quantization_pass.py 87.6 KB
Newer Older
W
WangZhen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
W
WangZhen 已提交
16
import numpy as np
W
WangZhen 已提交
17
from ..... import compat as cpt
W
WangZhen 已提交
18
from .... import core
19
from ....framework import IrGraph
20
from ....framework import IrNode
21
from ....framework import Operator
W
WangZhen 已提交
22 23
from .... import unique_name

24 25 26 27
from ....framework import Program, program_guard, default_startup_program
from ....data import data
from ....layers import mean
from ....executor import scope_guard
28
from ....framework import _get_paddle_place
29
from .utils import _channelwise_quant_axis1_ops, quant_tensor
30

31 32
__all__ = [
    'QuantizationTransformPass', 'QuantizationFreezePass', 'ConvertToInt8Pass',
33 34
    'TransformForMobilePass', 'OutScaleForTrainingPass',
    'OutScaleForInferencePass', 'AddQuantDequantPass'
35
]
W
WangZhen 已提交
36

37 38 39 40 41 42 43 44 45
_fake_quant_op_list = [
    'fake_quantize_abs_max', 'fake_quantize_range_abs_max',
    'fake_quantize_moving_average_abs_max', 'fake_channel_wise_quantize_abs_max'
]

_fake_dequant_op_list = [
    'fake_dequantize_max_abs', 'fake_channel_wise_dequantize_max_abs'
]

46 47 48 49
_fake_quant_dequant_op_list = [
    'fake_quantize_dequantize_moving_average_abs_max'
]

50
_out_scale_op_list = [
51 52 53 54
    "conv2d",
    "depthwise_conv2d",
    "mul",
    "matmul",
C
ceci3 已提交
55
    "matmul_v2",
56 57 58 59 60 61 62
    "relu",
    "leaky_relu",
    "relu6",
    "sigmoid",
    "tanh",
    "prelu",
    "swish",
63
    "dropout",
64 65
    "softmax",
    "batch_norm",
66
    "layer_norm",
67 68 69 70 71 72
    "elementwise_add",
    "pool2d",
    "reshape2",
    "transpose2",
    "concat",
    "elementwise_mul",
73 74
    "elementwise_pow",
    "elementwise_sub",
75
    "scale",
76
    "slice",
77 78
    "hard_swish",
    "hard_sigmoid",
79
    "conv2d_transpose",
80 81 82 83
    "gru",
    "bilinear_interp",
    "nearest_interp",
    "trilinear_interp",
84 85 86 87
    "flatten",
    "flatten2",
    "transpose",
    "pad2d",
88
    "pad3d",
89
    "reshape",
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    "split",
    "flatten_contiguous_range",
    "squeeze",
    "squeeze2",
    "nearest_interp_v2",
    "fill_constant_batch_size_like",
    "bilinear_interp",
    "bilinear_interp_v2",
    "arg_max",
    "abs",
    "assign",
    "cast",
    "clip",
    "box_coder",
    "crop",
    "cumsum",
    "equal",
    "expand_v2",
    "fill_any_like",
    "fill_constant",
    "gelu",
    "instance_norm",
    "lookup_table",
    "lookup_table_v2",
    "norm",
    "p_norm",
    "pow",
    "reduce_mean",
    "stack",
    "top_k_v2",
    "unsqueeze",
    "unsqueeze2",
    "logical_and",
    "logical_not",
    "meshgrid",
    "roi_align",
    "strided_slice",
    "where",
    "grid_sampler",
    "tile",
    "group_norm",
    "reduce_sum",
    "square",
    "softplus",
    "gather",
    "shuffle_channel",
136 137
]

138 139 140
# list op real input and output names, to avoid processing input such as AxisTensor.
_op_real_in_out_name = {
    "conv2d": [["Input", "Filter"], ["Output"]],
141
    "depthwise_conv2d": [["Input", "Filter"], ["Output"]],
142
    "conv2d_transpose": [["Input", "Filter"], ["Output"]],
143
    "mul": [["X", "Y"], ["Out"]],
144
    "matmul": [["X", "Y"], ["Out"]],
C
ceci3 已提交
145
    "matmul_v2": [["X", "Y"], ["Out"]],
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    "pool2d": [["X"], ["Out"]],
    "elementwise_add": [["X", "Y"], ["Out"]],
    "concat": [["X"], ["Out"]],
    "softmax": [["X"], ["Out"]],
    "argmax": [["X"], ["Out"]],
    "transpose": [["X"], ["Out"]],
    "equal": [["X", "Y"], ["Out"]],
    "gather": [["X"], ["Out"]],
    "greater_equal": [["X", "Y"], ["Out"]],
    "greater_than": [["X", "Y"], ["Out"]],
    "less_equal": [["X", "Y"], ["Out"]],
    "less_than": [["X", "Y"], ["Out"]],
    "mean": [["X"], ["Out"]],
    "not_equal": [["X", "Y"], ["Out"]],
    "reshape": [["X"], ["Out"]],
    "reshape2": [["X"], ["Out"]],
162
    "transpose2": [["X"], ["Out"]],
163 164 165 166 167 168 169 170 171
    "bilinear_interp": [["X"], ["Out"]],
    "nearest_interp": [["X"], ["Out"]],
    "trilinear_interp": [["X"], ["Out"]],
    "slice": [["Input"], ["Out"]],
    "squeeze": [["X"], ["Out"]],
    "elementwise_sub": [["X", "Y"], ["Out"]],
    "relu": [["X"], ["Out"]],
    "relu6": [["X"], ["Out"]],
    "leaky_relu": [["X"], ["Out"]],
172
    "prelu": [["X", "Alpha"], ["Out"]],
173 174
    "tanh": [["X"], ["Out"]],
    "swish": [["X"], ["Out"]],
175 176
    "dropout": [["X"], ["Out"]],
    "batch_norm": [["X"], ["Y"]],
177
    "layer_norm": [["X"], ["Y"]],
178
    "sigmoid": [["X"], ["Out"]],
179
    "elementwise_mul": [["X", "Y"], ["Out"]],
180
    "elementwise_pow": [["X", "Y"], ["Out"]],
181
    "scale": [["X"], ["Out"]],
182 183
    "hard_swish": [["X"], ["Out"]],
    "hard_sigmoid": [["X"], ["Out"]],
184
    "gru": [["Input", "Weight"], ["Hidden"]],
185
    "lstm": [["Input", "Weight"], ["Hidden"]],
186
    "pad2d": [["X"], ["Out"]],
187
    "pad3d": [["X"], ["Out"]],
188 189
    "flatten": [["X"], ["Out"]],
    "flatten2": [["X"], ["Out"]],
C
cc 已提交
190
    "unsqueeze2": [["X"], ["Out"]],
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    "unsqueeze2": [["X"], ["Out"]],
    "flatten_contiguous_range": [["X"], ["Out"]],
    "split": [["X"], ["Out"]],
    "squeeze2": [["X"], ["Out"]],
    "nearest_interp_v2": [["X"], ["Out"]],
    "bilinear_interp": [["X"], ["Out"]],
    "bilinear_interp_v2": [["X"], ["Out"]],
    "fill_constant_batch_size_like": [["Input"], ["Out"]],
    "arg_max": [["X"], ["Out"]],
    "abs": [["X"], ["Out"]],
    "assign": [["X"], ["Out"]],
    "cast": [["X"], ["Out"]],
    "clip": [["X"], ["Out"]],
    "box_coder": [["PriorBox"], ["OutputBox"]],
    "crop": [["X"], ["Out"]],
    "cumsum": [["X"], ["Out"]],
    "expand_v2": [["X"], ["Out"]],
    "fill_any_like": [["X"], ["Out"]],
    "fill_constant": [[], ["Out"]],
    "gelu": [["X"], ["Out"]],
    "instance_norm": [["X"], ["Out"]],
    "lookup_table": [["W", "Ids"], ["Out"]],
    "lookup_table_v2": [["W", "Ids"], ["Out"]],
    "norm": [["X"], ["Norm"]],
    "p_norm": [["X"], ["Out"]],
    "pow": [["X"], ["Out"]],
    "reduce_mean": [["X"], ["Out"]],
    "stack": [["X"], ["Y"]],
    "top_k_v2": [["X"], ["Out", "Indices"]],
    "logical_and": [["X", "Y"], ["Out"]],
    "logical_not": [["X"], ["Out"]],
    "meshgrid": [["X"], ["Out"]],
    "roi_align": [["X", "ROIs"], ["Out"]],
    "strided_slice": [["Input"], ["Out"]],
    "where": [["Condition", "X", "Y"], ["Out"]],
    "grid_sampler": [["X", "Grid"], ["Output"]],
    "tile": [["X"], ["Out"]],
    "group_norm": [["X"], ["Y", "Mean", "Variance"]],
    "reduce_sum": [["X"], ["Out"]],
    "square": [["X"], ["Out"]],
    "softplus": [["X"], ["Out"]],
    "shuffle_channel": [["X"], ["Out"]],
233 234
}

235 236
_conv_ops = ['conv2d', 'depthwise_conv2d', 'conv2d_transpose']

W
WangZhen 已提交
237

238
def _get_op_input_var_names(op):
239 240 241 242 243 244 245
    """
    Get the input var names of the op.
    Args:
        op(IrNode, Operator): the input op.
    Returns:
        input_var_names or None.
    """
246 247 248 249 250
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
251 252 253
    if op_name not in _op_real_in_out_name:
        return []

254 255 256 257 258 259 260 261 262 263
    name_list = _op_real_in_out_name[op_name][0]
    for name in name_list:
        var_name = op.input(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


