quantization_pass.py 78.3 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27 28
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard

29 30
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
31 32
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
33
]
W
WangZhen 已提交
34

35 36 37 38 39 40 41 42 43
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

44 45 46 47
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

48
_out_scale_op_list = [
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
69 70
    "hard_swish",
    "hard_sigmoid",
71
    "conv2d_transpose",
72 73 74 75
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
76 77
]

78 79 80
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
81
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
82
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
83
    "mul": [["X", "Y"], ["Out"]],
84
    "matmul": [["X", "Y"], ["Out"]],
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
101
    "transpose2": [["X"], ["Out"]],
102 103 104 105 106 107 108 109 110
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
111
    "prelu": [["X"], ["Out"]],
112 113
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
114 115
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
116
    "sigmoid": [["X"], ["Out"]],
117 118
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
119 120
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
121
    "gru": [["Input", "Weight"], ["Hidden"]],
122 123
}

124 125 126 127
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

_channelwise_quant_axis1_ops = ['conv2d_transpose', 'mul']

W
WangZhen 已提交
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


179 180 181 182
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
183
        'The scope cannot be set None.'
184
    assert place is not None, \
185
        'The place cannot be set None.'
186 187 188 189
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


190 191 192 193 194
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
195 196 197 198
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
199 200 201
    return is_input_all_not_persistable


202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


216
class QuantizationTransformPass(object):
217
    """
218 219
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
220
    """
221
    _supported_quantizable_op_type = [
222
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
223
    ]
224

W
WangZhen 已提交
225
    def __init__(self,
226
                 scope=None,
227
                 place=None,
W
WangZhen 已提交
228 229 230 231
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
232
                 window_size=10000,
233
                 moving_rate=0.9,
234
                 skip_pattern=['skip_quant'],
235 236 237 238 239 240 241
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
W
WangZhen 已提交
242
        """
243
        Constructor.
244

W
WangZhen 已提交
245
        Args:
246
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
247 248
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
249
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
250
                parameters described above.
251
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
252
                the bias is not quantized.
253 254
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
255 256 257 258 259
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
260
            weight_quantize_type(str): quantization type for weights,
261 262 263
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
264 265
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
266
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
267
                will be presented in the name scope of an op. When the skip pattern is
268
                detected in an op's name scope, the corresponding op will not be quantized. 
269
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
270 271
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
299 300
                Default is None.

301

W
WangZhen 已提交
302 303
        Examples:
        .. code-block:: python
304 305 306 307
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
308
            from paddle.fluid.contrib.slim.graph import IrGraph
309 310
            from paddle.fluid import core

311
            graph = IrGraph(core.Graph(program.desc), for_test=False)
312
            place = fluid.CPUPlace()
313
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
314
            place)
315
            transform_pass.apply(graph)
W
WangZhen 已提交
316
        """
317
        self._scope = scope
318
        self._place = place
319 320
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
321
        self._skip_pattern = skip_pattern
322 323 324 325 326 327
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
328 329 330 331
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
332 333
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
334 335
        if activation_quantize_type not in quant_type:
            raise ValueError(
336 337 338
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
339 340
        if weight_quantize_type not in quant_type:
            raise ValueError(
341
                "Unknown weight_quantize_type: '%s'. It can only be "
342 343
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
344

345 346 347
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
348
        self._moving_rate = moving_rate
W
WangZhen 已提交
349

350 351
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
352
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
353
                op + " is not supported for quantization."
354 355
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
356
        ]
357 358
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
359

360 361 362
        self.create_var_map = {}
        self.create_op_map = {}

363
    def apply(self, graph):
364 365 366 367 368 369 370
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
371 372
        Returns:
            None
373
        """
W
WangZhen 已提交
374
        assert isinstance(graph,
375 376
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
377 378
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
379
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
380
        processed_vars = []
W
WangZhen 已提交
381

382
        def _quant_preprocess(op_node):
383 384 385
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
386 387
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
388 389
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
390 391
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
392

393
            if user_skipped:
394 395
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
396
        def _transform_forward(graph, op):
397
            op.op()._set_attr("quantization_type", "qat_with_weight")
398 399
            inputs = op.inputs
            for var_node in inputs:
400 401
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
402 403 404
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
405 406 407
                    name = var_node.name()
                    if name in processed_vars:
                        continue
408 409
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
439
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
440
                        else self._activation_bits
441 442
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
443 444 445 446 447 448 449 450
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
451 452
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
453
                            graph, var_node, name, quant_bits, quant_type)
454 455
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
456
                    dequantized_vars[name] = dequant_var_node
457
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
458 459 460

        def _transform_backward(graph, op):
            for var_node in op.inputs:
461 462
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
463 464
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
465
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
466

