whether quantization with per channel or not. Default is False.
1855
        moving_rate(float): the rate for 'moving average' method.
1856
        is_test(bool, optional): Whether quantization with training or not. Default is True.
1857
        scale_dict(dict, optional): calibration ranges of tensors output.
1858 1859 1860 1861 1862 1863 1864 1865
    """

    def __init__(self,
                 place,
                 scope,
                 quant_bits=8,
                 quant_axis=-1,
                 channel_wise=False,
1866
                 moving_rate=0.9,
1867 1868
                 is_test=True,
                 scale_dict=None):
1869 1870 1871 1872 1873 1874
        self._place = place
        self._scope = scope
        self.quant_bits = quant_bits
        self.quant_axis = quant_axis
        self.channel_wise = channel_wise
        self._is_test = is_test
1875
        self._moving_rate = moving_rate
1876
        self._scale_dict = scale_dict
1877

1878
    def insert_quant_op(self, graph, var_node, var_name=None):
1879
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
1880 1881 1882 1883 1884 1885
        var_name = var_node.name() if not var_name else var_name
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
1886 1887
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1888
        scale_name = self._quantized_scale_name(var_name)
1889 1890 1891
        if self.channel_wise:
            scale_var_shape = var_node.shape()[self.quant_axis]
            scale_var_type = core.VarDesc.VarType.LOD_TENSOR
1892 1893
            init_scale_value = np.ones(scale_var_shape,
                                       dtype=data_type) * _SCALE_DEFAULT_VALUE
1894 1895 1896 1897
        else:
            scale_var_shape = 1
            scale_var_type = var_node.type()
            init_scale_value = np.array([_SCALE_DEFAULT_VALUE], dtype=data_type)
1898 1899 1900 1901 1902 1903

        if self._scale_dict is not None and var_node.name(
        ) in self._scale_dict.keys():
            init_scale_value = np.array([self._scale_dict[var_node.name()]],
                                        dtype=data_type)

1904
        scale_var_node = graph.create_persistable_node(
1905
            name=scale_name,
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
            var_type=scale_var_type,
            shape=[scale_var_shape],
            var_dtype=var_node.dtype())
        _init_var_node(scale_var_node, init_scale_value, self._scope,
                       self._place)

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1919 1920 1921
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1922 1923 1924 1925 1926

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

1927
        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
1928
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
1929 1930
        outputs = {"Y": quant_var_node}
        if not self._is_test:
1931 1932
            scale_out_node = graph.create_var_node_from_desc(
                scale_var_node.var())
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(state_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(accum_in_node, np.ones([1], dtype=data_type),
                           self._scope, self._place)
            state_out_node = graph.create_var_node_from_desc(
                state_in_node.var())
            accum_out_node = graph.create_var_node_from_desc(
                accum_in_node.var())

1954
            outputs["OutScale"] = scale_out_node
1955 1956 1957 1958 1959 1960
            inputs['InState'] = state_in_node
            inputs['InAccum'] = accum_in_node
            outputs['OutState'] = state_out_node
            outputs['OutAccum'] = accum_out_node
            attrs["is_test"] = self._is_test
            attrs['moving_rate'] = self._moving_rate
1961

1962 1963 1964 1965
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)
1966 1967 1968 1969 1970 1971 1972

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        if not self._is_test:
1973 1974 1975 1976
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
            graph.link_to(quant_op_node, scale_out_node)
        return quant_var_node, scale_var_node

    def insert_dequant_op(self, graph, var_node, scale_var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())

        zero_point_node = None
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(dequant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
1996 1997 1998
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)
1999 2000 2001 2002 2003 2004

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": self.quant_axis, "bit_length": self.quant_bits}
2005
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
2006

2007 2008 2009 2010
        quant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs={"Y": dequant_var_node})
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, dequant_var_node)
        return dequant_var_node

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
        Return the scale name of quantized variable for the input `var_name`.
        """
H
handiz 已提交
2035
        return "%s@scale" % (var_name)
2036 2037 2038 2039 2040 2041 2042 2043

