quantization_pass.py 76.2 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27 28
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard

29 30
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
31 32
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
33
]
W
WangZhen 已提交
34

35 36 37 38 39 40 41 42 43
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

44 45 46 47
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

48
_out_scale_op_list = [
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
    "softmax",
    "batch_norm",
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
    "scale",
69 70
]

71 72 73
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
74
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
75
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
76
    "mul": [["X", "Y"], ["Out"]],
77
    "matmul": [["X", "Y"], ["Out"]],
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
94
    "transpose2": [["X"], ["Out"]],
95 96 97 98 99 100 101 102 103
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
104
    "prelu": [["X"], ["Out"]],
105 106
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
107 108
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
109
    "sigmoid": [["X"], ["Out"]],
110 111
    "elementwise_mul": [["X", "Y"], ["Out"]],
    "scale": [["X"], ["Out"]],
112 113
}

W
WangZhen 已提交
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def _get_op_input_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


165 166 167 168
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
169
        'The scope cannot be set None.'
170
    assert place is not None, \
171
        'The place cannot be set None.'
172 173 174 175
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


176 177 178 179 180
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
181 182 183 184
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
185 186 187
    return is_input_all_not_persistable


188
class QuantizationTransformPass(object):
189 190 191 192
    """
    Quantize the ops that have weights. Add quant and dequant ops for the quantized
    ops's inputs.
    """
193
    _supported_quantizable_op_type = [
194
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul'
195
    ]
196

W
WangZhen 已提交
197
    def __init__(self,
198
                 scope=None,
199
                 place=None,
W
WangZhen 已提交
200 201 202 203
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
204
                 window_size=10000,
205
                 moving_rate=0.9,
206
                 skip_pattern=['skip_quant'],
207 208 209 210 211 212 213
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
W
WangZhen 已提交
214
        """
215
        Constructor.
216

W
WangZhen 已提交
217
        Args:
218
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
219 220
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
221
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
222
                parameters described above.
223
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
224
                the bias is not quantized.
225 226
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
227 228 229 230 231
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
232
            weight_quantize_type(str): quantization type for weights,
233 234 235
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
236 237
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
238
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
239
                will be presented in the name scope of an op. When the skip pattern is
240
                detected in an op's name scope, the corresponding op will not be quantized. 
241
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
242 243
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
271 272
                Default is None.

273

W
WangZhen 已提交
274 275
        Examples:
        .. code-block:: python
276 277 278 279
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
280
            from paddle.fluid.contrib.slim.graph import IrGraph
281 282
            from paddle.fluid import core

283
            graph = IrGraph(core.Graph(program.desc), for_test=False)
284
            place = fluid.CPUPlace()
285
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
286
            place)
287
            transform_pass.apply(graph)
W
WangZhen 已提交
288
        """
289
        self._scope = scope
290
        self._place = place
291 292
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
293
        self._skip_pattern = skip_pattern
294 295 296 297 298 299
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
300 301 302 303
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
304 305
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
306 307
        if activation_quantize_type not in quant_type:
            raise ValueError(
308 309 310
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
311 312
        if weight_quantize_type not in quant_type:
            raise ValueError(
313 314 315
                "Unknown weight_quantize_type: '%s'. It can only be "
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
                % (str(weight_quantize_type)))
W
WangZhen 已提交
316

317 318 319
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
320
        self._moving_rate = moving_rate
W
WangZhen 已提交
321

322 323
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
324
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
325
                op + " is not supported for quantization."
326
        self._conv_ops = ['conv2d', 'depthwise_conv2d']
327 328
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
329
        ]
330 331
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
332

333 334 335
        self.create_var_map = {}
        self.create_op_map = {}

336
    def apply(self, graph):
337 338 339 340 341 342 343
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
344 345
        Returns:
            None
346
        """
W
WangZhen 已提交
347
        assert isinstance(graph,
348 349
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
350 351
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
352
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
353
        processed_vars = []
W
WangZhen 已提交
354

355
        def _quant_preprocess(op_node):
356 357 358 359 360 361 362
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
                               any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
                               op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
363

