quantization_pass.py 54.8 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
W
WangZhen 已提交
21 22
from .... import unique_name

23 24
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
25 26
    'TransformForMobilePass', 'ScaleForTrainingPass', 'ScaleForInferencePass',
    'AddQuantDequantPass'
27
]
W
WangZhen 已提交
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
_quantizable_op_list = ['conv2d', 'depthwise_conv2d', 'mul', 'pool2d']

_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

_out_scale_op_list = [
    "mul", "conv2d", "pool2d", "relu", "softmax", "sigmoid", "depthwise_conv2d",
    "batch_norm", "concat", "tanh", "pad", "elementwise_add", "elementwise_mul",
    "dropout", "split", "prelu", "conv2d_transpose", "leaky_relu"
]

W
WangZhen 已提交
46

47 48 49 50
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
51
        'The scope cannot be set None.'
52
    assert place is not None, \
53
        'The place cannot be set None.'
54 55 56 57
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


58
class QuantizationTransformPass(object):
W
WangZhen 已提交
59
    def __init__(self,
60
                 scope=None,
61
                 place=None,
W
WangZhen 已提交
62 63 64 65
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
66
                 window_size=10000,
67 68
                 moving_rate=0.9,
                 skip_pattern='skip_quant'):
W
WangZhen 已提交
69
        """
70
        Convert and rewrite the IrGraph according to weight and
W
WangZhen 已提交
71
        activation quantization type.
72

W
WangZhen 已提交
73
        Args:
74 75 76
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
            type, this pass will create some new parameters. The scope is used to
            initialize these new parameters.
77
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
78
            parameters described above.
W
WangZhen 已提交
79 80 81 82
            weight_bits (int): quantization bit number for weights,
                the bias is not quantized.
            activation_bits (int): quantization bit number for activation.
            activation_quantize_type (str): quantization type for activation,
83 84 85 86 87
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
W
WangZhen 已提交
88
            weight_quantize_type (str): quantization type for weights,
89 90 91
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
W
WangZhen 已提交
92
            window_size (int): the window size for 'range_abs_max' quantization.
93 94 95
            skip_pattern(str): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
96

W
WangZhen 已提交
97 98
        Examples:
        .. code-block:: python
99 100 101 102
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
103
            from paddle.fluid.contrib.slim.graph import IrGraph
104 105
            from paddle.fluid import core

106
            graph = IrGraph(core.Graph(program.desc), for_test=False)
107
            place = fluid.CPUPlace()
108
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
109
            place)
110
            transform_pass.apply(graph)
W
WangZhen 已提交
111
        """
112
        self._scope = scope
113
        self._place = place
114 115
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
116
        self._skip_pattern = skip_pattern
W
WangZhen 已提交
117

118 119 120 121 122
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
        assert activation_quantize_type != 'channel_wise_abs_max', "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
123 124
        if activation_quantize_type not in quant_type:
            raise ValueError(
125 126 127
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
128 129
        if weight_quantize_type not in quant_type:
            raise ValueError(
130 131 132
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(weight_quantize_type)))
W
WangZhen 已提交
133

134 135 136
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
137
        self._moving_rate = moving_rate
W
WangZhen 已提交
138

139
        self._quantizable_ops = _quantizable_op_list
140
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
141 142
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
143
        ]
144 145
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
146

147
    def apply(self, graph):
148 149 150 151 152 153 154 155
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
        """
W
WangZhen 已提交
156
        assert isinstance(graph,
157 158
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
159 160
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
161
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
W
WangZhen 已提交
162

163 164 165 166 167 168 169 170 171 172
        def _quant_preprocess(op_node):
            pool_skipped = op_node.op().has_attr("pooling_type") and \
                    op_node.op().attr("pooling_type") == 'avg'
            user_skipped = isinstance(self._skip_pattern, str) and \
                           op_node.op().has_attr("op_namescope") and \
                           op_node.op().attr("op_namescope").find(self._skip_pattern) != -1

            if pool_skipped or user_skipped:
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
173 174
        def _transform_forward(graph, op):
            for var_node in op.inputs:
175 176
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
177 178 179
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
W
WangZhen 已提交
180
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
181 182
                    else self._activation_bits
                    quant_type = self._weight_quantize_type if var_node.name() \
W
WangZhen 已提交
183
                        in persistable_vars else self._activation_quantize_type
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
                    if quant_type == 'channel_wise_abs_max':
                        assert var_node.name(
                        ) in persistable_vars, "'channel_wise_abs_max' can only be applied on weights."
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
                                graph, var_node, quant_bits)
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
                                graph, var_node, quant_bits, 'abs_max')
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
                            graph, var_node, quant_bits, quant_type)
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
W
WangZhen 已提交
204
                    dequantized_vars[var_node.name()] = dequant_var_node
205
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
206 207 208 209

        def _transform_backward(graph, op):
            no_dequanted_input_vars = True
            for var_node in op.inputs:
210 211
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
212 213
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
214
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
215 216 217 218
                    no_dequanted_input_vars = False
            if no_dequanted_input_vars:
                raise ValueError("There is no dequanted inputs for op %s." %
                                 (op.name()))
W
WangZhen 已提交
219