264 265 266 267 268 269
def _get_input_name_index(op, input_var_name):
    """Get the input name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
270 271 272
    if op_name not in _op_real_in_out_name:
        return None

273 274 275 276 277 278 279 280 281
    res = None
    for argname in _op_real_in_out_name[op_name][0]:
        var_names = op.input(argname)
        for index, name in enumerate(var_names):
            if name == input_var_name:
                res = (argname, index)
    return res


282 283 284 285 286 287 288
def _get_op_output_var_names(op):
    """ """
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    var_names = []
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
289 290 291
    if op_name not in _op_real_in_out_name:
        return []

292 293 294 295 296 297 298 299 300 301
    name_list = _op_real_in_out_name[op_name][1]
    for name in name_list:
        var_name = op.output(name)
        if isinstance(var_name, list):
            var_names.extend(var_name)
        else:
            var_names.append(var_name)
    return var_names


302 303 304 305 306 307
def _get_output_name_index(op, output_var_name):
    """Get the output name and index of the var_name in the op"""
    assert isinstance(op, (IrNode, Operator)), \
        "The input op should be IrNode or Operator."
    op_name = op.name() if isinstance(op, IrNode) \
        else op.type
308 309 310
    if op_name not in _op_real_in_out_name:
        return None

311 312 313 314 315 316 317 318 319 320
    name_list = _op_real_in_out_name[op_name][1]
    res = None
    for name in name_list:
        var_name = op.output(name)
        for index, val in enumerate(var_name):
            if val == output_var_name:
                res = (name, index)
    return res


321 322 323 324
def _init_var_node(var_node, value, scope, place):
    assert isinstance(value,
                      np.ndarray), 'The type of value should be numpy array.'
    assert scope is not None, \
325
        'The scope cannot be set None.'
326
    assert place is not None, \
327
        'The place cannot be set None.'
328 329 330 331
    tensor = scope.var(var_node.name()).get_tensor()
    tensor.set(value, place)


332 333 334 335 336
def _is_input_all_not_persistable(graph, op_node):
    '''
    Analyse the real inputs of the op node are all not persistable.
    '''
    is_input_all_not_persistable = True
337 338 339 340
    for var_name in _get_op_input_var_names(op_node):
        in_node = graph._find_node_by_name(op_node.inputs, var_name)
        is_input_all_not_persistable = (is_input_all_not_persistable and \
            (not in_node.persistable()))
341 342 343
    return is_input_all_not_persistable


344 345 346 347 348 349 350 351 352 353 354 355 356 357
def _check_grandchild_op_node(op_node, grandchild_op_name):
    '''
    Check whether the fake_quant node has a grandchild op node named
    grandchild_op_name.
    '''
    for out1_var_node in op_node.outputs:
        for out1_op_node in out1_var_node.outputs:
            for out2_var_node in out1_op_node.outputs:
                for out2_op_node in out2_var_node.outputs:
                    if out2_op_node.name() == grandchild_op_name:
                        return True
    return False


358
class QuantizationTransformPass(object):
359
    """
360 361
    Quantize the ops that have weights. Add quant and dequant ops for
    the quantized ops's inputs.
362
    """
363
    _supported_quantizable_op_type = [
X
XGZhang 已提交
364 365
        'conv2d', 'depthwise_conv2d', 'conv2d_transpose', 'mul', 'matmul',
        'matmul_v2'
366
    ]
367

W
WangZhen 已提交
368
    def __init__(self,
369
                 scope=None,
370
                 place=None,
W
WangZhen 已提交
371 372 373 374
                 weight_bits=8,
                 activation_bits=8,
                 activation_quantize_type='abs_max',
                 weight_quantize_type='abs_max',
375
                 window_size=10000,
376
                 moving_rate=0.9,
377
                 skip_pattern=['skip_quant'],
378 379 380 381 382 383 384
                 quantizable_op_type=['conv2d', 'depthwise_conv2d', 'mul'],
                 weight_quantize_func=None,
                 act_quantize_func=None,
                 weight_preprocess_func=None,
                 act_preprocess_func=None,
                 optimizer_func=None,
                 executor=None):
385
        r"""
386
        Constructor.
387

W
WangZhen 已提交
388
        Args:
389
            scope(fluid.Scope): When activation use 'range_abs_max' as the quantize
390 391
                type, this pass will create some new parameters. The scope is used to
                initialize these new parameters.
392 393 394
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs. 
395
            weight_bits(int): quantization bit number for weights,
W
WangZhen 已提交
396
                the bias is not quantized.
397 398
            activation_bits(int): quantization bit number for activation.
            activation_quantize_type(str): quantization type for activation,
399 400 401 402 403
                now support 'abs_max', 'range_abs_max' and 'moving_average_abs_max'.
                If use 'abs_max' mode, the quantization scale will be calculated
                dynamically each step in both training and testing period. If use
                'range_abs_max', a static quantization scale will be calculated
                during training and used in inference.
404
            weight_quantize_type(str): quantization type for weights,
405 406 407
                support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
                usually is not used for weight, since weights are fixed once the
                model is well trained.
408 409
            window_size(int): the window size for 'range_abs_max' quantization.
            moving_rate(float): the param for 'moving_average_abs_max' quantization.
410
            skip_pattern(str or str list): The user-defined quantization skip pattern, which
411
                will be presented in the name scope of an op. When the skip pattern is
412
                detected in an op's name scope, the corresponding op will not be quantized. 
413
            quantizable_op_type(list[str]): List the type of ops that will be quantized. 
414 415
                Default is ["conv2d", "depthwise_conv2d", "mul"]. The quantizable_op_type in
                QuantizationFreezePass and ConvertToInt8Pass must be the same as this.
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
            weight_quantize_func(function): Function that defines how to quantize weight.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization function and
                dequantization function, that is, the function's input is non-quantized
                weight and function returns dequantized weight. If None, will use
                quantization op defined by 'weight_quantize_type'. Default is None.
            act_quantize_func(function): Function that defines how to quantize activation.
                Using this can quickly test if user's quantization method works or not.
                In this function, user should both define quantization and dequantization
                process, that is, the function's input is non-quantized activation and
                function returns dequantized activation. If None, will use quantization
                op defined by 'activation_quantize_type'. Default is None.
            weight_preprocess_func(function): Function that defines how to preprocess
                weight before quantization. Using this can quickly test if user's preprocess
                method works or not. The function's input is non-quantized weight and
                function returns processed weight to be quantized. If None, the weight will
                be quantized directly. Default is None.
            act_preprocess_func(function): Function that defines how to preprocess
                activation before quantization. Using this can quickly test if user's
                preprocess method works or not. The function's input is non-quantized
                activation and function returns processed activation to be quantized.
                If None, the activation will be quantized directly. Default is None.
            optimizer_func(function): Fuction return a optimizer. When 'is_test' is
                False and user want to use self-defined quantization function and
                preprocess function, this function must be set. Default is None.
            executor(Fluid.Executor): If user want to use self-defined quantization
                function and preprocess function, executor must be set for initialization.
443 444
                Default is None.

445

W
WangZhen 已提交
446 447
        Examples:
        .. code-block:: python
448 449 450 451
            # The original graph will be rewrite.
            import paddle.fluid as fluid
            from paddle.fluid.contrib.slim.quantization \
                import QuantizationTransformPass
452
            from paddle.fluid.contrib.slim.graph import IrGraph
453 454
            from paddle.fluid import core

455
            graph = IrGraph(core.Graph(program.desc), for_test=False)
456
            place = fluid.CPUPlace()
457
            transform_pass = QuantizationTransformPass(fluid.global_scope(),
458
            place)
459
            transform_pass.apply(graph)
W
WangZhen 已提交
460
        """
461
        self._scope = scope
462
        self._place = _get_paddle_place(place)
463 464
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
465
        self._skip_pattern = skip_pattern
466 467 468 469 470 471
        self._weight_quantize_func = weight_quantize_func
        self._act_quantize_func = act_quantize_func
        self._weight_preprocess_func = weight_preprocess_func
        self._act_preprocess_func = act_preprocess_func
        self._optimizer = optimizer_func
        self._exe = executor
472 473 474 475
        quant_type = [
            'abs_max', 'channel_wise_abs_max', 'range_abs_max',
            'moving_average_abs_max'
        ]
476 477
        assert activation_quantize_type != 'channel_wise_abs_max', \
            "The activation quantization type does not support 'channel_wise_abs_max'."
W
WangZhen 已提交
478 479
        if activation_quantize_type not in quant_type:
            raise ValueError(
480 481 482
                "Unknown activation_quantize_type : '%s'. It can only be "
                "'abs_max' or 'range_abs_max' or 'moving_average_abs_max'." %
                (str(activation_quantize_type)))
W
WangZhen 已提交
483 484
        if weight_quantize_type not in quant_type:
            raise ValueError(
485
                "Unknown weight_quantize_type: '%s'. It can only be "
486 487
                "'abs_max' or 'channel_wise_abs_max' or 'range_abs_max' "
                "or 'moving_average_abs_max'." % (str(weight_quantize_type)))
W
WangZhen 已提交
488

489 490 491
        self._activation_quantize_type = activation_quantize_type
        self._weight_quantize_type = weight_quantize_type
        self._window_size = window_size
492
        self._moving_rate = moving_rate
W
WangZhen 已提交
493

494 495
        self._quantizable_ops = quantizable_op_type
        for op in self._quantizable_ops:
496
            assert op in QuantizationTransformPass._supported_quantizable_op_type, \
497
                op + " is not supported for quantization."
498 499
        self._quantizable_grad_ops = [
            '%s_grad' % (op) for op in self._quantizable_ops
W
WangZhen 已提交
500
        ]
501 502
        self._is_test = None
        self._global_step = None
W
WangZhen 已提交
503

504 505 506
        self.create_var_map = {}
        self.create_op_map = {}

507
    def apply(self, graph):
508 509 510 511 512 513 514
        """
        Quantize the graph for training process. According to weight and
        activation quantization type, the graph will be added some fake
        quantize operators and fake dequantize operators.

