pybind.cc 97.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16

C
chengduoZH 已提交
17
#include <algorithm>
18
#include <cctype>
19
#include <cstdlib>
20
#include <iterator>
C
chengduoZH 已提交
21
#include <map>
S
sneaxiy 已提交
22
#include <memory>
C
chengduoZH 已提交
23
#include <mutex>  // NOLINT // for call_once
24
#include <sstream>
C
chengduoZH 已提交
25
#include <string>
26 27
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
28
#include <unordered_map>
29
#include <unordered_set>
C
chengduoZH 已提交
30 31
#include <utility>
#include <vector>
32

33
#include "paddle/fluid/framework/convert_utils.h"
34
#include "paddle/fluid/framework/custom_operator.h"
35
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
36
#include "paddle/fluid/framework/data_type_transform.h"
Y
Yi Wang 已提交
37
#include "paddle/fluid/framework/executor.h"
38
#include "paddle/fluid/framework/executor_cache.h"
39
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
41
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
43
#include "paddle/fluid/framework/io/fs.h"
44
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
45
#include "paddle/fluid/framework/ir/cost_model.h"
46
#include "paddle/fluid/framework/ir/generate_pass.h"
47
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
48 49
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
50
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
51
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
52
#include "paddle/fluid/framework/op_info.h"
53
#include "paddle/fluid/framework/op_registry.h"
54
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
55
#include "paddle/fluid/framework/parallel_executor.h"
56
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
57
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
58
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
59
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
60
#include "paddle/fluid/framework/scope_pool.h"
61
#include "paddle/fluid/framework/selected_rows_utils.h"
62
#include "paddle/fluid/framework/tensor_util.h"
63
#include "paddle/fluid/framework/trainer.h"
64
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
65
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
66
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
67
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
68
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
69 70 71
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
72
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
73
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
74
#include "paddle/fluid/operators/common_infer_shape_functions.h"
75
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
76
#include "paddle/fluid/operators/py_func_op.h"
77
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
78
#include "paddle/fluid/platform/cpu_info.h"
79
#include "paddle/fluid/platform/device/device_wrapper.h"
80
#include "paddle/fluid/platform/device_context.h"
81
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
82
#include "paddle/fluid/platform/enforce.h"
83
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
84
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
85 86
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
87 88 89
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
90
#include "paddle/fluid/pybind/cuda_streams_py.h"
91
#include "paddle/fluid/pybind/distributed_py.h"
92
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
93
#include "paddle/fluid/pybind/imperative.h"
94
#include "paddle/fluid/pybind/io.h"
95
#include "paddle/fluid/pybind/jit.h"
96 97
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
98
#include "paddle/utils/none.h"
99 100 101
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
102
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
103
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
104
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
105
#include "paddle/fluid/pybind/box_helper_py.h"
106
#include "paddle/fluid/pybind/communication.h"
107
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
108
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
109
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
110
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
111
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
112
#include "paddle/fluid/pybind/generator_py.h"
113
#include "paddle/fluid/pybind/global_value_getter_setter.h"
114
#include "paddle/fluid/pybind/gloo_context_py.h"
115
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
116
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
117
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
118
#include "paddle/fluid/pybind/ir.h"
119
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
120
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
121
#include "paddle/fluid/pybind/pybind_variant_caster.h"
122
#include "paddle/phi/backends/device_manager.h"
123

124
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
125
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
126
#endif
127
#include "paddle/fluid/framework/data_type.h"
128 129
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
130 131
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
132
#include "paddle/fluid/pybind/reader_py.h"
133
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
134
#include "paddle/fluid/pybind/tensor_py.h"
135
#include "paddle/fluid/string/to_string.h"
136 137
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
138
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
139
#endif
140
#ifndef PADDLE_WITH_HIP
141
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
142
#endif
143
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
144 145
#endif

146
#ifdef PADDLE_WITH_ASCEND_CL
147
#include "paddle/fluid/platform/collective_helper.h"
148 149
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
150 151
#endif

152
#ifdef PADDLE_WITH_XPU
153
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
154
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
155 156
#endif

157
#ifdef PADDLE_WITH_CUSTOM_DEVICE
158
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
159 160 161
#include "paddle/phi/capi/capi.h"
#endif

162
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
163

J
jianghaicheng 已提交
164
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
165 166
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
167
#endif
168