364
            if user_skipped:
365 366
                op_node.op()._set_attr("skip_quant", True)

W
WangZhen 已提交
367
        def _transform_forward(graph, op):
368
            op.op()._set_attr("quantization_type", "qat_with_weight")
369 370
            inputs = op.inputs
            for var_node in inputs:
371 372
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
373 374 375
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

                    name = var_node.name()
                    if name in processed_vars:
                        continue

                    if var_node.name() in persistable_vars:
                        is_weight = True
                    else:
                        is_weight = False

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
414
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
415
                        else self._activation_bits
416 417
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
418
                    if quant_type == 'channel_wise_abs_max':
419
                        assert is_weight, "'channel_wise_abs_max' can only be applied on weights."
420 421
                        if op.name() in self._conv_ops:
                            quant_var_node, scale_var_node = self._insert_channel_quant_op(
422
                                graph, var_node, name, quant_bits)
423 424 425 426 427
                            dequant_var_node = self._insert_channel_dequant_op(
                                graph, quant_var_node, [scale_var_node],
                                [quant_bits])
                        else:
                            quant_var_node, scale_var_node = self._insert_quant_op(
428
                                graph, var_node, name, quant_bits, 'abs_max')
429 430 431 432 433
                            dequant_var_node = self._insert_dequant_op(
                                graph, quant_var_node, scale_var_node,
                                quant_bits)
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
434
                            graph, var_node, name, quant_bits, quant_type)
435 436
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
437
                    dequantized_vars[name] = dequant_var_node
438
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
439 440 441

        def _transform_backward(graph, op):
            for var_node in op.inputs:
442 443
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
444 445
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
446
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
447

448
        if not self._is_test:
W
WangZhen 已提交
449
            self._create_global_step(graph)
450
        ops = graph.all_op_nodes()
451 452 453 454 455 456
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
457 458
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
459 460
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
461
        for op in ops:
462
            if op.name() in self._quantizable_ops:
463
                if not self._is_skip_quant(graph, op):
464
                    _transform_forward(graph, op)
W
WangZhen 已提交
465 466
        # The loop for renaming the inputs of backward op.
        for op in ops:
467
            if op.name() in self._quantizable_grad_ops:
W
WangZhen 已提交
468
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
469
        graph.resolve_hazard()
470
        return graph
W
WangZhen 已提交
471

W
WangZhen 已提交
472
    def _create_global_step(self, graph):
473 474
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
475
            counter_name = cpt.to_text('@STEP_COUNTER@')
476
            for node in graph.all_var_nodes():
W
WangZhen 已提交
477
                if node.name() == counter_name:
478 479
                    self._global_step = node
            if self._global_step is None:
480
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
481 482 483 484
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
485 486 487 488 489 490
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
491 492
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
493
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
494 495
                increment_op = graph.create_op_node(
                    op_type='increment',
496 497 498 499 500
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
501 502
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
503 504 505
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
506

507
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
508 509 510 511
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
512 513
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
514
        elif quant_type == 'range_abs_max':
515
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
516
                                                       quant_bits)
517
        elif quant_type == 'moving_average_abs_max':
518 519
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
520

521
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
522 523 524 525 526 527
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
528
            name=self._quantized_var_name(name),
529 530 531
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
532
        scale_var_node = graph.create_var_node(
533
            name=self._quantized_scale_name(name),
534
            var_type=var_node.type(),
535
            shape=[1],
536
            var_dtype=var_node.dtype())
W
WangZhen 已提交
537 538
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
539 540 541 542
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
543 544 545
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
546 547 548
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
549 550
        return quant_var_node, scale_var_node

551
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
552 553 554 555 556 557
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
558
            name=self._quantized_var_name(name),
559 560 561
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
562

563
        scale_in_node = graph.create_persistable_node(
564
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
565 566
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
567
            var_dtype=var_node.dtype())
568 569
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
570 571 572 573 574 575
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
576 577 578 579 580

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

581
        if not self._is_test:
W
WangZhen 已提交
582
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
583
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
584 585
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
586
                shape=[self._window_size],
587
                var_dtype=var_node.dtype())
588 589
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
590 591 592 593 594 595 596
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