        Args:
            graph(IrGraph): the applied graph.
515 516
        Returns:
            None
517
        """
W
WangZhen 已提交
518
        assert isinstance(graph,
519 520
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
W
WangZhen 已提交
521 522
        # marked the variable which has been dequantized.
        dequantized_vars = collections.OrderedDict()
523
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
524
        processed_vars = []
W
WangZhen 已提交
525

526
        def _quant_preprocess(op_node):
527 528 529
            user_skipped = False
            if isinstance(self._skip_pattern, list):
                user_skipped = op_node.op().has_attr("op_namescope") and \
530 531
                               any(pattern in op_node.op().attr("op_namescope") \
                                   for pattern in self._skip_pattern)
532 533
            elif isinstance(self._skip_pattern, str):
                user_skipped = op_node.op().has_attr("op_namescope") and \
534 535
                               op_node.op().attr("op_namescope").find(
                                   self._skip_pattern) != -1
536

537
            if user_skipped:
538
                op_node.op()._set_attr("skip_quant", True)
539
                op_node.op()._set_attr("with_quant_attr", True)
540

W
WangZhen 已提交
541
        def _transform_forward(graph, op):
542
            op.op()._set_attr("quantization_type", "qat_with_weight")
543
            op.op()._set_attr("with_quant_attr", True)
544 545
            inputs = op.inputs
            for var_node in inputs:
546 547
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
548 549 550
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
                else:
551 552 553
                    name = var_node.name()
                    if name in processed_vars:
                        continue
554 555
                    is_weight = True if var_node.name() in persistable_vars \
                        else False
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

                    # if var node is weight and weight_preprocess_func is not None,
                    # will insert weight preprocess func 
                    # to preorocess weight before quantization
                    # if var node is activation and act_preprocess_func is not None, 
                    # will insert activation preprocess func 
                    # to preorocess activation before quantization
                    if is_weight and self._weight_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._weight_preprocess_func, var_node, op)
                    elif not is_weight and self._act_preprocess_func is not None:
                        var_node = self._insert_func(
                            graph, self._act_preprocess_func, var_node, op)

                    # if var node is weight and weight_quantize_func is not None,
                    # will insert weight quantize func to quantize and dequantize weight
                    # if var node is activation and act_quantize_func is not None,
                    # will insert act quantize func to quantize and dequantize activation
                    if is_weight and self._weight_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._weight_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue
                    elif not is_weight and self._act_quantize_func is not None:
                        target_out_node = self._insert_func(
                            graph, self._act_quantize_func, var_node, op)
                        processed_vars.append(name)
                        continue

W
WangZhen 已提交
585
                    quant_bits = self._weight_bits if var_node.name() in persistable_vars \
586
                        else self._activation_bits
587 588
                    quant_type = self._weight_quantize_type if is_weight \
                        else self._activation_quantize_type
589 590 591 592 593 594 595 596
                    if quant_type == 'channel_wise_abs_max':  # Weight quantization
                        quant_axis = 1 if op.name() in \
                            _channelwise_quant_axis1_ops else 0
                        quant_var_node, scale_var_node = self._insert_channel_quant_op(
                            graph, var_node, name, quant_bits, quant_axis)
                        dequant_var_node = self._insert_channel_dequant_op(
                            graph, quant_var_node, [scale_var_node],
                            [quant_bits], quant_axis)
597 598
                    else:
                        quant_var_node, scale_var_node = self._insert_quant_op(
599
                            graph, var_node, name, quant_bits, quant_type)
600 601
                        dequant_var_node = self._insert_dequant_op(
                            graph, quant_var_node, scale_var_node, quant_bits)
602
                    dequantized_vars[name] = dequant_var_node
603
                graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
604 605 606

        def _transform_backward(graph, op):
            for var_node in op.inputs:
607 608
                if var_node.name() not in op.input_arg_names():
                    continue
W
WangZhen 已提交
609 610
                if var_node.name() in dequantized_vars:
                    dequant_var_node = dequantized_vars[var_node.name()]
611
                    graph.update_input_link(var_node, dequant_var_node, op)
W
WangZhen 已提交
612

X
XGZhang 已提交
613 614 615 616 617 618 619 620 621 622
        def _has_weight(op):
            has_weight = False
            for var_node in op.inputs:
                if var_node.name() not in op.input_arg_names():
                    continue
                name = var_node.name()
                if var_node.name() in persistable_vars:
                    has_weight = True
            return has_weight

623
        if not self._is_test:
W
WangZhen 已提交
624
            self._create_global_step(graph)
625
        ops = graph.all_op_nodes()
626 627 628 629 630 631
        # Do the preproccess of quantization, such as skipping some ops
        # for not being quantized.
        for op in ops:
            if op.name() in self._quantizable_ops or \
                    op.name() in self._quantizable_grad_ops:
                _quant_preprocess(op)
632 633
        # Insert mapping table to solve the problem in saving inference model.
        graph.out_node_mapping_table = dict()
W
WangZhen 已提交
634 635
        # The process of _transform_forward and _transform_backward is needed in two for loops.
        # The loop for transforming the forward graph:
W
WangZhen 已提交
636
        for op in ops:
637
            if op.name() in self._quantizable_ops:
X
XGZhang 已提交
638
                if not self._is_skip_quant(graph, op) and _has_weight(op):
639
                    _transform_forward(graph, op)
W
WangZhen 已提交
640 641
        # The loop for renaming the inputs of backward op.
        for op in ops:
X
XGZhang 已提交
642
            if op.name() in self._quantizable_grad_ops and _has_weight(op):
W
WangZhen 已提交
643
                _transform_backward(graph, op)
Z
Zhen Wang 已提交
644
        graph.resolve_hazard()
645
        return graph
W
WangZhen 已提交
646

W
WangZhen 已提交
647
    def _create_global_step(self, graph):
648 649
        if self._weight_quantize_type == 'range_abs_max' or \
                self._activation_quantize_type == 'range_abs_max':
W
WangZhen 已提交
650
            counter_name = cpt.to_text('@STEP_COUNTER@')
651
            for node in graph.all_var_nodes():
W
WangZhen 已提交
652
                if node.name() == counter_name:
653 654
                    self._global_step = node
            if self._global_step is None:
655
                global_step_in = graph.create_persistable_node(
W
WangZhen 已提交
656 657 658 659
                    name=counter_name,
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=core.VarDesc.VarType.INT64)
660 661 662 663 664 665
                _init_var_node(
                    global_step_in,
                    np.zeros(
                        [1], dtype='int64'),
                    self._scope,
                    self._place)
W
WangZhen 已提交
666 667
                global_step_out = graph.create_var_node_from_desc(
                    global_step_in.var())
668
                # The attribute of `op_role` is needed by ParallelExecutor.
W
WangZhen 已提交
669 670
                increment_op = graph.create_op_node(
                    op_type='increment',
671 672 673 674 675
                    attrs={
                        'step': 1.0,
                        'op_role':
                        core.op_proto_and_checker_maker.OpRole.Forward
                    },
W
WangZhen 已提交
676 677
                    inputs={'X': global_step_in},
                    outputs={'Out': global_step_out})
678 679 680
                graph.link_to(global_step_in, increment_op)
                graph.link_to(increment_op, global_step_out)
                self._global_step = global_step_out
W
WangZhen 已提交
681

682
    def _insert_quant_op(self, graph, var_node, name, quant_bits, quant_type):
W
WangZhen 已提交
683 684 685 686
        """
        Insert fake_quantize_op in the graph.
        """
        if quant_type == 'abs_max':
687 688
            return self._insert_quant_abs_max_op(graph, var_node, name,
                                                 quant_bits)
W
WangZhen 已提交
689
        elif quant_type == 'range_abs_max':
690
            return self._insert_quant_range_abs_max_op(graph, var_node, name,
W
WangZhen 已提交
691
                                                       quant_bits)
692
        elif quant_type == 'moving_average_abs_max':
693 694
            return self._insert_quant_moving_average_abs_max_op(
                graph, var_node, name, quant_bits)
W
WangZhen 已提交
695

696
    def _insert_quant_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
697 698 699 700 701 702
        """
        Insert fake_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
703
            name=self._quantized_var_name(name),
704 705 706
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
707
        scale_var_node = graph.create_persistable_node(
708
            name=self._quantized_scale_name(name),
709
            var_type=var_node.type(),
710
            shape=[1],
711
            var_dtype=var_node.dtype())
712 713 714 715 716 717 718 719
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
720 721
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_abs_max',
722 723 724 725
            attrs={
                'bit_length': quant_bits,
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
726 727 728
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
729 730 731
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
W
WangZhen 已提交
732 733
        return quant_var_node, scale_var_node

734
    def _insert_quant_range_abs_max_op(self, graph, var_node, name, quant_bits):
W
WangZhen 已提交
735 736 737 738 739 740
        """
        Insert fake_quantize_range_abs_max on the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
741
            name=self._quantized_var_name(name),
742 743 744
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
745

746
        scale_in_node = graph.create_persistable_node(
747
            name=self._quantized_scale_name(name),
W
WangZhen 已提交
748 749
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
750
            var_dtype=var_node.dtype())
751 752
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
753 754 755 756 757 758
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
W
WangZhen 已提交
759 760 761 762 763