467
        if not self._is_test:
W
WangZhen 已提交
468
            self._create_global_step(graph)
469
        ops = graph.all_op_nodes()
470 471 472 473 474 475
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
476 477
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
478 479
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
480
        for op in ops:
481
            if op.name() in self._quantizable_ops:
482
                if not self._is_skip_quant(graph, op):
483
                    _transform_forward(graph, op)
W
WangZhen 已提交
484 485
        # The loop for renaming the inputs of backward op.
        for op in ops:
486
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
487
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
488
        graph.resolve_hazard()
489
        return graph
W
WangZhen 已提交
490

W
WangZhen 已提交
491
    def _create_global_step(self, graph):
492 493
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
494
            counter_name = cpt.to_text('@STEP_COUNTER@')
495
            for node in graph.all_var_nodes():
W
WangZhen 已提交
496
                if node.name() == counter_name:
497 498
                    self._global_step = node
            if self._global_step is None:
499
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
500 501 502 503
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
504 505 506 507 508 509
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
510 511
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
512
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
513 514
                increment_op = graph.create_op_node(
                    op_type='increment',
515 516 517 518 519
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
520 521
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
522 523 524
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
525

526
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
527 528 529 530
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
531 532
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
533
        elif quant_type == 'range_abs_max':
534
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
535
                                                       quant_bits)
536
        elif quant_type == 'moving_average_abs_max':
537 538
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
539

540
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
541 542 543 544 545 546
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
547
            name=self._quantized_var_name(name),
548 549 550
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
551
        scale_var_node = graph.create_persistable_node(
552
            name=self._quantized_scale_name(name),
553
            var_type=var_node.type(),
554
            shape=[1],
555
            var_dtype=var_node.dtype())
556 557 558 559 560 561 562 563
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
564 565
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
566 567 568 569
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
570 571 572
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
573 574 575
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
576 577
        return quant_var_node, scale_var_node

578
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
579 580 581 582 583 584
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
585
            name=self._quantized_var_name(name),
586 587 588
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
589

590
        scale_in_node = graph.create_persistable_node(
591
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
592 593
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
594
            var_dtype=var_node.dtype())
595 596
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
597 598 599 600 601 602
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
603 604 605 606 607

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

608
        if not self._is_test:
W
WangZhen 已提交
609
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
610
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
611 612
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
613
                shape=[self._window_size],
614
                var_dtype=var_node.dtype())
615 616
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
617 618 619 620 621 622 623
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

624
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
625 626
            outputs['OutScales'] = scales_node
        attrs = {
627
            'window_size': self._window_size,
W
WangZhen 已提交
628
            'bit_length': quant_bits,
629 630
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
631 632 633 634 635 636 637
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

638 639 640 641
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
642

643 644 645
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
646 647 648

        return quant_var_node, scale_out_node

649
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
650 651 652 653
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
654
            name=self._quantized_var_name(name),
655 656 657 658
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
659
            name=self._quantized_scale_name(name),
660 661 662
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
663 664
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
665 666 667 668 669 670
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
671 672 673 674 675 676 677 678 679 680

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
681 682
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
683
            _init_var_node(
684
                state_in_node,
685 686 687 688
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
689 690 691 692 693
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
694 695 696 697 698 699
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

736 737
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
738 739 740 741 742 743
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
744
            name=self._quantized_var_name(name),
745 746 747
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
748
        scale_var_node = graph.create_persistable_node(
749
            name=self._quantized_scale_name(name),
750
            var_type=var_node.type(),
751
            shape=[var_node.shape()[quant_axis]],
752
            var_dtype=var_node.dtype())
753 754 755 756 757 758 759 760
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
761 762 763 764
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
765
                'quant_axis': quant_axis,
766
                'is_test': self._is_test,
767 768 769 770 771 772 773 774 775 776
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
777 778 779 780 781 782 783 784
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
785 786 787
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
788 789 790
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
791 792 793 794
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
795 796 797
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
798 799 800
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
801 802
        return dequant_var_node

803
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
804
                                   quant_bits, quant_axis):
805 806 807 808 809 810 811 812 813 814 815 816 817 818
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
819
                'quant_axis': quant_axis,
820 821 822 823 824 825 826 827 828 829 830
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
916
                graph.out_node_mapping_table[out_node.name] = var_node.name()
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1020
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1021 1022
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1023

1024
    def _is_skip_quant(self, graph, op_node):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1037 1038 1039
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1040 1041
        return is_skip

W
WangZhen 已提交
1042 1043 1044 1045 1046 1047 1048

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
1049
                 weight_quantize_type='abs_max',
1050
                 quantizable_op_type=None):
1051 1052
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1053
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1054
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1055 1056
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1057 1058 1059 1060 1061 1062 1063 1064 1065