169 170 171 172
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
173 174 175 176
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
177
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
178 179 180
#include "paddle/fluid/pybind/fleet_py.h"
#endif

181 182 183 184
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
185
#if defined(PADDLE_WITH_RPC)
186 187 188
#include "paddle/fluid/pybind/rpc.h"
#endif

189
#include "paddle/fluid/eager/api/utils/global_utils.h"
190
#include "paddle/fluid/imperative/layout_autotune.h"
191 192
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
193 194
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
195 196
#include "pybind11/stl.h"

197
DECLARE_bool(use_mkldnn);
198

Q
Qiao Longfei 已提交
199 200
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
201 202 203
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
204

205
namespace paddle {
206
namespace pybind {
207

0
0x45f 已提交
208
PyTypeObject *g_framework_scope_pytype = nullptr;
209
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
210
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
211

212 213 214 215 216 217 218 219
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

220
bool IsCompiledWithCUDA() {
221 222 223 224 225 226 227
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

228 229 230 231 232 233 234 235
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

253 254
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
255 256 257 258 259 260
  return false;
#else
  return true;
#endif
}

261 262 263 264 265 266 267 268
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

269 270 271 272 273 274 275 276
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

277 278 279 280 281 282 283 284
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

J
jianghaicheng 已提交
285 286 287 288 289 290 291 292
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

293 294 295 296 297 298 299 300
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

301 302 303 304 305 306 307 308
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

309 310 311 312 313 314 315 316
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

317 318 319 320 321 322 323 324
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

325 326 327 328 329 330 331 332 333 334 335
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

336 337 338 339 340 341 342 343 344 345 346
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_bf16))
    return true;
  else
    return false;
#endif
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return (platform::MayIUse(platform::cpu_isa_t::avx2) ||
          platform::MayIUse(platform::cpu_isa_t::avx512f));
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return platform::MayIUse(platform::cpu_isa_t::avx512_core_vnni);
#endif
}

364
bool IsCompiledWithBrpc() {
365
#ifndef PADDLE_WITH_DISTRIBUTE
366
  return false;
367
#else
368
  return true;
369
#endif
370 371
}

Y
update  
Yancey1989 已提交
372
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
373
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
374 375 376 377 378 379
  return true;
#else
  return false;
#endif
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

H
hong 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
448 449
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
450 451
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
465 466
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
467 468
    }
    vec_res.emplace_back(
469
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
470 471 472 473 474 475 476 477 478 479 480 481
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
482 483
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
484 485 486 487 488 489 490 491 492 493 494 495
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
496 497 498
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
499 500 501 502
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
503 504
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
505 506 507 508
  }
  return vec_res;
}

O
OccupyMars2025 已提交
509
static void inline CreateVariableIfNotExist(
510 511
    const py::handle &py_handle,
    const framework::Scope &scope,
512 513 514 515 516 517
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
518 519
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
520 521 522 523 524 525 526 527 528 529 530 531 532
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
533 534 535
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
536 537 538 539 540
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
541 542 543 544 545
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
546 547
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
548
        PADDLE_ENFORCE_NOT_NULL(
549 550 551
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
552 553 554
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
555
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
556
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
557 558
        tensor_temp->mutable_data(
            exe->GetPlace(),
559
            framework::TransToPhiDataType(var_desc.GetDataType()));
560 561 562
      }
    }
  } else {
563 564
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
565 566 567 568 569
  }

  return;
}

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
586 587
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
588 589 590 591 592 593 594
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
595 596 597 598
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
599
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
600 601 602 603 604 605 606 607
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

608
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
609
  BindImperative(&m);
610
  BindEager(&m);
J
Jack Zhou 已提交
611
  BindEagerStringTensor(&m);
612
  BindCudaStream(&m);
613
  BindJit(&m);
614

Y
Yu Yang 已提交
615 616 617
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
618
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
619

620 621
  AssertStaticGraphAndDygraphGradMakerNoDiff();

622
  m.doc() = "C++ core of PaddlePaddle";
623

624 625 626 627
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

628
  BindException(&m);
Y
Yu Yang 已提交
629

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

645 646
  m.def("set_num_threads", &platform::SetNumThreads);

647 648
  m.def("disable_signal_handler", &DisableSignalHandler);

649 650 651 652 653 654 655 656
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