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        inputs = {'X': var_node, 'InScale': scale_in_node}
        outputs = {'Out': quant_var_node, 'OutScale': scale_out_node}

764
        if not self._is_test:
W
WangZhen 已提交
765
            # The name of scales_var_node maybe 'scales_0', 'scales_1', etc.
766
            scales_node = graph.create_persistable_node(
W
WangZhen 已提交
767 768
                name=unique_name.generate('scales'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
769
                shape=[self._window_size],
770
                var_dtype=var_node.dtype())
771 772
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
773 774 775 776 777 778 779
            _init_var_node(
                scales_node,
                np.zeros(
                    [self._window_size], dtype=data_type),
                self._scope,
                self._place)

780
            inputs['Iter'] = self._global_step
W
WangZhen 已提交
781 782
            outputs['OutScales'] = scales_node
        attrs = {
783
            'window_size': self._window_size,
W
WangZhen 已提交
784
            'bit_length': quant_bits,
785 786
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
W
WangZhen 已提交
787 788 789 790 791 792 793
        }
        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_range_abs_max',
            attrs=attrs,
            inputs=inputs,
            outputs=outputs)

794 795 796 797
        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)
W
WangZhen 已提交
798

799 800 801
        if not self._is_test:
            graph.link_to(self._global_step, quant_op_node)
            graph.link_to(quant_op_node, scales_node)
W
WangZhen 已提交
802 803 804

        return quant_var_node, scale_out_node

805
    def _insert_quant_moving_average_abs_max_op(self, graph, var_node, name,
806 807 808 809
                                                quant_bits):
        """Insert fake_quantize_moving_average_abs_max
        """
        quant_var_node = graph.create_var_node(
810
            name=self._quantized_var_name(name),
811 812 813 814
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
815
            name=self._quantized_scale_name(name),
816 817 818
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
819 820
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
821 822 823 824 825 826
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)
827 828 829 830 831 832 833 834 835 836

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
837 838
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
839
            _init_var_node(
840
                state_in_node,
841 842 843 844
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
845 846 847 848 849
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
850 851 852 853 854 855
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node

892 893
    def _insert_channel_quant_op(self, graph, var_node, name, quant_bits,
                                 quant_axis):
894 895 896 897 898 899
        """
        Insert fake_channel_wise_quantize_abs_max op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        quant_var_node = graph.create_var_node(
900
            name=self._quantized_var_name(name),
901 902 903
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
904
        scale_var_node = graph.create_persistable_node(
905
            name=self._quantized_scale_name(name),
906
            var_type=var_node.type(),
907
            shape=[var_node.shape()[quant_axis]],
908
            var_dtype=var_node.dtype())
909 910 911 912 913 914 915 916
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_var_node,
            np.zeros(
                scale_var_node.shape(), dtype=data_type),
            self._scope,
            self._place)
917 918 919 920
        quant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_quantize_abs_max',
            attrs={
                'bit_length': quant_bits,
921
                'quant_axis': quant_axis,
922
                'is_test': self._is_test,
923 924 925 926 927 928 929 930 931 932
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node},
            outputs={'Out': quant_var_node,
                     'OutScale': scale_var_node})
        graph.link_to(var_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_var_node)
        return quant_var_node, scale_var_node

W
WangZhen 已提交
933 934 935 936 937 938 939 940
    def _insert_dequant_op(self, graph, var_node, scale_var_node, quant_bits):
        """
        Insert fake_dequantize_op in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
941 942 943
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
W
WangZhen 已提交
944 945 946
        max_range = (1 << (quant_bits - 1)) - 1
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
947 948 949 950
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
951 952 953
            inputs={'X': var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
954 955 956
        graph.link_to(var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
W
WangZhen 已提交
957 958
        return dequant_var_node

959
    def _insert_channel_dequant_op(self, graph, var_node, scale_var_nodes,
960
                                   quant_bits, quant_axis):
961 962 963 964 965 966 967 968 969 970 971 972 973 974
        """
        Insert fake_channel_wise_dequantize_max_abs in the graph.
        """
        assert var_node.is_var(), '{} is not a var'.format(var_node.name())

        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': quant_bits,
975
                'quant_axis': quant_axis,
976 977 978 979 980 981 982 983 984 985 986
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
            inputs={'X': var_node,
                    'Scales': scale_var_nodes},
            outputs={'Out': dequant_var_node})
        graph.link_to(var_node, dequant_op_node)
        for scale_n in scale_var_nodes:
            graph.link_to(scale_n, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
        return dequant_var_node

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
    def _create_new_node(self, graph, in_node):
        """
        create a node that same with in_node in graph
        Args:
            graph(IrGraph): create node in graph.
            in_node(IrVarNode): create node that same with in_node.
        Returns:
            created new node
        """
        key = ''
        for inp in in_node.inputs:
            key = key + inp.name()
        key = key + in_node.name()
        for inp in in_node.outputs:
            key = key + inp.name()

        if key in self.create_var_map.keys():
            new_node = self.create_var_map[key]
        elif in_node.is_ctrl_var():
            new_node = graph.create_control_dep_var()
            self.create_var_map[key] = new_node
        else:
            new_node = graph.create_var_node_from_desc(in_node.node.var())
            self.create_var_map[key] = new_node
        return new_node

    def _copy_graph(self, graph, source_graph, op_node):
        """
        copy op_node in source_graph to graph. And will run recursively 
        for next ops that link to op_node's outputs.
        Args:
            graph(IrGraph): target graph to copy.
            source_graph(IrGraph): source graph to copy.
            op_node(IrOpNode): op node in source_graph.
        Returns:
            None

        """
        key = ''
        for inp in op_node.inputs:
            key = key + inp.name()
        key = key + op_node.name()
        for inp in op_node.outputs:
            key = key + inp.name()
        has_created = False
        if key in self.create_op_map.keys():
            new_op_node = self.create_op_map[key]
            has_created = True
        else:
            new_op_node = graph.create_op_node_from_desc(op_node.node.op())
            self.create_op_map[key] = new_op_node
        if has_created:
            return
        for in_node in op_node.inputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_node, new_op_node)
        for in_node in op_node.outputs:
            new_node = self._create_new_node(graph, in_node)
            graph.link_to(new_op_node, new_node)
        for var_node in op_node.outputs:
            for next_op_node in var_node.outputs:
                self._copy_graph(graph, source_graph, next_op_node)
        return

    def _insert_func(self, graph, func, var_node, op):
        """
        Insert a tmp program that returned by func between var_node and op.

        Args:
            graph(IrGraph): target graph to insert tmp program.
            func(Function): function to define a tmp program
            var_node(IrVarNode): node in target graph.
            op(IrOpNode): op in target graph.
        Returns:
            op's new input that replaces var_node
        """
        tmp_program = Program()
        startup_program = Program()
        with program_guard(tmp_program, startup_program):
            with unique_name.guard(var_node.name() + "_"):
                in_node = data(
                    var_node.name() + '_tmp_input',
                    shape=var_node.shape(),
                    dtype='float32')
                out_node = func(in_node)
1072
                graph.out_node_mapping_table[out_node.name] = var_node.name()
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
                # loss shape must be 1 when minimize
                loss = mean(out_node)
                if not graph._for_test:
                    assert self._optimizer, "optimizer_func must be set when graph is test graph"
                    in_node.stop_gradient = False
                    optimizer = self._optimizer()
                    optimizer.minimize(loss)
        with scope_guard(self._scope):
            self._exe.run(startup_program)

        tmp_graph = IrGraph(
            core.Graph(tmp_program.desc), for_test=graph._for_test)
        in_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                               in_node.name)
        out_node = tmp_graph._find_node_by_name(tmp_graph.all_var_nodes(),
                                                out_node.name)

        in_node_params = []
        in_op_node = []
        # copy tmp graph to graph, after that, we can insert tmp graph's copy to graph.
        for node in tmp_graph.all_var_nodes():
            if node.inputs == [] and node.persistable():
                in_node_params.append(node)
        for node in tmp_graph.all_op_nodes():
            if node.inputs == []:
                in_op_node.append(node)
        for node in in_node.outputs:
            self._copy_graph(graph, tmp_graph, node)
        for node in in_node_params:
            for op_node in node.outputs:
                self._copy_graph(graph, tmp_graph, op_node)
        for node in in_op_node:
            self._copy_graph(graph, tmp_graph, node)

        target_in_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                  in_node.name())
        target_out_node = graph._find_node_by_name(graph.all_var_nodes(),
                                                   out_node.name())
        loss_node = graph._find_node_by_name(graph.all_var_nodes(), loss.name)
        outputs = target_in_node.outputs
        for node in outputs:
            graph.update_input_link(target_in_node, var_node, node)
        graph.update_input_link(var_node, target_out_node, op)