597
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
598 599
            outputs['OutScales'] = scales_node
        attrs = {
600
            'window_size': self._window_size,
W
WangZhen 已提交
601
            'bit_length': quant_bits,
602 603
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
604 605 606 607 608 609 610
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

611 612 613 614
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
615

616 617 618
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
619 620 621

        return quant_var_node, scale_out_node

622
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
623 624 625 626
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
627
            name=self._quantized_var_name(name),
628 629 630 631
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
632
            name=self._quantized_scale_name(name),
633 634 635
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
636 637
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
638 639 640 641 642 643
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
644 645 646 647 648 649 650 651 652 653

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
654 655
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
656
            _init_var_node(
657
                state_in_node,
658 659 660 661
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
662 663 664 665 666
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
667 668 669 670 671 672
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

709
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits):
710 711 712 713 714 715
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
716
            name=self._quantized_var_name(name),
717 718 719 720
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_var_node = graph.create_var_node(
721
            name=self._quantized_scale_name(name),
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
            var_type=var_node.type(),
            shape=[var_node.shape()[0]],
            var_dtype=var_node.dtype())
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
739 740 741 742 743 744 745 746
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
747 748 749
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
750 751 752
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
753 754 755 756
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
757 758 759
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
760 761 762
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
763 764
        return dequant_var_node

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
                                   quant_bits):
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
877
                graph.out_node_mapping_table[out_node.name] = var_node.name()
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
981
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
982 983
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
984

985
    def _is_skip_quant(self, graph, op_node):
986 987 988 989 990 991 992 993 994 995 996 997
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
998 999 1000
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1001 1002
        return is_skip

W
WangZhen 已提交
1003 1004 1005 1006 1007 1008 1009

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
                 weight_bits=8,
                 activation_bits=8,
1010
                 weight_quantize_type='abs_max',
1011
                 quantizable_op_type=None):
1012 1013
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1014
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1015
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1016 1017
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1018 1019 1020 1021 1022 1023 1024 1025 1026

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1027 1028
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1029
        """
W
WangZhen 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
        self._weight_quantize_type = weight_quantize_type
1039
        self._conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']
1040 1041
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1042 1043
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1044
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1045 1046

    def apply(self, graph):
1047 1048 1049 1050 1051
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1052 1053
        Returns:
            None
1054
        """
1055
        # Get input scales in fake quant op and process weights
1056 1057
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1058 1059 1060
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1061
                input_arg_name = op_node.input('X')[0]
1062 1063 1064 1065
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
W
WangZhen 已提交
1066 1067 1068 1069
                if input_arg_name in persistable_vars:
                    if self._weight_quantize_type == 'abs_max':
                        param = self._load_var(input_arg_name)
                        scale_v = np.max(np.abs(param))
1070 1071 1072 1073 1074 1075 1076 1077
                    elif self._weight_quantize_type == 'channel_wise_abs_max':
                        param = self._load_var(input_arg_name)
                        if len(param.shape) == 4:  # conv2d or depthwise_conv2d
                            scale_v = []
                            for i in range(param.shape[0]):
                                scale_v.append(np.max(np.abs(param[i])))
                        else:
                            scale_v = np.max(np.abs(param))
W
WangZhen 已提交
1078
                    else:
1079 1080
                        scale_v = self._load_var(
                            op_node.output('OutScale')[0])[0]
1081
                    self._quant_var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
1082 1083 1084 1085
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
                    # quantize weight and restore
                    param_v = self._load_var(input_arg_name)
                    quantized_param_v = self._quant(param_v, scale_v,
W
WangZhen 已提交
1086
                                                    self._weight_bits)
W
WangZhen 已提交
1087
                    self._restore_var(input_arg_name, quantized_param_v)
1088
                else:
1089 1090
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
1091
                    self._quant_var_scale_map[input_arg_name] = scale_v
W
WangZhen 已提交
1092

1093
        # Remove all fake dequant op
1094
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1095 1096 1097 1098 1099
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1100
        # Insert post dequant op
1101
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1102
        for op_node in ops:
1103 1104 1105 1106 1107 1108 1109 1110
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
                if self._weight_quantize_type == 'channel_wise_abs_max' \
                    and op_node.name() in self._conv_ops:
                    self._insert_post_channel_dequant_op(graph, op_node)
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1111