657
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
658
  m.def("cudnn_version", &platform::DnnVersion);
659 660 661 662 663 664
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
665
#endif
666

Z
Zeng Jinle 已提交
667 668 669 670
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

671 672 673 674 675 676 677 678 679
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::CUDAGraph>(m, "CUDAGraph")
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
680 681
      .def_static("gen_new_memory_pool_id",
                  &platform::CUDAGraph::UniqueMemoryPoolID)
682
      .def("replay", &platform::CUDAGraph::Replay)
683 684
      .def("reset", &platform::CUDAGraph::Reset)
      .def("print_to_dot_files", &platform::CUDAGraph::PrintToDotFiles);
685 686
#endif

Z
Zeng Jinle 已提交
687 688 689 690
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
691 692 693
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
694 695

    PADDLE_ENFORCE_NOT_NULL(
696 697 698 699
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
700

6
633WHU 已提交
701 702
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
703
    phi::DenseTensor tensor;
6
633WHU 已提交
704

S
Siming Dai 已提交
705
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
706
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
707
    }
708
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
709
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
710
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
711 712 713 714
    }
#endif
    return tensor;
  });
H
hong 已提交
715

716
  m.def("_create_loaded_parameter",
717 718
        [](const py::handle &vec_var_list,
           const Scope &scope,
719
           const Executor *executor) {
O
OccupyMars2025 已提交
720
          CreateVariableIfNotExist(vec_var_list, scope, executor);
721 722
        });

723 724 725 726 727 728
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
729 730
  });

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

756 757 758 759 760 761
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
762

S
sneaxiy 已提交
763
  m.def(
S
sneaxiy 已提交
764
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
765 766 767 768
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
769 770 771
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
788
            }
789
            all_kernels_info.emplace(op_type, kernel_types);
790
          }
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
807
                }
808 809
              } else {
                kernel_types.emplace_back(kernel_type_str);
810
              }
811
            }
812 813 814
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
815
          }
816
        }
817

818 819 820 821
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
822 823 824
           Return the registered kernels in paddle.

           Args:
825
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
826
           )DOC");
827

828 829 830 831 832 833
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
834 835 836 837 838
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
839

S
sneaxiy 已提交
840 841 842
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
843
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
844

845
  m.def("_set_fuse_parameter_group_size",
846
        &paddle::framework::ir::SetFuseParameterGroupsSize);
847
  m.def("_set_fuse_parameter_memory_size",
848
        &paddle::framework::ir::SetFuseParameterMemorySize);
849

S
sneaxiy 已提交
850 851 852
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

853 854
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
855 856
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

857 858 859
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
901 902 903 904 905 906 907 908 909 910 911 912 913
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
914 915 916 917 918
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
919

920
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
921 922 923

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
924
      .def(py::init<>())
925
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
926
      .def("set_int",
927 928
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
929 930 931 932 933 934 935
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
936 937
      .def(
          "get_tensor",
938 939
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
940 941
          },
          py::return_value_policy::reference)
942 943 944 945
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
S
Steffy-zxf 已提交
946 947 948 949
      .def("set_string_list",
           [](Variable &self, Strings str_list) {
             *self.GetMutable<Strings>() = str_list;
           })
950 951 952 953
      .def("set_vocab",
           [](Variable &self, Vocab vocab) {
             *self.GetMutable<Vocab>() = vocab;
           })
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
980
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
981 982 983 984 985 986
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
987
#endif
988 989 990
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
991 992
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
993 994 995 996 997 998 999 1000 1001 1002
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1003 1004
                scope_vec->size(),
                0,
1005 1006 1007 1008 1009
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1010 1011 1012 1013
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1014

S
sneaxiy 已提交
1015
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1016

0
0x45f 已提交
1017
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1031
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1032 1033 1034 1035 1036
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1037 1038 1039
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1040 1041
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1042 1043 1044 1045 1046 1047 1048
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1049
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1050

1051
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1052
           current scope, the variable would be created. Otherwise,
1053
           return the existing variable.
S
sneaxiy 已提交
1054 1055

           Args:
1056 1057
               name (str): the variable name.