        # update grad
        if not graph._for_test:
            op_out = op.outputs[0]
            op_out_grad = graph._find_node_by_name(graph.all_var_nodes(),
                                                   op_out.name() + "@GRAD")
            # find op's gradient op, such as conv2d_grad
            op_grad = op_out_grad.outputs[0]
            target_out_grad_node = graph._find_node_by_name(
                graph.all_var_nodes(), target_out_node.name() + "@GRAD")
            in_node_grad = graph._find_node_by_name(
                graph.all_var_nodes(), target_in_node.name() + "@GRAD")
            in_node_grad_op = in_node_grad.inputs
            # update op_grad's input
            graph.update_input_link(var_node, target_out_node, op_grad)

            op_grad_out = None
            # find var_node's corresponding grad node
            for node in op_grad.outputs:
                if var_node.name() + "@GRAD" in node.name():
                    op_grad_out = node
            # update op_grad's output
            if op_grad_out is not None:
                graph.update_output_link(op_grad_out, target_out_grad_node,
                                         op_grad)
            else:
                graph.link_to(op_grad, target_out_grad_node)

            for node in in_node_grad_op:
                graph.update_input_link(target_in_node, var_node, node)
                if op_grad_out:
                    graph.update_output_link(in_node_grad, op_grad_out, node)
            # remove useless nodes
            mean_grad = target_out_grad_node.inputs[0]
            mean_out_grad = mean_grad.inputs[0]
            fill_constant_node = mean_out_grad.inputs[0]
            graph.safe_remove_nodes(mean_grad)
            graph.safe_remove_nodes(mean_out_grad)
            graph.safe_remove_nodes(fill_constant_node)
            graph.safe_remove_nodes(in_node_grad)

        graph.safe_remove_nodes(loss_node.inputs[0])
        graph.safe_remove_nodes(loss_node)
        graph.safe_remove_nodes(target_in_node)
        return target_out_node

W
WangZhen 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
    def _quantized_var_name(self, var_name):
        """
        Return quantized variable name for the input `var_name`.
        """
        return "%s.quantized" % (var_name)

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

    def _quantized_scale_name(self, var_name):
        """
1176
        Return the scale name of quantized variable for the input `var_name`.
W
WangZhen 已提交
1177 1178
        """
        return "%s.scale" % (var_name)
W
WangZhen 已提交
1179

1180
    def _is_skip_quant(self, graph, op_node):
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        """
        Analyse whether the op node skips quantization.
        """
        is_skip = False
        if op_node.op().has_attr("skip_quant") and \
            op_node.op().attr("skip_quant"):
            is_skip = True
        # if the inputs of mul and matmul are not all persistable, use
        # AddQuantDequantPass to quantize them.
        if op_node.name() in ["mul", "matmul"] and \
            _is_input_all_not_persistable(graph, op_node):
            is_skip = True
1193 1194 1195
        if op_node.op().has_attr("quantization_type") and \
            op_node.op().attr("quantization_type") == "qat_without_weight":
            is_skip = True
1196 1197
        return is_skip

W
WangZhen 已提交
1198 1199 1200 1201 1202

class QuantizationFreezePass(object):
    def __init__(self,
                 scope,
                 place,
X
XGZhang 已提交
1203
                 bias_correction=False,
W
WangZhen 已提交
1204 1205
                 weight_bits=8,
                 activation_bits=8,
1206
                 round_type='round',
1207
                 weight_quantize_type='abs_max',
1208
                 quantizable_op_type=None):
1209 1210
        """
        The freeze pass is used to adjust the quantize operator order, for example:
T
tianshuo78520a 已提交
1211
            1) `activation -> quant -> dequant -> conv2d` will be frozen into
1212
            `activation -> quant -> conv2d -> dequant`
T
tianshuo78520a 已提交
1213 1214
            2) `weight -> quant -> dequant -> conv2d` will be frozen into `weight -> conv2d`,
            and weight will be scaled offline.
1215 1216 1217

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1218 1219
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the weight tensors.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the index of the GPUs.
X
XGZhang 已提交
1220 1221
            bias_correction(bool): whether use bias correction for post-training quantization.
                 https://arxiv.org/abs/1810.05723.
1222 1223
            weight_bits(int): quantization bit number for weights.
            activation_bits(int): quantization bit number for activation.
1224 1225 1226
            round_type(str, optional): The method of converting the quantized weights
                value from float to int. Currently supports ['round', 'adaround'] methods.
                Default is `round`, which is rounding nearest to the nearest whole number. 
1227 1228 1229
            weight_quantize_type(str): quantization type for weights, support 'abs_max' and 
                'channel_wise_abs_max'. The 'range_abs_max' usually is not used for weight, 
                since weights are fixed once the model is well trained.
1230 1231
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1232
        """
W
WangZhen 已提交
1233 1234 1235 1236 1237
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
X
XGZhang 已提交
1238
        self._bias_correction = bias_correction
1239
        self._place = _get_paddle_place(place)
W
WangZhen 已提交
1240 1241
        self._weight_bits = weight_bits
        self._activation_bits = activation_bits
1242
        self._round_type = round_type
W
WangZhen 已提交
1243
        self._weight_quantize_type = weight_quantize_type
1244 1245
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
W
WangZhen 已提交
1246 1247
        self._op_input_rename_map = collections.OrderedDict()
        self._op_output_rename_map = collections.OrderedDict()
1248
        self._quant_var_scale_map = collections.OrderedDict()
W
WangZhen 已提交
1249 1250

    def apply(self, graph):
1251 1252 1253 1254 1255
        """
        Adjust quantize/dequantize operators order for the inference process.

        Args:
            graph(IrGraph): the applied graph.
1256 1257
        Returns:
            None
1258
        """
1259
        # Get input scales in fake quant op and process weights
1260 1261
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1262 1263 1264
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_quant_op_names:
1265
                input_arg_name = op_node.input('X')[0]
1266 1267 1268 1269
                if hasattr(graph, 'out_node_mapping_table'):
                    if input_arg_name in graph.out_node_mapping_table.keys():
                        input_arg_name = graph.out_node_mapping_table[
                            input_arg_name]
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
                if input_arg_name not in persistable_vars:
                    scale_v = graph._find_node_by_name(
                        op_node.outputs, op_node.output('OutScale')[0])
                    self._quant_var_scale_map[input_arg_name] = scale_v
                else:
                    # Obtain scale from OutScale var node
                    scale_v = self._load_var(op_node.output('OutScale')[0])
                    assert scale_v.ndim in [
                        1, 2
                    ], "the dim of scale_v should be 1 or 2"
                    if scale_v.ndim == 2:
                        scale_v = scale_v[0]
X
XGZhang 已提交
1282
                    if scale_v.size == 1 and self._weight_quantize_type == 'abs_max':
1283
                        scale_v = scale_v[0]
W
WangZhen 已提交
1284
                    else:
1285
                        scale_v = scale_v.tolist()
1286
                    self._quant_var_scale_map[input_arg_name] = scale_v
1287
                    # Quantize weight and restore
W
WangZhen 已提交
1288
                    param_v = self._load_var(input_arg_name)
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
                    if self._round_type == 'round':
                        if any(
                                _check_grandchild_op_node(op_node, op)
                                for op in _channelwise_quant_axis1_ops):
                            quant_axis = 1
                        else:
                            quant_axis = 0
                        quantized_param_v = quant_tensor(param_v.copy(),
                                                         scale_v, quant_axis,
                                                         self._weight_bits)
                        quantized_param_v = np.round(quantized_param_v)
                        if self._bias_correction == True:
                            quantized_param_v = self._bias_correction_w(
                                param_v, quantized_param_v, scale_v, quant_axis)
                            quantized_param_v = np.round(quantized_param_v)
                        self._restore_var(input_arg_name, quantized_param_v)
1305
                    self._remove_fake_quant_and_dequant_op(graph, op_node)
W
WangZhen 已提交
1306

1307
        # Remove all fake dequant op
1308
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1309 1310 1311 1312 1313
        for op_node in ops:
            op_name = op_node.name()
            if op_name in self._fake_dequant_op_names:
                self._remove_fake_quant_and_dequant_op(graph, op_node)

1314
        # Insert post dequant op
1315
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1316
        for op_node in ops:
1317 1318 1319
            op_node_desc = op_node.op()
            if op_node_desc.has_attr("quantization_type") and \
                op_node_desc.attr("quantization_type") == "qat_with_weight":
1320
                if self._weight_quantize_type == 'channel_wise_abs_max':
1321 1322
                    quant_axis = 1 if op_node.name() in \
                        _channelwise_quant_axis1_ops else 0
1323 1324
                    self._insert_post_channel_dequant_op(graph, op_node,
                                                         quant_axis)
1325 1326
                else:
                    self._insert_post_dequant_op(graph, op_node)
W
WangZhen 已提交
1327

1328
        # Rename inputs of the followed ops after inserting dequant_op after fc/conv
W
WangZhen 已提交
1329 1330
        for op_node in ops:
            for var_node in op_node.inputs:
1331 1332 1333
                if var_node.node in self._op_output_rename_map:
                    old_in = var_node
                    new_in = self._op_output_rename_map[var_node.node]
W
WangZhen 已提交
1334 1335 1336 1337
                    graph.update_input_link(old_in, new_in, op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1338
        graph.resolve_hazard()
1339
        return graph
W
WangZhen 已提交
1340 1341

    def _remove_fake_quant_and_dequant_op(self, graph, op_node):
1342 1343
        k = graph._find_node_by_name(op_node.outputs, op_node.output('Out')[0])
        v = graph._find_node_by_name(op_node.inputs, op_node.input('X')[0])
1344 1345
        if v.node not in self._op_input_rename_map:
            self._op_input_rename_map[k.node] = v
W
WangZhen 已提交
1346
        else:
1347 1348
            self._op_input_rename_map[k.node] = self._op_input_rename_map[
                v.node]
W
WangZhen 已提交
1349
        graph.safe_remove_nodes(op_node)
W
WangZhen 已提交
1350

1351
    def _insert_post_channel_dequant_op(self, graph, op_node, quant_axis):
1352 1353 1354
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        for var_node in op_node.inputs:
            name = var_node.name()
1355 1356 1357 1358 1359
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
1360 1361 1362
                new_in.clear_outputs()
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1363
            scale_v = self._quant_var_scale_map[original_var_name]
1364 1365 1366 1367 1368 1369 1370 1371
            if original_var_name in persistable_vars:
                assert isinstance(
                    scale_v,
                    list), 'The scale of parameter %s is not a list.' % (
                        original_var_name)
                channel_scale = np.array(scale_v)
            else:
                assert isinstance(scale_v, IrNode)
1372
                scale_var_node = self._quant_var_scale_map[original_var_name]
1373

