nn.py 252.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
156
    'affine_channel',
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
166
       is_test=False,
167
       name=None):
Y
Yu Yang 已提交
168
    """
169
    **Fully Connected Layer**
Y
Yu Yang 已提交
170

171 172 173 174 175 176 177 178
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
179
    to the output as well.
C
caoying03 已提交
180

C
caoying03 已提交
181
    This process can be formulated as follows:
182 183 184

    .. math::

185
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
186 187 188

    In the above equation:

C
caoying03 已提交
189 190 191 192
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
193
    * :math:`Act`: The activation function.
C
caoying03 已提交
194
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
195 196

    Args:
R
ranqiu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
212 213
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
214
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
215
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
216
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
217

218
    Returns:
F
fengjiayi 已提交
219
        Variable: The transformation result.
220 221

    Raises:
C
caoying03 已提交
222
        ValueError: If rank of the input tensor is less than 2.
223 224 225 226

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
227
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
228
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
229
    """
C
caoying03 已提交
230

C
caoying03 已提交
231
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
232 233 234 235

    dtype = helper.input_dtype()

    mul_results = []
236 237
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
238 239 240
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
241

Y
Yu Yang 已提交
242
        w = helper.create_parameter(
243 244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
245
        helper.append_op(
246 247 248
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
249
            outputs={"Out": tmp},
M
mozga-intel 已提交
250 251
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
252 253 254 255
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
256
    else:
257 258
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
259 260 261
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
262
            attrs={"use_mkldnn": False})
263 264 265 266
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
267 268


269 270 271
def embedding(input,
              size,
              is_sparse=False,
272
              is_distributed=False,
273 274 275
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
276
    """
277 278
    **Embedding Layer**

279
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
280 281
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
282 283 284

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
285 286

    Args:
287 288 289 290 291
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
292
        is_distributed(bool): Whether to run lookup table from remote parameter server.
293 294
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
295
            with zeros whenever lookup encounters it in :attr:`input`. If
296
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
297 298
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
299
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
300

301 302 303
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
304

305 306
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
307

C
chengduoZH 已提交
308
          dict_size = len(dataset.ids)
309
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
310
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
311 312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
317 318
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
319 320 321 322 323
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
324 325 326 327 328
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
329 330 331
    return tmp


Y
yi.wu 已提交
332
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
333 334
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
335 336
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
337 338 339 340 341 342 343
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
344 345
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
346
    """
Y
yi.wu 已提交
347
    ${comment}
Y
Yibing Liu 已提交
348 349

    Args:
Y
yi.wu 已提交
350 351
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
352 353 354 355 356 357 358
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

359
        param_attr(ParamAttr|None): The parameter attribute for the learnable
360
                               hidden-hidden weights.
Y
Yibing Liu 已提交
361 362 363

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
364 365
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
366
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
367 368 369
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
370

371
                              1. `use_peepholes = False`
Y
yi.wu 已提交
372 373
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
374
                              2. `use_peepholes = True`
Y
yi.wu 已提交
375
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
376
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
377
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
378 379 380 381 382 383 384 385
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
386 387

    Returns:
Y
Yibing Liu 已提交
388 389
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
390

Y
Yibing Liu 已提交
391
    Examples:
Y
Yibing Liu 已提交
392 393
        .. code-block:: python

Y
Yibing Liu 已提交
394 395
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
396
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
397 398
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
399
    """
400

Y
Yu Yang 已提交
401
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
402
    size = size // 4
Y
Yu Yang 已提交
403 404 405 406 407 408 409 410 411 412 413 414
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
415 416 417 418 419 420 421 422 423 424
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
425 426 427

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
428
        inputs=inputs,
Y
Yu Yang 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
445 446 447 448 449 450 451 452 453 454 455
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
456 457
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
458 459 460
    """
    **Dynamic LSTMP Layer**

461 462 463 464 465 466
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
467 468 469 470 471

    The formula is as follows:

    .. math::

472
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
473

474
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
475

476
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
477

478
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
479

480
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
481

482
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
483

484
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
485

Y
Yibing Liu 已提交
486 487 488 489 490 491
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
492
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
493
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
494
          bias vector).
Y
Yibing Liu 已提交
495 496 497
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
498
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
499
    * :math:`h`: The hidden state.
500
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
501 502
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
503
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
504
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
505
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
506 507
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
508 509 510 511

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
512

Y
Yibing Liu 已提交
513 514 515 516 517 518 519 520 521 522 523 524
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
525
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
526 527
                               hidden-hidden weight and projection weight.