220
        if not self._is_test:
W
WangZhen 已提交
221
            self._create_global_step(graph)
222
        ops = graph.all_op_nodes()
223 224 225 226 227 228
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
W
WangZhen 已提交
229 230
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
231
        for op in ops:
232
            if op.name() in self._quantizable_ops:
233 234 235 236
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
237
                _transform_forward(graph, op)
W
WangZhen 已提交
238 239
        # The loop for renaming the inputs of backward op.
        for op in ops:
240
            if op.name() in self._quantizable_grad_ops:
241 242 243 244
                skipped = op.op().has_attr("skip_quant") and \
                         op.op().attr("skip_quant")
                if skipped:
                    continue
W
WangZhen 已提交
245
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
246
        graph.resolve_hazard()
247
        return graph
W
WangZhen 已提交
248

W
WangZhen 已提交
249
    def _create_global_step(self, graph):
250 251
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
252
            counter_name = cpt.to_text('@STEP_COUNTER@')
253
            for node in graph.all_var_nodes():
W
WangZhen 已提交
254
                if node.name() == counter_name:
255 256
                    self._global_step = node
            if self._global_step is None:
257
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
258 259 260 261
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
262 263 264 265 266 267
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
268 269
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
270
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
271 272
                increment_op = graph.create_op_node(
                    op_type='increment',
273 274 275 276 277
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
278 279
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
280 281 282
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
283

W
WangZhen 已提交
284 285 286 287 288 289 290
    def _insert_quant_op(self, graph, var_node, quant_bits, quant_type):
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
            return self._insert_quant_abs_max_op(graph, var_node, quant_bits)
        elif quant_type == 'range_abs_max':
W
WangZhen 已提交
291 292
            return self._insert_quant_range_abs_max_op(graph, var_node,
                                                       quant_bits)
293 294 295
        elif quant_type == 'moving_average_abs_max':
            return self._insert_quant_moving_average_abs_max_op(graph, var_node,
                                                                quant_bits)
W
WangZhen 已提交
296 297 298 299 300 301 302 303 304

    def _insert_quant_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
305 306 307
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
308 309
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
310
            var_type=var_node.type(),
311
            shape=[1],
312
            var_dtype=var_node.dtype())
W
WangZhen 已提交
313 314
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
315 316 317 318
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
319 320 321
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
322 323 324
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
325 326 327 328 329 330 331 332 333 334
        return quant_var_node, scale_var_node

    def _insert_quant_range_abs_max_op(self, graph, var_node, quant_bits):
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
335 336 337
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
338

339
        scale_in_node = graph.create_persistable_node(
W
WangZhen 已提交
340 341 342
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
343
            var_dtype=var_node.dtype())
344 345
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
346 347 348 349 350 351
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
352 353 354 355 356

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

357
        if not self._is_test:
W
WangZhen 已提交
358
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
359
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
360 361
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
362
                shape=[self._window_size],
363
                var_dtype=var_node.dtype())
364 365
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
366 367 368 369 370 371 372
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

373
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
374 375
            outputs['OutScales'] = scales_node
        attrs = {
376
            'window_size': self._window_size,
W
WangZhen 已提交
377
            'bit_length': quant_bits,
378 379
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
380 381 382 383 384 385 386
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

387 388 389 390
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
391

392 393 394
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
395 396 397

        return quant_var_node, scale_out_node

398 399 400 401 402 403 404 405 406 407 408 409 410 411
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node,
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
412 413
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
414 415 416 417 418 419
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
420 421 422 423 424 425 426 427 428 429

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
430 431
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
432
            _init_var_node(
433
                state_in_node,
434 435 436 437
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
438 439 440 441 442
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
443 444 445 446 447 448
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
    def _insert_channel_quant_op(self, graph, var_node, quant_bits):
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
            name=self._quantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
            name=self._quantized_scale_name(var_node.name()),
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
515 516 517 518 519 520 521 522
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
523 524 525
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
526 527 528
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
529 530 531 532
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
533 534 535
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
536 537 538
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
539 540
        return dequant_var_node