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


2044
class QuantizationTransformPassV2(QuantizationTransformPass):
2045 2046
    """
    Quantize the ops that have weights. Add quant and dequant ops for
2047
    the quantized ops's inputs. It is used in the new format of quantization.
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
    """

    def __init__(self,
                 scope=None,
                 place=None,
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
                 window_size=10000,
                 moving_rate=0.9,
                 skip_pattern=['skip_quant'],
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
2066 2067
                 executor=None,
                 is_test=None):
2068 2069 2070 2071 2072 2073 2074
        r"""
        Args:
            scope(paddle.Scope): When activation use 'range_abs_max' as the quantize
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
2075
                where ``x`` is the index of the GPUs.
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            weight_bits(int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
            weight_quantize_type(str): quantization type for weights,
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
2093 2094
                detected in an op's name scope, the corresponding op will not be quantized.
            quantizable_op_type(list[str]): List the type of ops that will be quantized.
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(paddle.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
                Default is None.

        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            transform_pass = QuantizationTransformPassV2(scope, place)
            transform_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._skip_pattern = skip_pattern
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
        if activation_quantize_type not in quant_type:
            raise ValueError(
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
        if weight_quantize_type not in quant_type:
            raise ValueError(
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))

        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
        self._moving_rate = moving_rate

        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
            assert op in utils._weight_supported_quantizable_op_type, \
                op + " is not supported for quantization."
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
        ]
2181
        self._is_test = is_test
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
        self._global_step = None

        self.create_var_map = {}
        self.create_op_map = {}

        # marked the variable which has been dequantized.
        self.dequantized_vars = collections.OrderedDict()
        self.persistable_vars = []
        self.processed_vars = []

    def _quant_preprocess(self, op_node):
        user_skipped = False
        if isinstance(self._skip_pattern, list):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            any(pattern in op_node.op().attr("op_namescope") \
                                for pattern in self._skip_pattern)
        elif isinstance(self._skip_pattern, str):
            user_skipped = op_node.op().has_attr("op_namescope") and \
                            op_node.op().attr("op_namescope").find(
                                self._skip_pattern) != -1

        if user_skipped:
            op_node.op()._set_attr("skip_quant", True)
            op_node.op()._set_attr("with_quant_attr", True)

    def _transform_forward(self, graph, op):
        op.op()._set_attr("quantization_type", "qat_with_weight")
        inputs = op.inputs
        for var_node in inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
            else:
                name = var_node.name()
                if name in self.processed_vars:
                    continue
                is_weight = True if var_node.name() in self.persistable_vars \
                    else False

                # if var node is weight and weight_preprocess_func is not None,
2223
                # will insert weight preprocess func
2224
                # to preorocess weight before quantization
2225 2226
                # if var node is activation and act_preprocess_func is not None,
                # will insert activation preprocess func
2227 2228
                # to preorocess activation before quantization
                if is_weight and self._weight_preprocess_func is not None:
2229 2230 2231
                    var_node = self._insert_func(graph,
                                                 self._weight_preprocess_func,
                                                 var_node, op)
2232
                elif not is_weight and self._act_preprocess_func is not None:
2233 2234 2235
                    var_node = self._insert_func(graph,
                                                 self._act_preprocess_func,
                                                 var_node, op)
2236 2237 2238 2239 2240 2241 2242 2243

                # if var node is weight and weight_quantize_func is not None,
                # will insert weight quantize func to quantize and dequantize weight
                # if var node is activation and act_quantize_func is not None,
                # will insert act quantize func to quantize and dequantize activation
                if is_weight and self._weight_quantize_func is not None:
                    target_out_node = self._insert_func(
                        graph, self._weight_quantize_func, var_node, op)
2244
                    self.processed_vars.append(name)
2245 2246
                    continue
                elif not is_weight and self._act_quantize_func is not None:
2247 2248 2249
                    target_out_node = self._insert_func(graph,
                                                        self._act_quantize_func,
                                                        var_node, op)
2250
                    self.processed_vars.append(name)
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
                    continue