528 529
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
530 531
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
532 533
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
534 535
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
536 537 538 539 540 541
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
542
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
543 544 545
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
546
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
547 548 549 550 551 552 553 554 555
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
556
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
557 558
                              default "tanh".
        proj_activation(str): The activation for projection output.
559
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
560 561
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
562 563
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
564 565

    Returns:
566 567 568 569
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
570 571

    Examples:
572

Y
Yibing Liu 已提交
573 574
        .. code-block:: python

575 576 577 578
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
579
            hidden_dim, proj_dim = 512, 256
580
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
581
                                     act=None, bias_attr=None)
582 583 584
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
585 586 587 588
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
589
    """
590

Y
Yibing Liu 已提交
591
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
592
    size = size // 4
Y
Yibing Liu 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
637 638 639 640 641 642 643 644 645
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
646
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
647

648
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
649
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
650

G
guosheng 已提交
651 652 653 654 655 656 657 658 659
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
660

G
guosheng 已提交
661
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
662

G
guosheng 已提交
663
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
664 665
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
666 667 668 669
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
670
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
671 672

    Args:
673 674
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
675
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
676
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
677 678
            is the hidden size.
        size(int): The dimension of the gru cell.
679
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
680 681
            hidden-hidden weight matrix. Note:

682
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
683
              :math:`D` is the hidden size.
684
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
685
              The first part are weights of the update gate and reset gate with
686
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
687
              candidate hidden state with shape :math:`(D \\times D)`.
688
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
689
            hidden-hidden bias.
690
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
691 692 693
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
694
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
695
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
696 697 698 699
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
700 701

    Returns:
G
guosheng 已提交
702
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
703
            and sequence length is the same with the input.
704

G
guosheng 已提交
705
    Examples:
706

G
guosheng 已提交
707 708
        .. code-block:: python

709 710 711 712
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
713
            hidden_dim = 512
714
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
715 716 717 718 719 720 721 722 723 724
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
725
    batch_size = input.shape[0]
G
guosheng 已提交
726 727 728
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
729 730 731
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
755 756 757
def gru_unit(input,
             hidden,
             size,
758 759
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
760
             activation='tanh',
761
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
762
    """
763
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
764

765 766
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
767

768
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
769

770
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
771

772
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
773 774

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
775 776 777
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
778 779
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

780 781
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
782 783 784
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
785 786 787 788 789

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
790 791
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
792 793 794 795
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
796

797 798 799 800 801 802
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
803

804
             # assuming we have x_t_data and prev_hidden of size=10
805
             x_t = fluid.layers.fc(input=x_t_data, size=30)
806 807
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
808 809 810 811 812 813 814 815 816 817 818 819

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
820
    size = size // 3
Y
Yu Yang 已提交
821 822

    # create weight
823 824
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
825

826 827 828 829
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
830
    # create bias
831
    if helper.bias_attr:
Y
Yu Yang 已提交
832 833 834
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
835
        inputs['Bias'] = bias
Y
Yu Yang 已提交
836 837 838

    helper.append_op(
        type='gru_unit',
839
        inputs=inputs,
Y
Yu Yang 已提交
840 841 842 843 844 845
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
846 847
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
848 849 850 851 852
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
853
@templatedoc()
854
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
855 856 857 858 859 860 861
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
862
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
863 864 865 866
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
867 868 869
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
870 871

    """
Y
Yu Yang 已提交
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
897
@templatedoc()
898
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
899 900 901 902 903
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
904

Y
yuyang18 已提交
905
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
906

Y
yuyang18 已提交
907 908 909
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
910
        Variable: ${viterbi_path_comment}
911

Y
yi.wu 已提交
912 913 914 915 916
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
917
    """
Y
Yu Yang 已提交
918 919 920 921 922 923 924 925 926 927 928 929 930
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
931
@templatedoc()
F
fengjiayi 已提交
932
def cos_sim(X, Y):
Y
Yu Yang 已提交
933
    """
Y
yi.wu 已提交
934 935 936
    ${comment}