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

W
WangZhen 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
582
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
583 584
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
585 586 587


class QuantizationFreezePass(object):
588 589 590 591 592 593 594 595 596 597 598 599
    """
    The freeze pass is used to adjust the quantize operator order, for example:
        1) `activation -> quant -> dequant -> conv2d` will be freezed into
        `activation -> quant -> conv2d -> dequant`
        2) `weight -> quant -> dequant -> conv2d` will be freezed into `weight -> conv2d`,
        and weight will be sacled offline.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
        weight_bits (int): quantization bit number for weights.
        activation_bits (int): quantization bit number for activation.
600
        weight_quantize_type (str): quantization type for weights, support 'abs_max' and 'channel_wise_abs_max'.
601 602 603 604
        The 'range_abs_max' usually is not used for weight, since weights are fixed once the
        model is well trained.
    """

W
WangZhen 已提交
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
                 weight_quantize_type='abs_max'):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
620
        self._quantizable_ops = _quantizable_op_list
621
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
622 623
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
624 625 626 627 628
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
        self._var_scale_map = collections.OrderedDict()

    def apply(self, graph):
629 630 631 632 633 634
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
        """
635 636
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
637 638 639
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
640
                input_arg_name = op_node.input('X')[0]
W
WangZhen 已提交
641 642 643 644
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
645 646 647 648 649 650 651 652
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
653
                    else:
654 655
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
W
WangZhen 已提交
656 657 658 659 660
                    self._var_scale_map[input_arg_name] = scale_v
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
661
                                                    self._weight_bits)
W
WangZhen 已提交
662
                    self._restore_var(input_arg_name, quantized_param_v)
663
                else:
664 665
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
666
                    self._var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
667

668
        ops = graph.all_op_nodes()
W
WangZhen 已提交
669 670 671 672 673
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

674
        ops = graph.all_op_nodes()
W
WangZhen 已提交
675 676 677
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
678 679 680 681
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
682 683 684 685
                if self._weight_quantize_type == 'channel_wise_abs_max' and op_name in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
686 687 688 689

        for op_node in ops:
            # insert dequant_op after fc/conv, need to rename inputs of the followed ops
            for var_node in op_node.inputs:
690 691 692
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
693 694 695 696
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
697
        graph.resolve_hazard()
698
        return graph
W
WangZhen 已提交
699 700

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
701 702
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
703 704
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
705
        else:
706 707
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
708
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
709

710 711 712 713
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
714 715 716 717 718
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
719 720 721 722 723 724 725 726 727 728 729 730 731 732
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
            scale_v = self._var_scale_map[original_var_name]
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
                scale_var_node = self._var_scale_map[original_var_name]

733
        if len(op_node.output_arg_names()) != 1:
734 735 736
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

737 738
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
739 740 741 742 743
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
744 745
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
746 747 748
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
769
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
770 771
        return dequant_var_node

W
WangZhen 已提交
772
    def _insert_post_dequant_op(self, graph, op_node):
773
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
774 775 776 777 778 779 780
        if len(op_node.input_arg_names()) >= 2 and len(persistable_vars) == 0:
            raise ValueError("The op %s has more than one inputs "
                             "and all of them are not persistable. "
                             "Now, it is not supported!" % (op_node.name()))
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
781
        for var_node in op_node.inputs:
W
WangZhen 已提交
782
            name = var_node.name()
783 784 785 786 787
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
788
                new_in.clear_outputs()
W
WangZhen 已提交
789 790
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
W
WangZhen 已提交
791
            scale_v = self._var_scale_map[original_var_name]
W
WangZhen 已提交
792 793 794 795
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
796
                max_range *= param_range / scale_v
W
WangZhen 已提交
797
            else:
798
                max_range *= act_range
799
                assert isinstance(scale_v, IrNode)
W
WangZhen 已提交
800 801
                scale_var_node = self._var_scale_map[original_var_name]

802
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
803 804 805
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

806 807
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
808 809
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
810 811 812
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
813 814
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
815 816 817 818
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
819 820 821 822 823 824
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
825
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
826 827 828 829 830
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

831 832 833
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
834 835 836

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
837
        ops = graph.all_op_nodes()
W
WangZhen 已提交
838 839 840 841 842 843
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

844 845 846 847 848 849
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
873
    def _is_float(self, v):
W
WangZhen 已提交
874 875 876
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
877
    def _quant(self, x, scale, num_bits):
878 879 880 881 882 883
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
884 885 886


class ConvertToInt8Pass(object):
887 888 889 890 891 892 893 894 895
    """
    Convert the weights into int8_t type.

    Args:
        scope(fluid.Scope): scope is used to get the weight tensor values.
        place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
        8bits weight tensors.
    """

896 897 898 899 900 901 902
    def __init__(self, scope, place):
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
903
        self._quantizable_ops = _quantizable_op_list
904 905

    def apply(self, graph):
906 907 908 909 910 911 912
        """
        Convert weights' tpye of the graph. After that, the data type of the
        graph weigths is int8_t.