1112
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1113 1114
        for op_node in ops:
            for var_node in op_node.inputs:
1115 1116 1117
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1118 1119 1120 1121
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1122
        graph.resolve_hazard()
1123
        return graph
W
WangZhen 已提交
1124 1125

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1126 1127
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1128 1129
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1130
        else:
1131 1132
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1133
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1134

1135 1136 1137 1138
    def _insert_post_channel_dequant_op(self, graph, op_node):
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1139 1140 1141 1142 1143
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1144 1145 1146
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1147
            scale_v = self._quant_var_scale_map[original_var_name]
1148 1149 1150 1151 1152 1153 1154 1155
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1156
                scale_var_node = self._quant_var_scale_map[original_var_name]
1157

1158
        if len(op_node.output_arg_names()) != 1:
1159 1160 1161
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1162 1163
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1164 1165 1166 1167 1168
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1169 1170
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1171 1172 1173
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1194
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1195 1196
        return dequant_var_node

W
WangZhen 已提交
1197
    def _insert_post_dequant_op(self, graph, op_node):
1198
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1199 1200 1201
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1202
        for var_node in op_node.inputs:
W
WangZhen 已提交
1203
            name = var_node.name()
1204 1205 1206 1207 1208
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1209
                new_in.clear_outputs()
W
WangZhen 已提交
1210 1211
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1212
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1213 1214 1215 1216
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
1217
                max_range *= param_range / scale_v
W
WangZhen 已提交
1218
            else:
1219
                max_range *= act_range
1220
                assert isinstance(scale_v, IrNode)
1221
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1222

1223
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1224 1225 1226
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1227 1228
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1229 1230
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1231 1232 1233
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1234 1235
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1236 1237 1238 1239
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1240 1241 1242 1243 1244 1245
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1246
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1247 1248 1249 1250 1251
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1252 1253 1254
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1255 1256 1257

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1258
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1259 1260 1261 1262 1263 1264
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1265 1266 1267 1268 1269 1270
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1294
    def _is_float(self, v):
W
WangZhen 已提交
1295 1296 1297
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

W
WangZhen 已提交
1298
    def _quant(self, x, scale, num_bits):
1299 1300 1301 1302 1303 1304
        if isinstance(scale, list):
            for i, s in enumerate(scale):
                x[i] = np.round(x[i] / s * ((1 << (num_bits - 1)) - 1))
            return x
        else:
            return np.round(x / scale * ((1 << (num_bits - 1)) - 1))
1305 1306 1307


class ConvertToInt8Pass(object):
1308
    def __init__(self, scope, place, quantizable_op_type=None):
1309 1310 1311 1312 1313 1314 1315
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the
                8bits weight tensors.
1316 1317
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1318
        """
1319 1320 1321 1322 1323 1324 1325 1326
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
        self._place = place

    def apply(self, graph):
1327
        """
T
tianshuo78520a 已提交
1328 1329
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1330 1331 1332

        Args:
            graph(IrGraph): the applied graph.
1333 1334
        Returns:
            None
1335
        """
1336 1337
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1338 1339
        input_map = {}
        for op_node in ops:
1340 1341
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1354
        graph.resolve_hazard()
1355 1356 1357 1358
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1359
        int8_var_node = graph.create_persistable_node(
1360
            name=cpt.to_text(int8_var_node_name),
1361 1362
            var_type=var_node.type(),
            shape=var_node.shape(),
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1378
        ops = graph.all_op_nodes()
1379 1380 1381 1382 1383 1384
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1385 1386 1387 1388 1389 1390
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1391 1392 1393 1394 1395
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1396
        """
T
tianshuo78520a 已提交
1397
        This pass is used to convert the frozen graph for paddle-mobile execution.
1398
        """
1399 1400
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1401 1402

    def apply(self, graph):
1403 1404 1405 1406 1407 1408 1409
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1410 1411
        Returns:
            None
1412
        """
1413
        ops = graph.all_op_nodes()
1414 1415 1416
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1417
                op_node.set_type('quantize')
1418 1419 1420 1421 1422 1423 1424
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1425
                op_node.set_type('dequantize')
1426 1427 1428 1429 1430 1431
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1432
        graph.resolve_hazard()
1433
        return graph
1434 1435