                quant_bits = self._weight_bits if var_node.name() in self.persistable_vars \
                    else self._activation_bits
                quant_type = self._weight_quantize_type if is_weight \
                    else self._activation_quantize_type
                quant_axis = -1
                channel_wise = False
                if quant_type == 'channel_wise_abs_max':  # Weight quantization
                    channel_wise = True
                    quant_axis = 1 if op.name() in \
                        utils._channelwise_quant_axis1_ops else 0
                insert_quant_pass = InsertQuantizeLinear(
                    self._place,
                    self._scope,
                    quant_bits=quant_bits,
                    quant_axis=quant_axis,
                    channel_wise=channel_wise,
2269
                    moving_rate=self._moving_rate,
2270
                    is_test=self._is_test)
2271
                quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
2272
                    graph, var_node, var_name=name)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
                dequant_var_node = insert_quant_pass.insert_dequant_op(
                    graph, quant_var_node, scale_var_node)

                self.dequantized_vars[name] = dequant_var_node
            graph.update_input_link(var_node, dequant_var_node, op)

    def _transform_backward(self, graph, op):
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            if var_node.name() in self.dequantized_vars:
                dequant_var_node = self.dequantized_vars[var_node.name()]
                graph.update_input_link(var_node, dequant_var_node, op)

    def _has_weight(self, op):
        has_weight = False
        for var_node in op.inputs:
            if var_node.name() not in op.input_arg_names():
                continue
            name = var_node.name()
            if var_node.name() in self.persistable_vars:
                has_weight = True
        return has_weight

    def apply(self, graph):
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2310 2311
        if self._is_test is None:
            self._is_test = graph.is_test()
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        ops = graph.all_op_nodes()
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                self._quant_preprocess(op)
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
        with tqdm(total=len(ops),
                  bar_format=
                  'Adding quant op with weight:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op in ops:
                if op.name() in self._quantizable_ops:
                    if not self._is_skip_quant(graph,
                                               op) and self._has_weight(op):
                        self._transform_forward(graph, op)
                t.update()
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        # The loop for renaming the inputs of backward op.
        for op in ops:
            if op.name() in self._quantizable_grad_ops and self._has_weight(op):
                self._transform_backward(graph, op)
        return graph


class AddQuantDequantPassV2(object):
    """
    Quantize the ops that do not have weights, and add quant_linear and dequant_linear
2348
    op for the quantized ops's inputs. It is used in the new format of quantization.
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
    """

    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 skip_pattern=["skip_quant"],
                 quantizable_op_type=["elementwise_add", "pool2d"],
2361
                 is_full_quantized=False,
2362 2363
                 is_test=None,
                 scale_dict=None):
2364 2365 2366 2367 2368 2369
        """
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2370
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max'
2371 2372 2373 2374 2375 2376
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
2377 2378 2379
            quantizable_op_type(list[str], optional): List the type of ops that will be
                quantized. Default is ["elementwise_add", "pool2d"].
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply
2380
                quantization to all supported quantizable op type. If set is_full_quantized
2381
                as False, only apply quantization to the op type according to the input
2382
                quantizable_op_type.
2383
            scale_dict(dict, optional): calibration ranges of tensors output.
2384

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import AddQuantDequantPassV2
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            add_quant_dequant_pass = AddQuantDequantPassV2(scope, place)
            add_quant_dequant_pass.apply(graph)
        """
        self._scope = scope
        self._place = _get_paddle_place(place)
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
2404
        self._is_test = is_test
2405
        self._skip_pattern = skip_pattern
2406
        self._scale_dict = scale_dict
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434

        if is_full_quantized:
            self._quantizable_op_type = utils._act_supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
                assert op_type in utils._act_supported_quantizable_op_type, \
                    op_type + " is not supported for quantization."
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
        self.persistable_vars = []

    def apply(self, graph):
        """
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.