        Args:
            graph(IrGraph): the applied graph.
        """
913 914
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
915 916 917 918
        input_map = {}
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._quantizable_ops:
919 920 921 922
                skipped = op_node.op().has_attr("skip_quant") and \
                         op_node.op().attr("skip_quant")
                if skipped:
                    continue
923 924 925 926 927 928 929 930 931 932 933 934
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
935
        graph.resolve_hazard()
936 937 938 939
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
940
        int8_var_node = graph.create_persistable_node(
941
            name=cpt.to_text(int8_var_node_name),
942 943
            var_type=var_node.type(),
            shape=var_node.shape(),
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
959
        ops = graph.all_op_nodes()
960 961 962 963 964 965
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

966 967 968 969 970 971
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
972 973 974 975
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
976 977 978 979
    """
    This pass is used to convert the freezed graph for paddle-mobile execution.
    """

980
    def __init__(self):
981 982
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
983 984

    def apply(self, graph):
985 986 987 988 989 990 991 992
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
        """
993
        ops = graph.all_op_nodes()
994 995 996
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
997
                op_node.set_type('quantize')
998 999 1000 1001 1002 1003 1004
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1005
                op_node.set_type('dequantize')
1006 1007 1008 1009 1010 1011
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1012
        graph.resolve_hazard()
1013
        return graph
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030


class ScaleForTrainingPass(object):
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1031
        self._teller_set = _out_scale_op_list
1032 1033 1034 1035 1036 1037 1038 1039 1040

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1041 1042
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        self._is_test = graph.is_test()
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                in_node = graph._find_node_by_name(
                    op_node.outputs, op_node.output_arg_names()[0])
                out_node = graph.create_var_node_from_desc(in_node.var())
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
                ins = {'X': in_node}
                outs = {'Out': out_node, 'OutScale': scale_node}
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    data_type = 'float64' if in_node.dtype(
                    ) == core.VarDesc.VarType.FP64 else 'float32'
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, out_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


class ScaleForInferencePass(object):
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1133
        self._teller_set = _out_scale_op_list
1134 1135 1136 1137 1138 1139 1140 1141 1142

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1143 1144
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
        ops = graph.all_op_nodes()
        for op_node in ops:
            name = op_node.name()
            if name in self._teller_set:
                if len(op_node.output_arg_names()) != 1:
                    continue
                scale_name = self._scale_name(op_node.output_arg_names()[0])
                scale_v = np.array(
                    self._scope.find_var(scale_name).get_tensor())[0]
                op_node.op()._set_attr("out_scale", float(scale_v))
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1163 1164 1165 1166 1167 1168


class AddQuantDequantPass(object):
    def __init__(self, scope=None, place=None, moving_rate=0.9, quant_bits=8):
        """
        This pass is used to add quant_dequant op for some ops, such as the
1169
        'elementwise_add' and 'average pool2d' op.
1170 1171 1172 1173 1174 1175
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1176 1177
        self._target_ops = ["elementwise_add", "pool2d"]
        self._target_grad_ops = ['%s_grad' % (op) for op in self._target_ops]
1178 1179 1180

    def apply(self, graph):
        """
1181 1182
        Add quant_dequant before some ops, such as the 'elementwise_add'
        and 'average pool2d' op.
1183 1184 1185 1186 1187 1188
        Args:
            graph(IrGraph): the target graph.
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1189
        dequantized_vars_map = collections.OrderedDict()
1190
        ops = graph.all_op_nodes()
1191

1192
        for op_node in ops:
1193
            if op_node.name() in self._target_ops:
1194 1195 1196 1197 1198 1199 1200 1201 1202
                in_nodes_all_not_persistable = True
                for input_name in op_node.input_arg_names():
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
                    in_nodes_all_not_persistable = (
                        in_nodes_all_not_persistable and
                        not in_node.persistable())
                if not in_nodes_all_not_persistable:
                    continue
1203 1204 1205 1206 1207

                if op_node.op().has_attr("pooling_type") and \
                    op_node.op().attr("pooling_type") == 'max':
                    continue

1208 1209 1210 1211
                input_names = op_node.input_arg_names()
                for input_name in input_names:
                    in_node = graph._find_node_by_name(op_node.inputs,
                                                       input_name)
1212 1213
                    quant_var_node, scale_var_node = \
                        self._inser_quant_dequant_moving_average_abs_max_op(
1214
                        graph, in_node, self._quant_bits)
1215
                    dequantized_vars_map[input_name] = quant_var_node
1216
                    graph.update_input_link(in_node, quant_var_node, op_node)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

        for op_node in ops:
            if op_node.name() in self._target_grad_ops:
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node