Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
464ef48a
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
464ef48a
编写于
12月 08, 2022
作者:
2
201716010711
提交者:
GitHub
12月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete mean api (#48764)
上级
687ac358
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
49 addition
and
68 deletion
+49
-68
python/paddle/fluid/clip.py
python/paddle/fluid/clip.py
+4
-1
python/paddle/fluid/contrib/layers/nn.py
python/paddle/fluid/contrib/layers/nn.py
+3
-1
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+2
-2
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-42
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+24
-12
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+12
-6
python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py
python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py
+1
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+2
-2
tools/infrt/fake_models/multi_fc.py
tools/infrt/fake_models/multi_fc.py
+1
-1
未找到文件。
python/paddle/fluid/clip.py
浏览文件 @
464ef48a
...
...
@@ -119,6 +119,8 @@ class ErrorClipByValue(BaseErrorClipAttr):
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
BATCH_SIZE = 128
CLIP_MAX = 2e-6
CLIP_MIN = -1e-6
...
...
@@ -132,11 +134,12 @@ class ErrorClipByValue(BaseErrorClipAttr):
input=hidden2, size=10, act='softmax')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
prog_clip = prog.clone()
prog_clip.block(0).var(hidden1.name)._set_error_clip(
fluid.clip.ErrorClipByValue(
max=CLIP_MAX, min=CLIP_MIN)
)
"""
def
__init__
(
self
,
max
,
min
=
None
):
...
...
python/paddle/fluid/contrib/layers/nn.py
浏览文件 @
464ef48a
...
...
@@ -1965,6 +1965,8 @@ def fused_bn_add_act(
import paddle
import paddle.fluid as fluid
import paddle
paddle.enable_static()
paddle.enable_static()
# required: gpu
...
...
@@ -1997,7 +1999,7 @@ def fused_bn_add_act(
fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=y)
loss =
fluid.layers
.mean(loss)
loss =
paddle
.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
464ef48a
...
...
@@ -27,10 +27,10 @@ from .... import unique_name
from
....framework
import
Program
,
program_guard
,
default_startup_program
from
....data
import
data
from
....layers
import
mean
from
....executor
import
scope_guard
from
....framework
import
_get_paddle_place
from
.
import
utils
import
paddle
__all__
=
[
'QuantizationTransformPass'
,
...
...
@@ -927,7 +927,7 @@ class QuantizationTransformPass:
out_node
=
func
(
in_node
)
graph
.
out_node_mapping_table
[
out_node
.
name
]
=
var_node
.
name
()
# loss shape must be 1 when minimize
loss
=
mean
(
out_node
)
loss
=
paddle
.
mean
(
out_node
)
if
not
graph
.
_for_test
:
assert
(
self
.
_optimizer
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
464ef48a
...
...
@@ -86,7 +86,6 @@ __all__ = [
'elementwise_mul'
,
'clip'
,
'clip_by_norm'
,
'mean'
,
'mul'
,
'merge_selected_rows'
,
'get_tensor_from_selected_rows'
,
...
...
@@ -3368,47 +3367,6 @@ def clip_by_norm(x, max_norm, name=None):
return
out
@
deprecated
(
since
=
"2.0.0"
,
update_to
=
"paddle.mean"
)
@
templatedoc
()
def
mean
(
x
,
name
=
None
):
"""
${comment}
Args:
x(${x_type}): ${x_comment}
name(basestring|None): Name of the output.
Returns:
out(${out_type}): ${out_comment}
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
input = fluid.layers.data(
name='data', shape=[2, 3], dtype='float32')
mean = paddle.mean(input)
"""
if
_in_legacy_dygraph
():
return
_legacy_C_ops
.
mean
(
x
)
if
in_dygraph_mode
():
return
_C_ops
.
mean_all
(
x
)
helper
=
LayerHelper
(
"mean"
,
**
locals
())
check_variable_and_dtype
(
x
,
'x'
,
[
'float16'
,
'float32'
,
'float64'
],
'mean'
)
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
"mean"
,
inputs
=
{
"X"
:
x
},
attrs
=
{},
outputs
=
{
"Out"
:
out
}
)
return
out
@
templatedoc
()
def
merge_selected_rows
(
x
,
name
=
None
):
"""
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
464ef48a
...
...
@@ -1452,7 +1452,7 @@ class SGDOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
...
...
@@ -1654,7 +1654,7 @@ class MomentumOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
moment_optimizer.minimize(avg_cost)
...
...
@@ -2232,7 +2232,7 @@ class AdamOptimizer(Optimizer):
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
adam_optimizer.minimize(avg_cost)
...
...
@@ -2261,7 +2261,7 @@ class AdamOptimizer(Optimizer):
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
# define beta decay variable
def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
...
...
@@ -2641,6 +2641,8 @@ class AdamaxOptimizer(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
...
...