        Args:
            graph(IrGraph): the target graph.
        Returns:
            None
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
2435 2436
        if self._is_test is None:
            self._is_test = graph.is_test()
2437 2438 2439 2440 2441 2442 2443 2444
        dequantized_vars_map = collections.OrderedDict()

        self.persistable_vars = [
            p.name() for p in graph.all_persistable_nodes()
        ]

        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        with tqdm(total=len(all_op_nodes),
                  bar_format=
                  'Adding quant activation op:|{bar}| {n_fmt}/{total_fmt}',
                  ncols=80) as t:
            for op_node in all_op_nodes:
                if op_node.name() in self._quantizable_op_type:
                    is_skip = False
                    if isinstance(self._skip_pattern, list):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                    elif isinstance(self._skip_pattern, str):
                        is_skip = op_node.op().has_attr("op_namescope") and \
                                    op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
                    is_quantized = op_node.op().has_attr("quantization_type") and \
                        op_node.op().attr("quantization_type") == "qat_with_weight"
                    if is_skip or is_quantized:
2461
                        continue
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477

                    arg_names = utils._get_op_input_var_names(op_node)
                    for arg_name in arg_names:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, arg_name)
                        if in_node.persistable():
                            continue
                        if arg_name in dequantized_vars_map:
                            dequant_var_node = dequantized_vars_map[arg_name]
                        else:
                            insert_quant_pass = InsertQuantizeLinear(
                                self._place,
                                self._scope,
                                quant_bits=self._quant_bits,
                                quant_axis=-1,
                                channel_wise=False,
2478
                                moving_rate=self._moving_rate,
2479 2480
                                is_test=self._is_test,
                                scale_dict=self._scale_dict)
2481 2482 2483 2484 2485 2486 2487 2488
                            quant_var_node, scale_var_node = insert_quant_pass.insert_quant_op(
                                graph, in_node)
                            dequant_var_node = insert_quant_pass.insert_dequant_op(
                                graph, quant_var_node, scale_var_node)
                            dequantized_vars_map[arg_name] = dequant_var_node
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)
                t.update()
2489 2490 2491 2492 2493 2494

        # Backward stage, update input link
        for op_node in all_op_nodes:
            if op_node.name() in self._quantizable_grad_op_type:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
2495 2496
                        in_node = graph._find_node_by_name(
                            op_node.inputs, input_name)
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

        return graph


class ReplaceFakeQuantDequantPass(object):
    """
    replace quant-dequant ops with quantize_linear and dequantize_linear ops.
    """

2509
    def __init__(self, scope, place, quant_bits=8):
2510 2511 2512 2513 2514 2515
        r"""
        Args:
            scope(paddle.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
2516
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
        Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ReplaceFakeQuantDequantPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            replace_pass = ReplaceFakeQuantDequantPass(scope, place)
            replace_pass.apply(graph)
        """
        self._place = _get_paddle_place(place)
        self._scope = scope
2535
        self._quant_bits = quant_bits
2536 2537 2538 2539 2540 2541 2542 2543 2544
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_dequant_ops = []

        for op in graph.all_op_nodes():
2545 2546
            if op.name() in _fake_quant_dequant_op_list or op.name(
            ) == "moving_average_abs_max_scale":
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
                fake_quant_dequant_ops.append(op)

        for _op in fake_quant_dequant_ops:
            self._replace_op(graph, _op)
            graph.safe_remove_nodes(_op)

        graph.resolve_hazard()
        return graph

    def _replace_op(self, graph, op):
        x_node = graph._find_node_by_name(op.inputs, op.input("X")[0])
        out_node = graph._find_node_by_name(op.outputs, op.output("Out")[0])
        scale_node = graph._find_node_by_name(op.outputs,
                                              op.output("OutScale")[0])

        quant_axis = op.op().attr("quant_axis") if op.op().has_attr(
            "quant_axis") else -1
        bit_length = op.op().attr("bit_length") if op.op().has_attr(
2565
            "bit_length") else self._quant_bits
2566 2567 2568 2569 2570 2571 2572 2573 2574

        zero_point_node = None
        quanted_node = x_node
        if zero_point_node is None:
            zero_point_node = graph.create_persistable_node(
                name=self._zero_point_name(quanted_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
            _init_var_node(zero_point_node,
                           np.zeros(scale_node.shape(), dtype="int32"),
                           self._scope, self._place)