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1066 1067
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1068
        """
W
WangZhen 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1078 1079
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1080 1081
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1082
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1083 1084

    def apply(self, graph):
1085 1086 1087 1088 1089
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1090 1091
        Returns:
            None
1092
        """
1093
        # Get input scales in fake quant op and process weights
1094 1095
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1096 1097 1098
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1099
                input_arg_name = op_node.input('X')[0]
1100 1101 1102 1103
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
                    if scale_v.size == 1:
                        scale_v = scale_v[0]
W
WangZhen 已提交
1118
                    else:
1119
                        scale_v = scale_v.tolist()
1120
                    self._quant_var_scale_map[input_arg_name] = scale_v
1121
                    # Quantize weight and restore
W
WangZhen 已提交
1122
                    param_v = self._load_var(input_arg_name)
1123 1124 1125 1126 1127 1128 1129 1130
                    if isinstance(scale_v, list) and \
                        any(_check_grandchild_op_node(op_node, op)
                        for op in _channelwise_quant_axis1_ops):
                        quant_axis = 1
                    else:
                        quant_axis = 0
                    quantized_param_v = self._quant(
                        param_v, scale_v, self._weight_bits, quant_axis)
W
WangZhen 已提交
1131
                    self._restore_var(input_arg_name, quantized_param_v)
1132
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1133

1134
        # Remove all fake dequant op
1135
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1136 1137 1138 1139 1140
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1141
        # Insert post dequant op
1142
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1143
        for op_node in ops:
1144 1145 1146
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1147
                if self._weight_quantize_type == 'channel_wise_abs_max':
1148 1149 1150
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1151

1152
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1153 1154
        for op_node in ops:
            for var_node in op_node.inputs:
1155 1156 1157
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1158 1159 1160 1161
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1162
        graph.resolve_hazard()
1163
        return graph
W
WangZhen 已提交
1164 1165

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1166 1167
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1168 1169
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1170
        else:
1171 1172
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1173
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1174

1175 1176 1177 1178
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1179 1180 1181 1182 1183
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1184 1185 1186
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1187
            scale_v = self._quant_var_scale_map[original_var_name]
1188 1189 1190 1191 1192 1193 1194 1195
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1196
                scale_var_node = self._quant_var_scale_map[original_var_name]
1197

1198
        if len(op_node.output_arg_names()) != 1:
1199 1200 1201
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1202 1203
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1204 1205 1206 1207 1208
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1209 1210
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1211 1212 1213
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1234
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1235 1236
        return dequant_var_node

W
WangZhen 已提交
1237
    def _insert_post_dequant_op(self, graph, op_node):
1238
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1239 1240 1241
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1242
        for var_node in op_node.inputs:
W
WangZhen 已提交
1243
            name = var_node.name()
1244 1245 1246 1247 1248
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1249
                new_in.clear_outputs()
W
WangZhen 已提交
1250 1251
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1252
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1253 1254 1255 1256
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1257
                max_range *= param_range / scale_v
W
WangZhen 已提交
1258
            else:
1259
                max_range *= act_range
1260
                assert isinstance(scale_v, IrNode)
1261
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1262

1263
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1264 1265 1266
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1267 1268
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1269 1270
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1271 1272 1273
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1274 1275
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1276 1277 1278 1279
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1280 1281 1282 1283 1284 1285
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1286
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1287 1288 1289 1290 1291
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1292 1293 1294
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1295 1296 1297

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1298
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1299 1300 1301 1302 1303 1304
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1305 1306 1307 1308 1309 1310
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1334
    def _is_float(self, v):
W
WangZhen 已提交
1335 1336 1337
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

1338 1339
    def _quant(self, x, scale, num_bits, quant_axis):
        assert quant_axis in [0, 1], 'quant_axis should be 0 or 1 for now.'
1340 1341 1342 1343 1344 1345 1346
        bnt = (1 << (num_bits - 1)) - 1

        def _clip(x, scale):
            x[x > scale] = scale
            x[x < -scale] = -scale
            return x

1347 1348
        if isinstance(scale, list):
            for i, s in enumerate(scale):
1349
                if quant_axis == 0:
1350 1351
                    x[i] = _clip(x[i], s)
                    x[i] = np.round(x[i] / s * bnt)
1352
                else:
1353 1354
                    x[:, i] = _clip(x[:, i], s)
                    x[:, i] = np.round(x[:, i] / s * bnt)
1355
        else:
1356 1357 1358
            x = _clip(x, scale)
            x = np.round(x / scale * bnt)
        return x
1359 1360 1361


class ConvertToInt8Pass(object):
1362
    def __init__(self, scope, place, quantizable_op_type=None):
1363 1364 1365 1366 1367 1368 1369
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
                8bits weight tensors.
1370 1371
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1372
        """
1373 1374 1375 1376 1377 1378 1379 1380
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place

    def apply(self, graph):
1381
        """
T
tianshuo78520a 已提交
1382 1383
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1384 1385 1386