S
sneaxiy 已提交
1058
           Returns:
1059
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1060
           )DOC",
1061
          py::return_value_policy::reference)
1062 1063 1064
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1065
           R"DOC(
1066
           Find variable named :code:`name` in the current scope or
1067
           its parent scope. Return None if not found.
1068

S
sneaxiy 已提交
1069 1070
           Args:
               name (str): the variable name.
1071

S
sneaxiy 已提交
1072
           Returns:
1073
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1074
           )DOC",
1075
           py::return_value_policy::reference)
1076
      .def("size", &Scope::Size)
1077 1078 1079
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1080 1081
           R"DOC(
           Find variable named :code:`name` in the current scope or
1082
           its parent scope. Return None if not found.
1083 1084 1085 1086 1087 1088 1089 1090

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1091
      .def(
1092 1093
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1094
          R"DOC(
S
sneaxiy 已提交
1095 1096 1097 1098 1099
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1100
          py::return_value_policy::reference)
1101 1102
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1103 1104
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1105
           )DOC")
1106 1107
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1108

1109 1110 1111 1112 1113 1114 1115 1116
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1117
        Create a new scope.
1118

S
sneaxiy 已提交
1119 1120 1121
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1122
      py::return_value_policy::reference);
S
sneaxiy 已提交
1123

Y
Yu Yang 已提交
1124 1125
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1126 1127
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1128 1129 1130 1131
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1132
        PADDLE_ENFORCE_EQ(
1133 1134
            info.Proto().SerializeToString(&str),
            true,
1135 1136
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1137 1138 1139
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1140 1141
    return ret_values;
  });
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1180 1181 1182 1183 1184 1185 1186 1187
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1188
              res = op_checker->GetDefaultAttrsMap();
1189 1190 1191 1192
            }
          }
          return res;
        });
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });

  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
              framework::OpInfoMap::Instance()
                  .Get(op_desc.Type())
                  .GradOpMaker()(
                      op_desc, no_grad_set, &grad_to_var, grad_sub_block);
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1228 1229 1230
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1231 1232 1233 1234 1235
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1236 1237 1238
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1239
  m.def("infer_no_need_buffer_slots",
1240 1241
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1269 1270 1271 1272 1273 1274
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1275 1276
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1277

1278
            Args:
1279 1280 1281
                   program (ProgramDesc): The original program.

             Returns:
1282
                   tuple(ProgramDesc, map<int, int>): The first part is
1283 1284 1285 1286
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1287 1288 1289 1290
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1291 1292
    VLOG(4) << s;
    return s;
1293 1294 1295 1296 1297 1298
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1299
  });
1300 1301 1302 1303
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1304 1305 1306
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1307 1308
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1309

Y
Yu Yang 已提交
1310
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1311
      .def_static("create",
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
                    return context;
Q
qijun 已提交
1328
                  })
1329 1330 1331 1332
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1333
#ifndef PADDLE_WITH_XPU
1334 1335 1336
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1337
#else
W
Wilber 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
      return context;
1352
#endif
1353 1354 1355 1356 1357
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1358
#ifndef PADDLE_WITH_MLU
1359 1360 1361
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1362 1363
#else
                    return new paddle::platform::MLUDeviceContext(place);
1364
#endif
1365 1366 1367 1368 1369
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1370
#ifndef PADDLE_WITH_ASCEND_CL
1371 1372 1373
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1374 1375
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1376
#endif
1377 1378 1379 1380
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1381
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1382 1383 1384 1385
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1386 1387
#else
                return new paddle::platform::CustomDeviceContext(place);
1388
#endif
1389 1390 1391 1392 1393
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1394
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1395 1396 1397
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1398
#else
L
Leo Chen 已提交
1399
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
W
wanghuancoder 已提交
1412 1413 1414 1415
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1416 1417
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1418
#endif
1419 1420 1421 1422 1423
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1424
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1425 1426 1427
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1428 1429 1430
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1431
          });
1432
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1433 1434
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1435 1436 1437
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1438
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1439
#else
R
ronnywang 已提交
1440
          VLOG(1) << string::Sprintf(
1441 1442 1443 1444
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1445
              "PaddlePaddle by: pip install paddlepaddle\n");
1446 1447 1448 1449 1450 1451
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1452
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1453
#else
R
ronnywang 已提交
1454
          VLOG(1) << string::Sprintf(
1455 1456 1457 1458
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1459
              "PaddlePaddle by: pip install paddlepaddle\n");
1460 1461 1462 1463 1464 1465
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1466
    devices = phi::DeviceManager::GetAllDeviceList();
1467
#else
R
ronnywang 已提交
1468
          VLOG(1) << string::Sprintf(
1469 1470 1471 1472
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1473
              "PaddlePaddle by: pip install paddlepaddle\n");
1474 1475 1476 1477 1478 1479
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1480
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1481
#else
R
ronnywang 已提交
1482
          VLOG(1) << string::Sprintf(
1483 1484 1485 1486 1487 1488
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1489
              "PaddlePaddle by: pip install paddlepaddle\n");
1490 1491 1492
#endif
    return devices;
  });
Y
Yu Yang 已提交
1493