        quant_var_node = graph.create_var_node(name=self._quantized_var_name(
            x_node.name()),
                                               var_type=x_node.type(),
                                               shape=x_node.shape(),
                                               var_dtype=x_node.dtype())
        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs={
                                                 "quant_axis": quant_axis,
2587
                                                 "bit_length": bit_length
2588 2589 2590 2591 2592 2593 2594
                                             },
                                             inputs={
                                                 "X": x_node,
                                                 "Scale": scale_node,
                                                 "ZeroPoint": zero_point_node
                                             },
                                             outputs={"Y": quant_var_node})
2595 2596 2597 2598 2599
        graph.link_to(x_node, quant_op_node)
        graph.link_to(scale_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs={
                                                   "quant_axis": quant_axis,
                                                   "bit_length": bit_length
                                               },
                                               inputs={
                                                   "X": quant_var_node,
                                                   "Scale": scale_node,
                                                   "ZeroPoint": zero_point_node
                                               },
                                               outputs={"Y": out_node})
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, out_node)

    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _zero_point_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@zero_point" % (var_name)


class QuantWeightPass(object):
    """
    quant weights and remove weights input quantize_linear node. for example:
    `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> dequant -> conv2d`,
    and weight will be scaled offline.

    Args:
        scope(paddle.Scope): scope is used to get the weight tensor values.
        place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
            If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
        bias_correction(bool): whether use bias correction for post-training quantization.
             https://arxiv.org/abs/1810.05723.
        quant_bits(int, optional): quantization bit number for weight. Default is 8.
        save_int_weight(bool, optional): Whether the type saving the weight is int. Default is True.
2644

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
    Examples:
        .. code-block:: python
            # The original graph will be rewrite.
            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import QuantWeightPass
            from paddle.fluid.contrib.slim.graph import IrGraph
            from paddle.fluid import core

            graph = IrGraph(core.Graph(program.desc), for_test=False)
            place = paddle.CPUPlace()
            scope = paddle.static.global_scope()
            quant_weight_pass = QuantWeightPass(scope, place)
            quant_weight_pass.apply(graph)
    """

    def __init__(self,
                 scope,
                 place,
                 bias_correction=False,
                 quant_bits=8,
                 save_int_weight=True):
        self._place = _get_paddle_place(place)
        self._scope = scope
        self._bias_correction = bias_correction
        self._quant_bits = quant_bits
        self._save_int_weight = save_int_weight
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."

    def apply(self, graph):
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        fake_quant_ops_for_weight = []

        fake_quant_ops = [
            op for op in graph.all_op_nodes() if op.name() == "quantize_linear"
        ]
        for _op in fake_quant_ops:
            x_node = graph._find_node_by_name(_op.inputs, _op.input("X")[0])
            if x_node.persistable():
                scale_node = graph._find_node_by_name(_op.inputs,
                                                      _op.input("Scale")[0])
                zero_point_node = graph._find_node_by_name(
2689 2690
                    _op.inputs,
                    _op.input("ZeroPoint")[0])
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
                out_node = graph._find_node_by_name(_op.outputs,
                                                    _op.output("Y")[0])

                scale_v = self._load_var(scale_node.name())
                assert scale_v.ndim in [1, 2
                                        ], "the dim of scale_v should be 1 or 2"
                if scale_v.ndim == 2:
                    scale_v = scale_v[0]
                if scale_v.size == 1 and _op.name() == 'abs_max':
                    scale_v = scale_v[0]
                else:
                    scale_v = scale_v.tolist()
                param_v = self._load_var(x_node.name())
                quant_axis = _op.op().attr("quant_axis")
                bits_length = _op.op().attr("bit_length")
2706 2707 2708 2709 2710
                quantized_param_v = utils.quant_tensor(param_v.copy(),
                                                       scale_v,
                                                       quant_axis,
                                                       bits_length,
                                                       onnx_format=True)
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
                if self._bias_correction == True:
                    quantized_param_v = utils.bias_correction_w(
                        param_v,
                        quantized_param_v,
                        scale_v,
                        quant_axis,
                        weight_bits=bits_length)
                if self._save_int_weight:
                    # cast weight type to int
                    if self._quant_bits == 8:
                        save_weight_dtype = np.int8
                    quantized_param_v = quantized_param_v.astype(
                        save_weight_dtype)
                self._restore_var(x_node.name(), quantized_param_v)

                for next_op_node in out_node.outputs:
                    graph.update_input_link(out_node, x_node, next_op_node)
                graph.safe_remove_nodes(out_node)
        self._remove_unused_var_nodes(graph)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
        ops = graph.all_op_nodes()
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
        graph.safe_remove_nodes(all_unused_vars)