        Args:
            graph(IrGraph): the applied graph.
1387 1388
        Returns:
            None
1389
        """
1390 1391
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1392 1393
        input_map = {}
        for op_node in ops:
1394 1395
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1408
        graph.resolve_hazard()
1409 1410 1411 1412
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1413
        int8_var_node = graph.create_persistable_node(
1414
            name=cpt.to_text(int8_var_node_name),
1415 1416
            var_type=var_node.type(),
            shape=var_node.shape(),
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1432
        ops = graph.all_op_nodes()
1433 1434 1435 1436 1437 1438
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1439 1440 1441 1442 1443 1444
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1445 1446 1447 1448 1449
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1450
        """
T
tianshuo78520a 已提交
1451
        This pass is used to convert the frozen graph for paddle-mobile execution.
1452
        """
1453 1454
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1455 1456

    def apply(self, graph):
1457 1458 1459 1460 1461 1462 1463
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1464 1465
        Returns:
            None
1466
        """
1467
        ops = graph.all_op_nodes()
1468 1469 1470
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1471
                op_node.set_type('quantize')
1472 1473 1474 1475 1476 1477 1478
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1479
                op_node.set_type('dequantize')
1480 1481 1482 1483 1484 1485
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1486
        graph.resolve_hazard()
1487
        return graph
1488 1489


1490
class OutScaleForTrainingPass(object):
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1505
        self._teller_set = _out_scale_op_list
1506 1507 1508 1509 1510 1511 1512 1513 1514

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1515 1516
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1517
        self._is_test = graph.is_test()
1518 1519 1520 1521 1522 1523 1524
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1525 1526 1527 1528
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1529 1530 1531 1532 1533
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1534 1535 1536 1537 1538 1539 1540 1541
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1542
                ins = {'X': in_node}
1543
                outs = {'OutScale': scale_node}
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1604
class OutScaleForInferencePass(object):
1605 1606 1607 1608 1609 1610 1611 1612 1613
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1614
        self._teller_set = _out_scale_op_list
1615 1616 1617 1618 1619 1620 1621 1622 1623

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1624 1625
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1626 1627 1628
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1629 1630
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1631 1632 1633 1634 1635 1636
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1637
                    scale_name = self._scale_name(var_name)
1638 1639 1640 1641 1642 1643 1644
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1645 1646 1647 1648 1649

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1650
                        + "_threshold", float(scale_value))
1651 1652 1653 1654 1655 1656 1657 1658
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1659 1660 1661


class AddQuantDequantPass(object):
1662 1663 1664 1665
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1666 1667 1668 1669 1670
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1671 1672
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
        "leaky_relu", "tanh", "swish"
1673 1674
    ]

1675 1676 1677
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1678 1679 1680 1681 1682
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1683
                 skip_pattern=["skip_quant"],
1684
                 quantizable_op_type=["elementwise_add", "pool2d"],
1685
                 is_full_quantized=False):
1686
        """
1687
        Constructor.
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
                parameters described above.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1701
                quantized. Default is ["elementwise_add", "pool2d"]. 
1702 1703 1704 1705
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1706 1707 1708 1709 1710 1711
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1712
        self._skip_pattern = skip_pattern
1713 1714 1715 1716 1717 1718 1719

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1720
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1721
                    op_type + " is not supported for quantization."
1722 1723 1724 1725
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1726 1727
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1728 1729 1730

    def apply(self, graph):
        """
1731 1732
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1733

1734 1735
        Args:
            graph(IrGraph): the target graph.
1736 1737
        Returns:
            None
1738 1739 1740 1741
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1742 1743
        dequantized_vars_map = collections.OrderedDict()

1744 1745 1746
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1747
            if op_node.name() in self._quantizable_op_type:
1748
                is_skip = False
1749
                if isinstance(self._skip_pattern, list):
1750
                    is_skip = op_node.op().has_attr("op_namescope") and \
1751 1752
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1753
                    is_skip = op_node.op().has_attr("op_namescope") and \
1754
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1755 1756 1757
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1758
                    (not _is_input_all_not_persistable(graph, op_node)):
1759
                    continue
1760

1761 1762 1763
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1764
                arg_names = _get_op_input_var_names(op_node)
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1775

1776 1777
        # Backward stage, update input link
        for op_node in all_op_nodes:
1778
            if op_node.name() in self._quantizable_grad_op_type:
1779 1780 1781 1782 1783 1784 1785 1786
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node