Y
Yu Yang 已提交
1494
  py::class_<OperatorBase>(m, "Operator")
1495 1496 1497 1498 1499 1500 1501
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1502 1503
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1504 1505 1506 1507 1508 1509
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1510
      .def("run",
1511 1512
           [](OperatorBase &self,
              const Scope &scope,
1513 1514 1515 1516
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1517
      .def("run",
1518 1519
           [](OperatorBase &self,
              const Scope &scope,
1520 1521 1522 1523
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1524
      .def("run",
1525 1526
           [](OperatorBase &self,
              const Scope &scope,
1527 1528 1529 1530
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1531
      .def("run",
1532 1533
           [](OperatorBase &self,
              const Scope &scope,
1534 1535 1536 1537
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1538
      .def("run",
1539 1540
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1541
              const platform::CUDAPinnedPlace &place) {
1542
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1543 1544
             self.Run(scope, place);
           })
1545
      .def("run",
1546 1547
           [](OperatorBase &self,
              const Scope &scope,
1548 1549 1550 1551
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1552
      .def("run",
1553 1554
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1555 1556 1557 1558
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1559 1560 1561 1562 1563
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1564 1565
             return op.Outputs();
           })
Q
qijun 已提交
1566 1567
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1568
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1569
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1570 1571 1572 1573
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1574

1575 1576 1577
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1578 1579
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1580 1581 1582 1583 1584 1585
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1586 1587
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1588

1589 1590
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1591
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1592
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1593
      .def("close", &Executor::Close)
1594 1595
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1596
           py::call_guard<py::gil_scoped_release>())
1597 1598
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1599
           py::call_guard<py::gil_scoped_release>())
1600
      .def("init_for_dataset",
1601 1602 1603 1604
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1605
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1606
             pybind11::gil_scoped_release release;
1607 1608 1609 1610 1611 1612 1613
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1614
      .def("run_prepared_ctx",
1615 1616 1617
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1618
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1619
              std::map<std::string, FetchType *> *fetch_targets,
1620 1621
              bool create_local_scope = true,
              bool create_vars = true,
1622 1623 1624
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1625 1626 1627 1628 1629 1630 1631 1632
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1633
           })
1634
      .def("run_prepared_ctx",
1635 1636 1637 1638 1639
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1640 1641
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1642 1643
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1644
           })
1645
      .def("prepare",
1646 1647 1648
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1649 1650 1651 1652
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1653 1654
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1655 1656
           })
      .def("create_variables", &Executor::CreateVariables)
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1673

1674
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1675
      .def(py::init<>())
1676 1677 1678 1679 1680
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1681

1682
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1683
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1684
      .def("run",
1685
           [](StandaloneExecutor &self,
1686
              Scope *scope,
1687
              std::vector<std::string> feed_names,
1688 1689 1690 1691
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1692
               ret = self.Run(scope, feed_names, fetch_names);
1693 1694 1695
             }
             return py::cast(std::move(ret));
           })
1696 1697
      .def("dry_run",
           [](StandaloneExecutor &self,
1698
              Scope *scope,
1699
              const std::unordered_map<std::string, py::array> &input_dict) {
1700
             std::vector<phi::DenseTensor> feed_tensors;
1701 1702 1703
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1704
               phi::DenseTensor t;
1705 1706 1707 1708 1709 1710
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1711
             framework::interpreter::CostInfo cost_info;
1712 1713
             {
               pybind11::gil_scoped_release release;
1714
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1715 1716
             }
             return cost_info;
H
hong 已提交
1717 1718
           });