1374
        if len(op_node.output_arg_names()) != 1:
1375 1376 1377
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1378 1379
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
1380 1381 1382 1383 1384
        weight_scale_node = graph.create_persistable_node(
            name=unique_name.generate('channel_scale'),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[channel_scale.shape[0]],
            var_dtype=output_var_node.dtype())
1385 1386
        data_type = 'float64' if output_var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
1387 1388 1389
        _init_var_node(weight_scale_node,
                       channel_scale.astype(data_type), self._scope,
                       self._place)
1390 1391 1392 1393 1394
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
X
XGZhang 已提交
1395 1396 1397
        x_num_col_dims = 1
        if op_node.name() in ['matmul', 'matmul_v2', 'mul']:
            x_num_col_dims = len(op_node.outputs[0].shape()) - 1
1398 1399
        if op_node.op().has_attr("x_num_col_dims"):
            x_num_col_dims = op_node.op().attr("x_num_col_dims")
1400 1401 1402 1403
        dequant_op_node = graph.create_op_node(
            op_type='fake_channel_wise_dequantize_max_abs',
            attrs={
                'quant_bits': [self._weight_bits, self._activation_bits],
1404
                'quant_axis': quant_axis,
1405 1406
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward,
                'x_num_col_dims': x_num_col_dims
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
            },
            inputs={
                'X': output_var_node,
                'Scales': [weight_scale_node, scale_var_node]
            },
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(weight_scale_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1417
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
1418 1419
        return dequant_var_node

W
WangZhen 已提交
1420
    def _insert_post_dequant_op(self, graph, op_node):
1421
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
1422 1423 1424
        max_range = 1
        param_range = (1 << (self._weight_bits - 1)) - 1
        act_range = (1 << (self._activation_bits - 1)) - 1
W
WangZhen 已提交
1425
        for var_node in op_node.inputs:
W
WangZhen 已提交
1426
            name = var_node.name()
1427 1428 1429 1430 1431
            if name not in op_node.input_arg_names():
                continue
            if var_node.node in self._op_input_rename_map:
                old_in = var_node
                new_in = self._op_input_rename_map[var_node.node]
W
WangZhen 已提交
1432
                new_in.clear_outputs()
W
WangZhen 已提交
1433 1434
                graph.update_input_link(old_in, new_in, op_node)
            original_var_name = self._original_var_name(name)
1435
            scale_v = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1436 1437 1438 1439
            if original_var_name in persistable_vars:
                assert self._is_float(
                    scale_v), 'The scale of parameter %s is not a float.' % (
                        original_var_name)
X
XGZhang 已提交
1440
                scale_v = 1e-8 if scale_v == 0.0 else scale_v
1441
                max_range *= param_range / scale_v
W
WangZhen 已提交
1442
            else:
1443
                max_range *= act_range
1444
                assert isinstance(scale_v, IrNode)
1445
                scale_var_node = self._quant_var_scale_map[original_var_name]
W
WangZhen 已提交
1446

1447
        if len(op_node.output_arg_names()) != 1:
W
WangZhen 已提交
1448 1449 1450
            raise ValueError("Only support one output, but op %s has"
                             " more than one output." % (op_node.name()))

1451 1452
        output_var_node = graph._find_node_by_name(
            op_node.outputs, op_node.output_arg_names()[0])
W
WangZhen 已提交
1453 1454
        dequant_var_node = graph.create_var_node(
            name=self._dequantized_var_name(output_var_node.name()),
1455 1456 1457
            var_type=output_var_node.type(),
            shape=output_var_node.shape(),
            var_dtype=output_var_node.dtype())
W
WangZhen 已提交
1458 1459
        dequant_op_node = graph.create_op_node(
            op_type='fake_dequantize_max_abs',
1460 1461 1462 1463
            attrs={
                'max_range': float(max_range),
                'op_role': core.op_proto_and_checker_maker.OpRole.Forward
            },
W
WangZhen 已提交
1464 1465 1466 1467 1468 1469
            inputs={'X': output_var_node,
                    'Scale': scale_var_node},
            outputs={'Out': dequant_var_node})
        graph.link_to(output_var_node, dequant_op_node)
        graph.link_to(scale_var_node, dequant_op_node)
        graph.link_to(dequant_op_node, dequant_var_node)
1470
        self._op_output_rename_map[output_var_node.node] = dequant_var_node
W
WangZhen 已提交
1471 1472 1473 1474 1475
        return dequant_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

1476 1477 1478
    def _restore_var(self, name, array):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array, self._place)
W
WangZhen 已提交
1479 1480 1481

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1482
        ops = graph.all_op_nodes()
W
WangZhen 已提交
1483 1484 1485 1486 1487 1488
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1489 1490 1491 1492 1493 1494
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
W
WangZhen 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        graph.safe_remove_nodes(all_unused_vars)

    def _original_var_name(self, var_name):
        """
        Return the original variable name.
        """
        if var_name.endswith('.quantized.dequantized'):
            return var_name[:-len('.quantized.dequantized')]
        if var_name.endswith('.quantized'):
            return var_name[:-len('.quantized')]
        if var_name.endswith('.dequantized'):
            return var_name[:-len('.dequantized')]
        if var_name.endswith('.scale'):
            return var_name[:-len('.scale')]
        else:
            return var_name

    def _dequantized_var_name(self, var_name):
        """
        Return dequantized variable name for the input `var_name`.
        """
        return "%s.dequantized" % (var_name)

W
WangZhen 已提交
1518
    def _is_float(self, v):
W
WangZhen 已提交
1519 1520 1521
        return isinstance(v, float) or isinstance(v, np.float32) \
            or isinstance(v, np.float64)

X
XGZhang 已提交
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    def _bias_correction_w(self, x, x_quant, scale_v, quant_axis):
        '''
        Bias correction for weight
        '''
        eps = 1e-8
        bnt = (1 << (self._weight_bits - 1)) - 1
        x_dequant = x_quant.copy()
        if isinstance(scale_v, list):
            if quant_axis == 0:
                for i, s in enumerate(scale_v):
                    x_dequant[i] = x_dequant[i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = quant_bias.reshape(quant_bias.shape[0], -1).mean(-1)
                std_orig = x.reshape(x.shape[0], -1).std(-1)
                std_quant = x_dequant.reshape(x_dequant.shape[0], -1).std(-1)
                std_bias = std_orig / (std_quant + eps)
            else:
                for i, s in enumerate(scale_v):
                    x_dequant[:, i] = x_quant[:, i] * s / bnt
                quant_bias = x - x_dequant
                mean_bias = np.array([
                    quant_bias[:, i].mean() for i in range(quant_bias.shape[1])
                ])
                std_orig = np.array([x[:, i].std() for i in range(x.shape[1])])
                std_quant = np.array(
                    [x_dequant[:, i].std() for i in range(x_dequant.shape[1])])
                std_bias = std_orig / (std_quant + eps)
        else:
            x_dequant = x_quant * scale_v / bnt
            mean_bias = (x - x_dequant).mean()
            std_bias = x.std() / (x_dequant.std() + eps)
        if mean_bias.ndim == 1:
            std_bias = np.resize(std_bias, x.shape)
            mean_bias = np.resize(mean_bias, x.shape)

        x_dequant = (mean_bias + x_dequant) * std_bias
1558 1559
        quantized_param_v = quant_tensor(x_dequant, scale_v, quant_axis,
                                         self._weight_bits)
X
XGZhang 已提交
1560 1561
        return quantized_param_v

1562 1563

class ConvertToInt8Pass(object):
1564
    def __init__(self, scope, place, quantizable_op_type=None):
1565 1566 1567 1568 1569
        """
        Convert the weights into int8_t type.

        Args:
            scope(fluid.Scope): scope is used to get the weight tensor values.
1570 1571 1572
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to restore the
                8bits weight tensors. If it's string, It can be ``cpu``, and ``gpu:x``,
                where ``x`` is the index of the GPUs.
1573 1574
            quantizable_op_type(list[str]): This input param will be removed latter. The pass
                will process all quantized op, so it is not necessary to set the input param.
1575
        """
1576 1577 1578 1579 1580
        assert scope is not None, \
            'The scope cannot be set None.'
        assert place is not None, \
            'The place cannot be set None.'
        self._scope = scope
1581
        self._place = _get_paddle_place(place)
1582 1583

    def apply(self, graph):
1584
        """
T
tianshuo78520a 已提交
1585 1586
        Convert weights' type of the graph. After that, the data type of the
        graph weights is int8_t.
1587 1588 1589

        Args:
            graph(IrGraph): the applied graph.
1590 1591
        Returns:
            None
1592
        """
1593 1594
        persistable_vars = [p.name() for p in graph.all_persistable_nodes()]
        ops = graph.all_op_nodes()
1595 1596
        input_map = {}
        for op_node in ops:
1597 1598
            if op_node.op().has_attr("quantization_type") and \
                op_node.op().attr("quantization_type") == "qat_with_weight":
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
                for var_node in op_node.inputs:
                    name = var_node.name()
                    if name in persistable_vars:
                        if name not in input_map:
                            int8_var_node = self._convert_to_int8(graph,
                                                                  var_node)
                            input_map[name] = int8_var_node
                        graph.update_input_link(var_node, input_map[name],
                                                op_node)