    Args:
937 938
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
939

Y
yi.wu 已提交
940
    Returns:
941
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
942
    """
F
fengjiayi 已提交
943
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


957
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
958 959 960 961 962
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
963
    training. The dropout operator randomly sets (according to the given dropout
964 965 966 967
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
968 969
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
970 971 972 973 974 975 976
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
977 978

    Returns:
979
        Variable: A tensor variable is the shape with `x`.
980 981

    Examples:
982

983 984
        .. code-block:: python

985 986
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
987 988
    """

F
fengjiayi 已提交
989
    helper = LayerHelper('dropout', **locals())
990 991
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
992 993 994 995

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

996 997 998 999 1000
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1001 1002 1003 1004 1005 1006
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1007 1008 1009
    return out


1010
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1011
    """
Y
Yibing Liu 已提交
1012 1013
    **Cross Entropy Layer**

1014 1015 1016
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1017 1018

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1019
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1020

Y
Yibing Liu 已提交
1021
        .. math::
Y
yangyaming 已提交
1022

Y
Yibing Liu 已提交
1023 1024 1025
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1026 1027
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1028 1029 1030 1031 1032

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1033
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1034 1035 1036
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1037 1038
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1039
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1040

Y
Yibing Liu 已提交
1041
    Args:
Y
yangyaming 已提交
1042
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1043 1044 1045 1046
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1047
        label (Variable|list): the ground truth which is a 2-D tensor. When
1048 1049 1050 1051
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1052
        soft_label (bool): a flag indicating whether to
1053
                                           interpretate the given labels as soft
1054
                                           labels. Default: `False`.
M
minqiyang 已提交
1055 1056
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1057
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1058 1059 1060 1061 1062

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1063 1064 1065 1066 1067
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1068 1069 1070 1071 1072 1073

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1074
    """
F
fengjiayi 已提交
1075
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1076 1077 1078 1079 1080 1081
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1082 1083
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1084 1085 1086
    return out


F
fengjiayi 已提交
1087
def square_error_cost(input, label):
Y
Yu Yang 已提交
1088
    """
1089 1090
    **Square error cost layer**

1091 1092
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1107 1108
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1109 1110

    Returns:
G
guosheng 已提交
1111
        Variable: The tensor variable storing the element-wise squared error \
1112
                  difference of input and label.
1113 1114 1115 1116 1117 1118 1119 1120

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1121
    """
F
fengjiayi 已提交
1122
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1132 1133
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1134 1135 1136
    return square_out


Y
yi.wu 已提交
1137
@templatedoc()
Y
Yu Yang 已提交
1138 1139 1140 1141
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1142
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1143
    """
Y
yi.wu 已提交
1144
    **Chunk Evaluator**
Y
yi.wu 已提交
1145

Y
yangyaming 已提交
1146
    This function computes and outputs the precision, recall and
1147
    F1-score of chunk detection.
Y
yi.wu 已提交
1148

Y
yi.wu 已提交
1149 1150 1151 1152 1153 1154 1155 1156
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1157

Y
yi.wu 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1183

Y
yi.wu 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1208
    Args:
1209 1210 1211 1212 1213
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1214

Y
yi.wu 已提交
1215
    Returns:
Y
update  
yi.wu 已提交
1216 1217 1218
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1219

Y
yi.wu 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1232
    """
F
fengjiayi 已提交
1233
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1234 1235 1236 1237 1238

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1239 1240 1241
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1242 1243 1244 1245 1246 1247 1248 1249

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1250 1251 1252 1253
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1254 1255 1256
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1257 1258
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1259
        })
1260 1261
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1262 1263


1264
@templatedoc()
Y
Yu Yang 已提交
1265 1266 1267 1268 1269 1270 1271
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1272
                  act=None):
Y
Yu Yang 已提交
1273 1274 1275 1276
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1287

1288 1289
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1308
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1309 1310 1311 1312 1313 1314
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1315
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1316 1317 1318
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1319
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1338
        library is installed. Default: False
1339

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1362
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1363
    """
1364
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1365
    has the same shape as the input.
Q
qiaolongfei 已提交
1366

1367 1368 1369 1370 1371 1372
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1373
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1374 1375 1376 1377 1378 1379 1380