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890


class AddQuantDequantForInferencePass(object):
    """
    When export quant model, it will traverse to find the output of each op, and then insert the quant/dequant op after it.
    """

    def __init__(self, scope, place, quant_bits=8):
        """
        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(paddle.CPUPlace|paddle.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, it can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
            quant_bits(int, optional): quantization bit number for weight. Default is 8.
        """
        self._scope = scope
        self._place = place
        self._quant_bits = quant_bits
        self._teller_set = utils.QUANT_SUPPORTED_OP_TYPE_LIST

    def apply(self, graph):
        """
        Args:
            graph(IrGraph): the target graph.
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        dequant_node_map = {}
        dequantized_vars_map = collections.OrderedDict()
        for op_node in graph.all_op_nodes():
            if op_node.name() in self._teller_set:
                var_names = utils._get_op_output_var_names(op_node)
                for var_name in var_names:
                    out_node = graph._find_node_by_name(op_node.outputs,
                                                        var_name)
                    if out_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue
                    if var_name in dequantized_vars_map:
                        dequant_var_node = dequantized_vars_map[var_name]
                    else:
                        dequant_var_node = self._insert_quant_dequant_op(
                            graph, out_node)
                        dequantized_vars_map[var_name] = dequant_var_node
                    dequant_node_map[var_name] = dequant_var_node

        # remove unuse node and link act quant/dequant linear to op node
        for op_node in graph.all_op_nodes():
            if op_node.name() == 'moving_average_abs_max_scale':
                graph.safe_remove_nodes(op_node)
            else:
                var_names = utils._get_op_input_var_names(op_node)
                for var_name in var_names:
                    if var_name in dequant_node_map:
                        in_node = graph._find_node_by_name(
                            op_node.inputs, var_name)
                        graph.update_input_link(in_node,
                                                dequant_node_map[var_name],
                                                op_node)

        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)

    def _insert_quant_dequant_op(self, graph, var_node):
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())
        var_name = var_node.name()
        quant_axis = -1
        quant_var_node = graph.create_var_node(
            name="{}.quantized".format(var_name),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph._find_node_by_name(graph.all_persistable_nodes(),
                                                  self._scale_name(var_name))
        try:
            zero_point_node = graph._find_node_by_name(
                graph.all_persistable_nodes(),
                "{}@zero_point".format(quant_var_node.name()))
        except:
            zero_point_node = graph.create_persistable_node(
                name="{}@zero_point".format(quant_var_node.name()),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                shape=scale_var_node.shape(),
                var_dtype=core.VarDesc.VarType.INT32)
            _init_var_node(zero_point_node,
                           np.zeros(scale_var_node.shape(), dtype="int32"),
                           self._scope, self._place)

        inputs = {"X": var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": quant_axis, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward
        outputs = {"Y": quant_var_node}

        quant_op_node = graph.create_op_node(op_type="quantize_linear",
                                             attrs=attrs,
                                             inputs=inputs,
                                             outputs=outputs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_var_node, quant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)

        # add dequant_linear node
        dequant_var_node = graph.create_var_node(
            name="{}.dequantized".format(quant_var_node.name()),
            var_type=quant_var_node.type(),
            shape=quant_var_node.shape(),
            var_dtype=quant_var_node.dtype())

        inputs = {"X": quant_var_node, "Scale": scale_var_node}
        if zero_point_node is not None:
            inputs["ZeroPoint"] = zero_point_node

        attrs = {"quant_axis": -1, "bit_length": self._quant_bits}
        attrs["op_role"] = core.op_proto_and_checker_maker.OpRole.Forward

        dequant_op_node = graph.create_op_node(op_type="dequantize_linear",
                                               attrs=attrs,
                                               inputs=inputs,
                                               outputs={"Y": dequant_var_node})

        graph.link_to(quant_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        if zero_point_node is not None:
            graph.link_to(zero_point_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node