        # remove the unused var node in the graph
        self._remove_unused_var_nodes(graph)
Z
Zhen Wang 已提交
1611
        graph.resolve_hazard()
1612 1613 1614 1615
        return graph

    def _convert_to_int8(self, graph, var_node):
        int8_var_node_name = var_node.name() + ".int8"
1616
        int8_var_node = graph.create_persistable_node(
1617
            name=cpt.to_text(int8_var_node_name),
1618 1619
            var_type=var_node.type(),
            shape=var_node.shape(),
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
            var_dtype=core.VarDesc.VarType.INT8)
        array = self._load_var(var_node.name())
        self._scope.var(int8_var_node_name)
        self._store_var(int8_var_node_name, array, np.int8)
        return int8_var_node

    def _load_var(self, name):
        return np.array(self._scope.find_var(name).get_tensor())

    def _store_var(self, name, array, dtype):
        tensor = self._scope.find_var(name).get_tensor()
        tensor.set(array.astype(dtype), self._place)

    def _remove_unused_var_nodes(self, graph):
        all_used_vars = set()
1635
        ops = graph.all_op_nodes()
1636 1637 1638 1639 1640 1641
        for op_node in ops:
            for input_node in op_node.inputs:
                all_used_vars.add(input_node)
            for output_node in op_node.outputs:
                all_used_vars.add(output_node)

1642 1643 1644 1645 1646 1647
        all_used_vars = {n.node for n in all_used_vars}
        all_unused_vars = {
            n
            for n in filter(lambda node: node.node not in all_used_vars,
                            graph.all_var_nodes())
        }
1648 1649 1650 1651 1652
        graph.safe_remove_nodes(all_unused_vars)


class TransformForMobilePass(object):
    def __init__(self):
1653
        """
T
tianshuo78520a 已提交
1654
        This pass is used to convert the frozen graph for paddle-mobile execution.
1655
        """
1656 1657
        self._fake_quant_op_names = _fake_quant_op_list
        self._fake_dequant_op_names = _fake_dequant_op_list
1658 1659

    def apply(self, graph):
1660 1661 1662 1663 1664 1665 1666
        """
        Because paddle-mobile use `quantize` an `dequantize` as the names of
        quantize operator and dequantize operator, the `apply` function just
        realize this logic.

        Args:
            graph(IrGraph): the graph will be transformed.
1667 1668
        Returns:
            None
1669
        """
1670
        ops = graph.all_op_nodes()
1671 1672 1673
        for op_node in ops:
            name = op_node.name()
            if name in self._fake_quant_op_names:
1674
                op_node.set_type('quantize')
1675 1676 1677 1678 1679 1680 1681
                quant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, quant_node)
                for output_node in op_node.outputs:
                    graph.link_to(quant_node, output_node)
                graph.safe_remove_nodes(op_node)
            if name in self._fake_dequant_op_names:
1682
                op_node.set_type('dequantize')
1683 1684 1685 1686 1687 1688
                dequant_node = graph.create_op_node_from_desc(op_node.op())
                for input_node in op_node.inputs:
                    graph.link_to(input_node, dequant_node)
                for output_node in op_node.outputs:
                    graph.link_to(dequant_node, output_node)
                graph.safe_remove_nodes(op_node)
Z
Zhen Wang 已提交
1689
        graph.resolve_hazard()
1690
        return graph
1691 1692


1693
class OutScaleForTrainingPass(object):
1694 1695 1696 1697 1698 1699 1700
    def __init__(self, scope=None, place=None, moving_rate=0.9):
        """
        This pass is used for calculating output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1701 1702 1703
            place(fluid.CPUPlace|fluid.CUDAPlace|str): The place is used to initialize new parameters.
                If it's string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
                index of the GPUs.
1704 1705 1706
            moving_rate(float): The decay coefficient of moving average. The default value is 0.9.
        """
        self._scope = scope
1707
        self._place = _get_paddle_place(place)
1708 1709
        self._moving_rate = moving_rate
        self._is_test = None
1710
        self._teller_set = _out_scale_op_list
1711 1712 1713 1714 1715 1716 1717 1718 1719

    def apply(self, graph):
        """
        Insert the `moving_average_abs_max_scale` op in order to calculate output scales
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1720 1721
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1722
        self._is_test = graph.is_test()
1723 1724 1725 1726 1727 1728 1729
        target_ops = []
        for op in graph.all_op_nodes():
            if op.name() in self._teller_set:
                target_ops.append(op)
        for op in target_ops:
            for output_var_name in _get_op_output_var_names(op):
                in_node = graph._find_node_by_name(op.outputs, output_var_name)
1730 1731 1732 1733
                if in_node.dtype() not in \
                    [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                    continue

1734 1735 1736 1737 1738
                scale_node = graph.create_persistable_node(
                    name=self._scale_name(in_node.name()),
                    var_type=core.VarDesc.VarType.LOD_TENSOR,
                    shape=[1],
                    var_dtype=in_node.dtype())
1739 1740 1741 1742 1743 1744 1745 1746
                data_type = 'float64' if in_node.dtype() \
                    == core.VarDesc.VarType.FP64 else 'float32'
                _init_var_node(
                    scale_node,
                    np.ones(
                        [1], dtype=data_type),
                    self._scope,
                    self._place)
1747
                ins = {'X': in_node}
1748
                outs = {'OutScale': scale_node}
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
                if not self._is_test:
                    state_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_state@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        state_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    accum_in_node = graph.create_persistable_node(
                        name=unique_name.generate('scale_accum@'),
                        var_type=core.VarDesc.VarType.LOD_TENSOR,
                        var_dtype=in_node.dtype(),
                        shape=[1])
                    _init_var_node(
                        accum_in_node,
                        np.ones(
                            [1], dtype=data_type),
                        self._scope,
                        self._place)
                    state_out_node = graph.create_var_node_from_desc(
                        state_in_node.var())
                    accum_out_node = graph.create_var_node_from_desc(
                        accum_in_node.var())

                    ins['InState'] = state_in_node
                    ins['InAccum'] = accum_in_node
                    outs['OutState'] = state_out_node
                    outs['OutAccum'] = accum_out_node

                attrs = {
                    'moving_rate': self._moving_rate,
                    'is_test': self._is_test,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                }
                scale_op_node = graph.create_op_node(
                    op_type='moving_average_abs_max_scale',
                    attrs=attrs,
                    inputs=ins,
                    outputs=outs)
                graph.link_to(in_node, scale_op_node)
                graph.link_to(scale_op_node, scale_node)
                if not self._is_test:
                    graph.link_to(state_in_node, scale_op_node)
                    graph.link_to(accum_in_node, scale_op_node)
                    graph.link_to(scale_op_node, state_out_node)
                    graph.link_to(scale_op_node, accum_out_node)
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)


1809
class OutScaleForInferencePass(object):
1810 1811 1812 1813 1814 1815 1816 1817 1818
    def __init__(self, scope=None):
        """
        This pass is used for setting output scales of some operators.
        These output scales may be used by tensorRT or some other inference engines.

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
        """
        self._scope = scope
1819
        self._teller_set = _out_scale_op_list
1820 1821 1822 1823 1824 1825 1826 1827 1828

    def apply(self, graph):
        """
        Get output scales from the scope and set these scales in op_descs
        of operators in the teller_set.

        Args:
            graph(IrGraph): the target graph.
        """
1829 1830
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
1831 1832 1833
        op_nodes = graph.all_op_nodes()
        for op_node in op_nodes:
            if op_node.name() in self._teller_set:
1834 1835
                var_names = _get_op_output_var_names(op_node)
                for var_name in var_names:
1836 1837 1838 1839 1840 1841
                    in_node = graph._find_node_by_name(op_node.outputs,
                                                       var_name)
                    if in_node.dtype() not in \
                        [core.VarDesc.VarType.FP64, core.VarDesc.VarType.FP32]:
                        continue

1842
                    scale_name = self._scale_name(var_name)
1843 1844 1845 1846 1847 1848 1849
                    scale_var = self._scope.find_var(scale_name)
                    assert scale_var is not None, \
                        "Can not find {} variable in the scope".format(scale_name)
                    scale_value = np.array(scale_var.get_tensor())[0]

                    # For compatibility, we save output threshold by two methods.
                    op_node.op()._set_attr("out_threshold", float(scale_value))
1850 1851 1852 1853 1854

                    argname_index = _get_output_name_index(op_node, var_name)
                    assert argname_index is not None, \
                        var_name + " is not the output of the op"
                    op_node.op()._set_attr(argname_index[0] + str(argname_index[1]) \
1855
                        + "_threshold", float(scale_value))
1856
                    op_node.op()._set_attr("with_quant_attr", True)
1857 1858 1859 1860 1861 1862 1863 1864
        graph.resolve_hazard()
        return graph

    def _scale_name(self, var_name):
        """
        Return the scale name for the var named `var_name`.
        """
        return "%s@scale" % (var_name)
1865 1866 1867


class AddQuantDequantPass(object):
1868 1869 1870 1871
    """
    Quantize the ops that do not have weights, and add quant_dequant op for the 
    quantized ops's inputs.
    """
1872
    _supported_quantizable_op_type = [
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        "pool2d",
        "elementwise_add",
        "concat",
        "softmax",
        "argmax",
        "transpose",
        "equal",
        "gather",
        "greater_equal",
        "greater_than",
        "less_equal",
        "less_than",
        "mean",
        "not_equal",
        "reshape",
        "reshape2",
        "dropout",
        "bilinear_interp",
        "nearest_interp",
        "trilinear_interp",
        "slice",
        "squeeze",
        "elementwise_sub",
        "mul",
        "matmul",
        "relu",
        "relu6",
        "leaky_relu",
        "tanh",
        "swish",
        "scale",
        "transpose",
        "transpose2",
        "sigmoid",
        "pad2d",
        "flatten",
        "flatten2",
        "batch_norm",
        "layer_norm",
        "matmul_v2",
        "split",
        "flatten_contiguous_range",
        "squeeze2",
        "nearest_interp_v2",
        "bilinear_interp",
        "bilinear_interp_v2",
        "fill_constant_batch_size_like",
        "arg_max",
        "abs",
        "assign",
        "cast",
        "clip",
        "box_coder",
        "crop",
        "cumsum",
        "elementwise_mul",
        "elementwise_pow",
        "expand_v2",
        "fill_any_like",
        "fill_constant",
        "gelu",
        "hard_sigmoid",
        "hard_swish",
        "instance_norm",
        "lookup_table",
        "lookup_table_v2",
        "norm",
        "p_norm",
        "pad3d",
        "pow",
        "prelu",
        "reduce_mean",
        "unsqueeze",
        "unsqueeze2",
        "logical_and",
        "logical_not",
        "meshgrid",
        "roi_align",
        "strided_slice",
        "where",
        "grid_sampler",
        "tile",
        "group_norm",
        "reduce_sum",
        "square",
        "softplus",
        "shuffle_channel",
1960 1961
    ]