@@ -2651,7 +2653,7 @@ class AdamaxOptimizer(Optimizer):
with fluid.program_guard(train_program, startup_program):
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss =
fluid.layers
.mean(hidden)
loss =
paddle
.mean(hidden)
adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
adam.minimize(loss)
...
...
@@ -2816,6 +2818,8 @@ class DpsgdOptimizer(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
...
...
@@ -2826,7 +2830,7 @@ class DpsgdOptimizer(Optimizer):
with fluid.program_guard(train_program, startup_program):
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss =
fluid.layers
.mean(hidden)
loss =
paddle
.mean(hidden)
optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
optimizer.minimize(loss)
...
...
@@ -3291,7 +3295,7 @@ class RMSPropOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)
...
...
@@ -3510,7 +3514,7 @@ class FtrlOptimizer(Optimizer):
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost =
fluid.layers
.mean(cost)
avg_cost =
paddle
.mean(cost)
ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
ftrl_optimizer.minimize(avg_cost)
...
...
@@ -3679,11 +3683,13 @@ class LambOptimizer(AdamOptimizer):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
paddle.enable_static()
data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost =
fluid.layers
.mean(hidden)
cost =
paddle
.mean(hidden)
def exclude_fn(param):
return param.name.endswith('.b_0')
...
...
@@ -3885,8 +3891,10 @@ class ModelAverage(Optimizer):
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
...
...
@@ -3898,7 +3906,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss =
fluid.layers
.mean(hidden)
loss =
paddle
.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
...
...
@@ -4064,6 +4072,8 @@ class ModelAverage(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
...
...
@@ -4075,7 +4085,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss =
fluid.layers
.mean(hidden)
loss =
paddle
.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
...
...
@@ -4118,6 +4128,8 @@ class ModelAverage(Optimizer):
import paddle.fluid as fluid
import numpy
import paddle
paddle.enable_static()
# First create the Executor.
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
...
...
@@ -4129,7 +4141,7 @@ class ModelAverage(Optimizer):
# build net
data = fluid.data(name='X', shape=[None, 1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss =
fluid.layers
.mean(hidden)
loss =
paddle
.mean(hidden)
optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
optimizer.minimize(loss)
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
464ef48a
...
...
@@ -68,6 +68,8 @@ class L2DecayRegularizer(WeightDecayRegularizer):
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
main_prog = fluid.Program()
startup_prog = fluid.Program()
...
...
@@ -77,7 +79,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
hidden = fluid.layers.fc(input=data, size=128, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss =
fluid.layers
.mean(loss)
avg_loss =
paddle
.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L2Decay(
...
...
@@ -87,6 +89,8 @@ class L2DecayRegularizer(WeightDecayRegularizer):
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
...
...
@@ -97,7 +101,7 @@ class L2DecayRegularizer(WeightDecayRegularizer):
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss =
fluid.layers
.mean(predict)
avg_loss =
paddle
.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
...
...
@@ -181,7 +185,8 @@ class L1DecayRegularizer(WeightDecayRegularizer):
# Example1: set Regularizer in optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
...
...
@@ -190,7 +195,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
hidden = fluid.layers.fc(input=data, size=128, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss =
fluid.layers
.mean(loss)
avg_loss =
paddle
.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L1DecayRegularizer(
...
...
@@ -200,7 +205,8 @@ class L1DecayRegularizer(WeightDecayRegularizer):
# Example2: set Regularizer both in ParamAttr and optimizer
import paddle.fluid as fluid
import paddle
paddle.enable_static()
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
x = fluid.layers.uniform_random([3,4])
...
...
@@ -210,7 +216,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss =
fluid.layers
.mean(predict)
avg_loss =
paddle
.mean(predict)
# set L2 regularization in optimizer
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
...
...
python/paddle/fluid/tests/unittests/test_dist_fleet_ps13.py
浏览文件 @
464ef48a
...
...
@@ -66,7 +66,7 @@ class TestPSPassWithBow(unittest.TestCase):
),
loss_op2
,
)
avg_cost
=
fluid
.
layers
.
mean
(
loss_op3
)
avg_cost
=
paddle
.
mean
(
loss_op3
)
return
avg_cost
is_distributed
=
False
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
464ef48a
...
...
@@ -288,12 +288,12 @@ class DistributeTranspiler:
paddle.enable_static()
x = fluid.data(name='x', shape=[13], dtype='float32')
x = fluid.data(name='x', shape=[1
,1
3], dtype='float32')
y = fluid.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost =paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_loss =
fluid.layers
.mean(cost)
avg_loss =
paddle
.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_loss)
...
...
tools/infrt/fake_models/multi_fc.py
浏览文件 @
464ef48a
...
...
@@ -42,7 +42,7 @@ for i in range(num_layers - 1):
)
cost
=
fluid
.
layers
.
square_error_cost
(
fc_out
,
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
avg_cost
=
paddle
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
)
optimizer
.
minimize
(
avg_cost
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录