1436
class OutScaleForTrainingPass(object):
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): The place is used to initialize new parameters.
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._is_test = None
1451
        self._teller_set = _out_scale_op_list
1452 1453 1454 1455 1456 1457 1458 1459 1460

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1461 1462
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1463
        self._is_test = graph.is_test()
1464 1465 1466 1467 1468 1469 1470
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1471 1472 1473 1474 1475
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1476 1477 1478 1479 1480 1481 1482 1483
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1484
                ins = {'X': in_node}
1485
                outs = {'OutScale': scale_node}
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1546
class OutScaleForInferencePass(object):
1547 1548 1549 1550 1551 1552 1553 1554 1555
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1556
        self._teller_set = _out_scale_op_list
1557 1558 1559 1560 1561 1562 1563 1564 1565

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1566 1567
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1568 1569 1570
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
                    # For compatibility, we save output threshold by two methods.
                    scale_name = self._scale_name(var_name)
                    scale_v = np.array(
                        self._scope.find_var(scale_name).get_tensor())[0]
                    op_node.op()._set_attr("out_threshold", float(scale_v))

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
                        + "_threshold", float(scale_v))
1584 1585 1586 1587 1588 1589 1590 1591
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1592 1593 1594


class AddQuantDequantPass(object):
1595 1596 1597 1598
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1599 1600 1601 1602 1603
    _supported_quantizable_op_type = [
        "pool2d", "elementwise_add", "concat", "softmax", "argmax", "transpose",
        "equal", "gather", "greater_equal", "greater_than", "less_equal",
        "less_than", "mean", "not_equal", "reshape", "reshape2",
        "bilinear_interp", "nearest_interp", "trilinear_interp", "slice",
1604 1605
        "squeeze", "elementwise_sub", "mul", "matmul", "relu", "relu6",
        "leaky_relu", "tanh", "swish"
1606 1607
    ]

1608 1609 1610
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1611 1612 1613 1614 1615
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1616
                 skip_pattern=["skip_quant"],
1617
                 quantizable_op_type=["elementwise_add", "pool2d"],
1618
                 is_full_quantized=False):
1619
        """
1620
        Constructor.
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
            place(fluid.CPUPlace|fluid.CUDAPlace): place is used to initialize new
                parameters described above.
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1634
                quantized. Default is ["elementwise_add", "pool2d"]. 
1635 1636 1637 1638
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1639 1640 1641 1642 1643 1644
        """
        self._scope = scope
        self._place = place
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
1645
        self._skip_pattern = skip_pattern
1646 1647 1648 1649 1650 1651 1652

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
1653
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
1654
                    op_type + " is not supported for quantization."
1655 1656 1657 1658
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

1659 1660
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
1661 1662 1663

    def apply(self, graph):
        """
1664 1665
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
1666

1667 1668
        Args:
            graph(IrGraph): the target graph.
1669 1670
        Returns:
            None
1671 1672 1673 1674
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
1675 1676
        dequantized_vars_map = collections.OrderedDict()

1677 1678 1679
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
1680
            if op_node.name() in self._quantizable_op_type:
1681
                is_skip = False
1682
                if isinstance(self._skip_pattern, list):
1683
                    is_skip = op_node.op().has_attr("op_namescope") and \
1684 1685
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
1686
                    is_skip = op_node.op().has_attr("op_namescope") and \
1687
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
1688 1689 1690
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
1691
                    (not _is_input_all_not_persistable(graph, op_node)):
1692
                    continue
1693

1694 1695 1696
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
1697
                arg_names = _get_op_input_var_names(op_node)
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
1708

1709 1710
        # Backward stage, update input link
        for op_node in all_op_nodes:
1711
            if op_node.name() in self._quantizable_grad_op_type:
1712 1713 1714 1715 1716 1717 1718 1719
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node