D
dzhwinter 已提交
1719
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1720
  m.def("init_glog", framework::InitGLOG);
1721 1722 1723 1724
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1725 1726 1727 1728 1729 1730 1731 1732
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1733 1734
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1735
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
1736
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1737
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1738
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
1739
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
J
jianghaicheng 已提交
1740
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
1741
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1742
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1743
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
1744 1745
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
1746
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
1747
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
1748
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
1749
  m.def("supports_bfloat16", SupportsBfloat16);
1750
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
1751 1752
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
1753
  m.def("op_supported_infos", imperative::OpSupportedInfos);
1754
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1755
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1756 1757 1758
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
1778 1779 1780
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
1781 1782
  m.def(
      "run_cmd",
1783 1784
      [](const std::string &cmd,
         int time_out = -1,
1785
         int sleep_inter = -1) -> const std::string {
1786 1787
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
1788
      },
1789 1790 1791
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
1792 1793
  m.def(
      "shell_execute_cmd",
1794 1795 1796
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
1797
         bool redirect_stderr = false) -> std::vector<std::string> {
1798 1799
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
1800
      },
1801 1802 1803
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
1804
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
1805

1806
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1807 1808
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
1809
    return platform::GetGPUComputeCapability(place.device) >= 53;
1810
  });
1811 1812 1813 1814
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
1815
#endif
1816

S
Steffy-zxf 已提交
1817
  m.def("set_feed_variable",
1818 1819
        static_cast<void (*)(  // NOLINT
            Scope *,
1820
            const phi::DenseTensor &,
1821 1822
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
1823
  m.def("set_feed_variable",
1824 1825 1826 1827 1828
        static_cast<void (*)(  // NOLINT
            Scope *,
            const Strings &,
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
1829
  m.def("get_fetch_variable",
1830 1831
        [](const Scope &scope,
           const std::string &var_name,
1832 1833 1834
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1835
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
1836
          } else {
R
Ruibiao Chen 已提交
1837
            return py::cast(PADDLE_GET(LoDTensorArray, var));
1838 1839
          }
        });
1840
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1841

X
Xin Pan 已提交
1842 1843
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1844 1845 1846 1847
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
1848
  BindCostModel(&m);
1849
  BindConstValue(&m);
1850
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
1851
  BindFleetExecutor(&m);
1852
  BindTCPStore(&m);
1853
  BindAutoParallel(&m);
1854
  BindJitProperty(&m);
Y
Yu Yang 已提交
1855

Y
Yu Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

1865
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
1866
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1867 1868 1869

    Examples:
        .. code-block:: python
1870

Z
Zeng Jinle 已提交
1871 1872 1873
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
1874 1875 1876 1877
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
1878 1879
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
1880 1881 1882 1883
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1884 1885
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
1886
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
1887 1888
             PADDLE_ENFORCE_LT(i,
                               self.size(),
1889 1890 1891
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1892 1893 1894
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
1895 1896
      .def(
          "append",
1897
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
1898 1899 1900 1901
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
1902 1903
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
1904
             Append a LoDensor to LoDTensorArray.
1905

1906 1907 1908 1909 1910
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1922
           )DOC")
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1934

1935
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
1936
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
1937
        )DOC")
1938 1939 1940 1941 1942 1943
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
1944
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
1945
                res[i] = py::cast(std::move(data));
1946 1947 1948
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
1949
              } else {
R
Ruibiao Chen 已提交
1950
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
1962

1963 1964
      .def(
          "append",
1965
          [](FetchList &self, const phi::DenseTensor &t) {
1966
            self.emplace_back();
1967
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
1968 1969 1970 1971 1972 1973 1974 1975 1976
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
1977
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
1978 1979 1980 1981 1982 1983
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
1984 1985

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
1986
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1987
        )DOC")
1988 1989 1990 1991 1992 1993 1994 1995
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
1996
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
1997 1998
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
1999
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2014

Y
Yu Yang 已提交
2015
  m.def("op_support_gpu", OpSupportGPU);
2016
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2017
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2018
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2019 2020 2021 2022 2023 2024 2025 2026
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2027 2028 2029 2030 2031 2032
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2033 2034

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2060
      });
D
dangqingqing 已提交
2061

2062
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2063 2064 2065
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2066 2067 2068
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2069 2070 2071
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2072
#endif
P
peizhilin 已提交
2073
#endif
Y
Yu Yang 已提交
2074