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1381
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1416 1417 1418
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1419 1420
           stride=1,
           padding=0,
1421
           dilation=1,
Y
Yu Yang 已提交
1422 1423 1424
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1425
           use_cudnn=True,
1426 1427
           act=None,
           name=None):
Y
Yu Yang 已提交
1428
    """
C
chengduoZH 已提交
1429
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1430 1431
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1432
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1433 1434 1435 1436 1437 1438 1439
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1440 1441 1442
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1443

1444
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1445

C
chengduoZH 已提交
1446 1447
    .. math::

C
refine  
chengduoZH 已提交
1448
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1449

T
tensor-tang 已提交
1450
    Where:
C
chengduoZH 已提交
1451

1452 1453 1454 1455 1456
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1457
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1458 1459 1460

    Example:

1461 1462
        - Input:

W
weixing02 已提交
1463
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1464

W
weixing02 已提交
1465
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1466

1467
        - Output:
T
tensor-tang 已提交
1468

W
weixing02 已提交
1469
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1470

C
chengduoZH 已提交
1471
        Where
1472 1473

        .. math::
C
chengduoZH 已提交
1474

W
weixing02 已提交
1475 1476
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1477 1478

    Args:
1479
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1480
        num_filters(int): The number of filter. It is as same as the output
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1506 1507

    Returns:
G
guosheng 已提交
1508
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1509 1510
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1511
    Raises:
1512 1513
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1514

C
chengduoZH 已提交
1515 1516 1517
    Examples:
        .. code-block:: python

1518 1519
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1520 1521 1522
    """

    num_channels = input.shape[1]
1523 1524

    l_type = 'conv2d'
X
xzl 已提交
1525 1526
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1527
        l_type = 'depthwise_conv2d'
1528 1529 1530 1531

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1532 1533 1534 1535 1536
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1537
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1538

C
chengduoZH 已提交
1539 1540 1541
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1542
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1543

C
chengduoZH 已提交
1544 1545
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1546 1547

    input_shape = input.shape
M
minqiyang 已提交
1548
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1563
        type=l_type,
Y
Yu Yang 已提交
1564 1565 1566 1567 1568
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1569 1570 1571
        attrs={
            'strides': stride,
            'paddings': padding,
1572
            'dilations': dilation,
C
chengduoZH 已提交
1573
            'groups': groups,
1574
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1575
            'use_mkldnn': False
C
chengduoZH 已提交
1576
        })
Y
Yu Yang 已提交
1577 1578 1579 1580 1581 1582

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1600 1601 1602 1603 1604 1605
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1615 1616
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1617 1618 1619
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1620
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1646
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1647 1648
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1649
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1650 1651
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1652
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1653 1654
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1655
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1681 1682
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1697
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1735
            'use_mkldnn': False
C
chengduoZH 已提交
1736 1737
        })

1738
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1739 1740 1741 1742

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1743
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1744
    """
Y
yangyaming 已提交
1745 1746 1747
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1759
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1760 1761 1762 1763 1764
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1765
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1766 1767 1768 1769 1770 1771 1772

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1773 1774
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1775

L
Luo Tao 已提交
1776 1777
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1778
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1779 1780 1781 1782 1783 1784 1785 1786
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1787

Y
yangyaming 已提交
1788
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1789 1790 1791 1792 1793
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1794 1795
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1796
    """
F
fengjiayi 已提交
1797
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1809 1810 1811 1812 1813
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1814 1815 1816
    return pool_out


C
add doc  
chengduoZH 已提交
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1842
def sequence_first_step(input):
L
Luo Tao 已提交
1843
    """
L
Luo Tao 已提交
1844
    This function gets the first step of sequence.
L
Luo Tao 已提交
1845 1846 1847 1848

    .. code-block:: text

       x is a 1-level LoDTensor:
1849
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1850 1851 1852 1853 1854
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1855
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1856
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1857

L
Luo Tao 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1867

Y
yangyaming 已提交
1868
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1869 1870 1871
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1872 1873 1874
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1875
def sequence_last_step(input):
L
Luo Tao 已提交
1876
    """
L
Luo Tao 已提交
1877
    This function gets the last step of sequence.
L
Luo Tao 已提交
1878 1879 1880 1881

    .. code-block:: text

       x is a 1-level LoDTensor:
1882
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1883 1884 1885 1886 1887
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1888
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1889
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1890