1962 1963 1964
    # To be compatible with PaddleSlim, not remove _activation_type for now
    _activation_type = ["relu", "relu6", "leaky_relu", "tanh", "swish"]

1965 1966 1967 1968 1969
    def __init__(self,
                 scope=None,
                 place=None,
                 moving_rate=0.9,
                 quant_bits=8,
1970
                 skip_pattern=["skip_quant"],
1971
                 quantizable_op_type=["elementwise_add", "pool2d"],
1972
                 is_full_quantized=False):
1973
        """
1974
        Constructor.
1975 1976 1977

        Args:
            scope(fluid.Scope): The scope is used to initialize these new parameters.
1978 1979 1980
            place(fluid.CPUPlace|fluid.CUDAPlace|str): place is used to initialize new
                parameters described above. If ``place`` is string, it can be It can be ``cpu``
                or ``gpu:x``, where ``x`` is the index of the GPUs.
1981 1982 1983 1984 1985 1986 1987 1988
            moving_rate(float, optional): the param for 'quant_dequant_moving_average_abs_max' 
                quantization. Default is 0.9.
            quant_bits(int, optional): quantization bit number for activation. Default is 8.
            skip_pattern(str, optional): The user-defined quantization skip pattern, which
                will be presented in the name scope of an op. When the skip pattern is
                detected in an op's name scope, the corresponding op will not be quantized.
                Default is 'skip_quant'.
            quantizable_op_type(list[str], optional): List the type of ops that will be 
1989
                quantized. Default is ["elementwise_add", "pool2d"]. 
1990 1991 1992 1993
            is_full_quantized(bool, optional): If set is_full_quantized as True, apply 
                quantization to all supported quantizable op type. If set is_full_quantized
                as False, only apply quantization to the op type according to the input 
                quantizable_op_type.
1994 1995
        """
        self._scope = scope
1996
        self._place = _get_paddle_place(place)
1997 1998 1999
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits
        self._is_test = None
2000
        self._skip_pattern = skip_pattern
2001 2002 2003 2004 2005 2006 2007

        if is_full_quantized:
            self._quantizable_op_type = \
                AddQuantDequantPass._supported_quantizable_op_type
        else:
            self._quantizable_op_type = quantizable_op_type
            for op_type in quantizable_op_type:
2008
                assert op_type in AddQuantDequantPass._supported_quantizable_op_type, \
2009
                    op_type + " is not supported for quantization."
2010 2011 2012 2013
        self._quantizable_grad_op_type = [
            '%s_grad' % (op) for op in self._quantizable_op_type
        ]

2014 2015
        assert self._scope != None, "scope must not be None."
        assert self._place != None, "place must not be None."
2016 2017 2018

    def apply(self, graph):
        """
2019 2020
        Add quant_dequant before some ops, such as the 'elementwise_add' and
        'pool2d' op.
2021

2022 2023
        Args:
            graph(IrGraph): the target graph.
2024 2025
        Returns:
            None
2026 2027 2028 2029
        """
        assert isinstance(graph,
                          IrGraph), 'graph must be the instance of IrGraph.'
        self._is_test = graph.is_test()
2030 2031
        dequantized_vars_map = collections.OrderedDict()

2032 2033 2034
        # Forward stage, insert quant_dequant op
        all_op_nodes = graph.all_op_nodes()
        for op_node in all_op_nodes:
2035
            if op_node.name() in self._quantizable_op_type:
2036
                is_skip = False
2037
                if isinstance(self._skip_pattern, list):
2038
                    is_skip = op_node.op().has_attr("op_namescope") and \
2039 2040
                                   any(pattern in op_node.op().attr("op_namescope") for pattern in self._skip_pattern)
                elif isinstance(self._skip_pattern, str):
2041
                    is_skip = op_node.op().has_attr("op_namescope") and \
2042
                                   op_node.op().attr("op_namescope").find(self._skip_pattern) != -1
2043 2044 2045
                is_quantized = op_node.op().has_attr("quantization_type") and \
                    op_node.op().attr("quantization_type") == "qat_with_weight"
                if is_skip or is_quantized or \
2046
                    (not _is_input_all_not_persistable(graph, op_node)):
2047
                    continue
2048

2049 2050 2051
                op_node.op()._set_attr("quantization_type",
                                       "qat_without_weight")
                op_node.op()._set_attr("activation_bits", self._quant_bits)
2052
                op_node.op()._set_attr("with_quant_attr", True)
2053
                arg_names = _get_op_input_var_names(op_node)
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
                for arg_name in arg_names:
                    in_node = graph._find_node_by_name(op_node.inputs, arg_name)
                    if arg_name in dequantized_vars_map:
                        quant_var_node = dequantized_vars_map[arg_name]
                    else:
                        quant_var_node, _ = \
                            self._inser_quant_dequant_moving_average_abs_max_op(
                            graph, in_node, self._quant_bits)
                        dequantized_vars_map[arg_name] = quant_var_node
                    graph.update_input_link(in_node, quant_var_node, op_node)
2064

2065 2066
        # Backward stage, update input link
        for op_node in all_op_nodes:
2067
            if op_node.name() in self._quantizable_grad_op_type:
2068 2069 2070 2071 2072 2073 2074 2075
                for input_name in op_node.input_arg_names():
                    if input_name in dequantized_vars_map:
                        in_node = graph._find_node_by_name(op_node.inputs,
                                                           input_name)
                        dequant_var_node = dequantized_vars_map[input_name]
                        graph.update_input_link(in_node, dequant_var_node,
                                                op_node)

2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        graph.resolve_hazard()
        return graph

    def _inser_quant_dequant_moving_average_abs_max_op(self, graph, var_node,
                                                       quant_bits):
        """Insert fake_quantize_dequantize_moving_average_abs_max op.
        """
        quant_var_node = graph.create_var_node(
            name="{}.quant_dequant".format(var_node.name()),
            var_type=var_node.type(),
            shape=var_node.shape(),
            var_dtype=var_node.dtype())
        scale_in_node = graph.create_persistable_node(
            name="{}.quant_dequant.scale".format(var_node.name()),
            var_type=core.VarDesc.VarType.LOD_TENSOR,
            shape=[1],
            var_dtype=var_node.dtype())
        data_type = 'float64' if var_node.dtype(
        ) == core.VarDesc.VarType.FP64 else 'float32'
        _init_var_node(
            scale_in_node,
            np.array(
                [0.001], dtype=data_type),
            self._scope,
            self._place)

        scale_out_node = graph.create_var_node_from_desc(scale_in_node.var())
        ins = {'X': var_node, 'InScale': scale_in_node}
        outs = {'Out': quant_var_node, 'OutScale': scale_out_node}
        if not self._is_test:
            state_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.state'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            data_type = 'float64' if var_node.dtype(
            ) == core.VarDesc.VarType.FP64 else 'float32'
            _init_var_node(
                state_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            accum_in_node = graph.create_persistable_node(
                name=unique_name.generate('quant_dequant.accum'),
                var_type=core.VarDesc.VarType.LOD_TENSOR,
                var_dtype=var_node.dtype(),
                shape=[1])
            _init_var_node(
                accum_in_node,
                np.ones(
                    [1], dtype=data_type),
                self._scope,
                self._place)
            state_out_node = graph.create_var_node_from_desc(state_in_node.var(
            ))
            accum_out_node = graph.create_var_node_from_desc(accum_in_node.var(
            ))

            ins['InState'] = state_in_node
            ins['InAccum'] = accum_in_node
            outs['OutState'] = state_out_node
            outs['OutAccum'] = accum_out_node

        attrs = {
            'bit_length': quant_bits,
            'moving_rate': self._moving_rate,
            'is_test': self._is_test,
            'op_role': core.op_proto_and_checker_maker.OpRole.Forward
        }

        quant_op_node = graph.create_op_node(
            op_type='fake_quantize_dequantize_moving_average_abs_max',
            attrs=attrs,
            inputs=ins,
            outputs=outs)

        graph.link_to(var_node, quant_op_node)
        graph.link_to(scale_in_node, quant_op_node)
        graph.link_to(quant_op_node, quant_var_node)
        graph.link_to(quant_op_node, scale_out_node)

        if not self._is_test:
            graph.link_to(state_in_node, quant_op_node)
            graph.link_to(accum_in_node, quant_op_node)
            graph.link_to(quant_op_node, state_out_node)
            graph.link_to(quant_op_node, accum_out_node)

        return quant_var_node, scale_out_node