2075 2076
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2077
  m.def("npu_finalize", []() {
2078 2079
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2080 2081 2082
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2083
      platform::NPUDeviceGuard guard(devices[i]);
2084 2085 2086 2087
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2108 2109 2110 2111
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2112 2113 2114 2115
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2116 2117 2118 2119 2120 2121
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2122 2123 2124 2125
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2126
      .value("kAll", platform::ProfilerState::kAll)
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2138
  m.def("set_tracer_option", platform::SetTracerOption);
2139 2140
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2141
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2142
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2143
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2144
    PADDLE_ENFORCE_EQ(
2145 2146
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2147 2148 2149
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2150
    callable.inc_ref();
2151 2152 2153 2154 2155 2156 2157 2158
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2159
  });
2160
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2161 2162 2163
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2164

2165
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2166 2167
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2168 2169
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2170 2171
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2172 2173 2174 2175 2176 2177 2178 2179 2180
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2181

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2245 2246
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2247 2248 2249 2250
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
C
chenjian 已提交
2251 2252 2253 2254 2255
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2256 2257 2258
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2259 2260

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2261 2262
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2263
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2264
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2265 2266
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2267 2268 2269 2270 2271 2272
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2296 2297 2298 2299 2300 2301 2302 2303
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2322 2323 2324 2325 2326 2327
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
  m.def("enable_input_shape_recorder",
        &paddle::platform::EnableInputShapeRecorder);
  m.def("disable_input_shape_recorder",
        &paddle::platform::DisableInputShapeRecorder);
2328

2329
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2330 2331
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2332 2333
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2334
#endif  // PADDLE_WITH_CUDA
2335 2336 2337 2338 2339 2340 2341 2342
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2343

J
jianghaicheng 已提交
2344 2345
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2346 2347 2348
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2349 2350 2351 2352 2353 2354 2355
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2356
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2357 2358
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2359
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2370 2371 2372 2373
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2396 2397
                         option.get_type(),
                         option_name));
2398 2399 2400 2401 2402 2403 2404
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2405 2406
                         option_name,
                         option.first.cast<std::string>(),
2407 2408
                         option.second.cast<std::uint64_t>());
                   }
2409 2410 2411 2412 2413 2414
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2460 2461
                           option.second.get_type(),
                           option_key));
2462
                     }
2463 2464
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2465 2466 2467 2468 2469 2470
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2471 2472
                     element.second.get_type(),
                     option_name));
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2503 2504
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2505 2506 2507
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2508 2509
#endif

2510 2511 2512 2513 2514 2515 2516 2517
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2518
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2519 2520 2521 2522 2523 2524 2525 2526 2527
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2528
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2529 2530 2531 2532 2533 2534 2535
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2536 2537
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2538

2539 2540
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2541

2542 2543
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2544

D
dongdaxiang 已提交
2545
  BindFleetWrapper(&m);
2546
  BindIO(&m);
2547 2548 2549
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2550

T
Thunderbrook 已提交
2551
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2552
  BindHeterWrapper(&m);
2553
  BindMetrics(&m);
T
Thunderbrook 已提交
2554
#endif
T
Thunderbrook 已提交
2555
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2556
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2557 2558 2559
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2560
#endif
2561
  BindGlooWrapper(&m);
H
hutuxian 已提交
2562
  BindBoxHelper(&m);
H
hutuxian 已提交
2563 2564 2565
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2566
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2567
  BindNCCLWrapper(&m);
2568 2569 2570
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2571
#endif
F
flame 已提交
2572 2573
  BindGraph(&m);
  BindNode(&m);
2574
  BindPass(&m);
F
flame 已提交
2575
  BindInferenceApi(&m);
2576
  BindCompatible(&m);
2577
  BindDataset(&m);
Y
yaoxuefeng 已提交
2578
  BindGenerator(&m);
2579
#ifndef PADDLE_NO_PYTHON
2580 2581
  BindDistributed(&m);
#endif
2582 2583 2584
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2585
  BindAscendDevice(&m);
2586
#endif
Y
Yanghello 已提交
2587 2588 2589
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2590

T
tangwei12 已提交
2591
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2592 2593
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2594
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2595 2596
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2597 2598 2599 2600 2601
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2602 2603 2604 2605
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2606
#ifdef PADDLE_WITH_HETERPS
2607 2608
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2609 2610 2611
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2612
#endif
X
Xinger 已提交
2613
#if defined(PADDLE_WITH_RPC)
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2626
}
2627
}  // namespace pybind
2628
}  // namespace paddle