L
Luo Tao 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1900

Y
yangyaming 已提交
1901
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1902 1903 1904
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1905 1906 1907
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1921 1922 1923 1924 1925
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1926

1927
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1928

1929 1930 1931 1932 1933
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
1934
	
1935 1936
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
1937 1938 1939
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
1940
                         sequences.
Y
Yibing Liu 已提交
1941 1942 1943 1944 1945 1946
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
1947
        Variable: The output subsequences.
Y
Yibing Liu 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
1978
@templatedoc()
Y
Yu Yang 已提交
1979
def pool2d(input,
C
chengduoZH 已提交
1980 1981
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1982 1983
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1984
           global_pooling=False,
C
chengduoZH 已提交
1985
           use_cudnn=True,
1986
           ceil_mode=False,
C
caoying03 已提交
1987
           name=None):
Y
Yu Yang 已提交
1988
    """
F
fengjiayi 已提交
1989
    ${comment}
1990 1991

    Args:
1992 1993 1994
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1995
                          feature, and W is the width of the feature.
1996
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1997
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1998
        pool_type: ${pooling_type_comment}
1999 2000
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2001 2002 2003
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2004
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2005 2006
                        layer will be named automatically.

2007
    Returns:
F
fengjiayi 已提交
2008
        Variable: The pooling result.
F
fengjiayi 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2022 2023 2024 2025
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2026
                            global_pooling=False)
Y
Yu Yang 已提交
2027 2028 2029 2030 2031
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2032

C
chengduoZH 已提交
2033 2034 2035 2036 2037
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2038 2039 2040 2041
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2042 2043
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2044

C
Add doc  
chengduoZH 已提交
2045
    l_type = 'pool2d'
2046 2047

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2048 2049 2050 2051
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2063
            "use_mkldnn": False
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2080
    pooling configurations mentioned in input parameters.
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2093

2094
    Returns:
2095
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2096 2097 2098 2099 2100
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2101

C
chengduoZH 已提交
2102 2103 2104 2105 2106
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2107 2108 2109
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2110

C
chengduoZH 已提交
2111 2112
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2113

2114 2115
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2116 2117 2118 2119
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2120
        type=l_type,
Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126 2127
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2128
            "paddings": pool_padding,
2129
            "use_cudnn": use_cudnn,
2130
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2131
            "use_mkldnn": False
Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2144
               data_layout='NCHW',
Y
Yang Yang 已提交
2145
               in_place=False,
2146 2147
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2148
               moving_variance_name=None,
2149 2150
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2151
    """
Q
qiaolongfei 已提交
2152 2153 2154 2155
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2156

Q
qiaolongfei 已提交
2157
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2158

Q
qiaolongfei 已提交
2159 2160
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2161 2162 2163
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2176 2177

    Args:
Q
qiaolongfei 已提交
2178
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2179 2180 2181 2182
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2183 2184 2185
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2186
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2187 2188 2189 2190
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2191
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2192
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2193 2194

    Returns:
Q
qiaolongfei 已提交
2195
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2196 2197 2198 2199 2200 2201 2202

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2226
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2227

2228 2229
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2230 2231 2232
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2233
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2234
        shape=param_shape,
2235 2236 2237 2238 2239 2240 2241
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2242
            trainable=False,
W
wanghaoshuang 已提交
2243
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2244
        shape=param_shape,
2245 2246
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2247 2248 2249 2250 2251 2252

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2253 2254
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2255

2256
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2274 2275 2276 2277
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2278
            "use_mkldnn": False,
2279
            "fuse_with_relu": fuse_with_relu
2280
        })
Y
Yu Yang 已提交
2281 2282 2283 2284

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2285
@templatedoc()
G
guosheng 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2296
    ${comment}
G
guosheng 已提交
2297 2298 2299

    The formula is as follows:

Y
yuyang18 已提交
2300
    ..  math::
G
guosheng 已提交
2301 2302 2303 2304 2305 2306 2307

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2308 2309 2310 2311 2312 2313 2314 2315
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2316

G
guosheng 已提交
2317 2318
    Args:
        input(Variable): The input tensor variable.
2319
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2320
            normalization.
2321
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2322
            normalization.
2323
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2324
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2325
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2326 2327 2328 2329 2330 2331
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2332
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2333 2334

    Returns:
Y
yuyang18 已提交
2335
        ${y_comment}
G
guosheng 已提交
2336 2337 2338

    Examples:

Y
yuyang18 已提交
2339 2340 2341
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2357
    if shift:
G
guosheng 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2382 2383 2384 2385
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2386 2387 2388
                     padding=0,
                     stride=1,
                     dilation=1,
2389
                     groups=None,
C
caoying03 已提交
2390
                     param_attr=None,
2391
                     bias_attr=None,
C
chengduoZH 已提交
2392
                     use_cudnn=True,
2393
                     act=None,
C
caoying03 已提交
2394
                     name=None):
Y
Yu Yang 已提交
2395
    """
2396 2397 2398 2399 2400 2401 2402 2403
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2404 2405
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2406 2407 2408
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2409 2410 2411 2412 2413

    For each input :math:`X`, the equation is:

    .. math::

2414
        Out = \sigma (W \\ast X + b)
2415

2416
    Where:
2417 2418 2419

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2420 2421 2422 2423
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2424

2425 2426 2427 2428
    Example:

        - Input:

2429
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2430

2431
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2432 2433 2434

        - Output:

2435
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2436 2437

        Where
Y
Yu Yang 已提交
2438

2439 2440
        .. math::

2441 2442 2443 2444
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2445 2446

    Args:
2447 2448 2449 2450
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2451 2452 2453 2454
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2482 2483

    Returns:
2484
        Variable: The tensor variable storing the convolution transpose result.
2485 2486

    Raises:
2487 2488
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2489 2490 2491 2492

    Examples:
       .. code-block:: python

2493 2494
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2495
    """
2496 2497 2498 2499 2500 2501 2502 2503 2504

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2505 2506 2507
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2508 2509 2510
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2511

C
chengduoZH 已提交
2512 2513
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2514

Y
Yu Yang 已提交
2515 2516 2517 2518 2519
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2520

Y
Yu Yang 已提交
2521 2522
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2523

C
chengduoZH 已提交
2524
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2525
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2526
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2527
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2528
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2529 2530 2531
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2532 2533 2534 2535 2536 2537 2538
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2539
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2540
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2541 2542 2543
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2544
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2545
    helper.append_op(
2546
        type=op_type,
Y
Yu Yang 已提交
2547 2548
        inputs={'Input': [input],
                'Filter': [img_filter]},
2549
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2550
        attrs={
2551
            'output_size': output_size,
2552 2553 2554 2555 2556
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2557 2558
        })

2559 2560 2561
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2562 2563


2564
def conv3d_transpose(input,
Y
Yu Yang 已提交
2565 2566 2567
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2568 2569 2570
                     padding=0,
                     stride=1,
                     dilation=1,
2571
                     groups=None,
C
caoying03 已提交
2572
                     param_attr=None,
2573
                     bias_attr=None,
C
chengduoZH 已提交
2574
                     use_cudnn=True,
2575
                     act=None,
C
caoying03 已提交
2576
                     name=None):
Y
Yu Yang 已提交
2577
    """
2578
    **Convlution3D transpose layer**
2579

2580
    The convolution3D transpose layer calculates the output based on the input,
2581
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2582 2583 2584 2585 2586 2587
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2588 2589 2590
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2591 2592 2593 2594 2595

    For each input :math:`X`, the equation is:

    .. math::

2596
        Out = \sigma (W \\ast X + b)
2597 2598 2599

    In the above equation:

2600 2601
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2602 2603 2604 2605
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2606

2607 2608 2609 2610
    Example:

        - Input:

2611
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2612

2613
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2614 2615 2616

        - Output:

2617
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2618 2619

        Where
Y
Yu Yang 已提交
2620

2621 2622
        .. math::

2623 2624 2625
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2626 2627

    Args:
2628
        input(Variable): The input image with [N, C, D, H, W] format.
2629 2630 2631
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2632
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2633 2634
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2635
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2636 2637 2638
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2639 2640
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2641
        stride(int|tuple): The stride size. If stride is a tuple, it must
2642 2643
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2644
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2645 2646 2647
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2648 2649 2650 2651 2652
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2653 2654 2655
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2656 2657 2658 2659 2660
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2661 2662

    Returns:
2663
        Variable: The tensor variable storing the convolution transpose result.
2664 2665

    Raises:
2666 2667
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2668 2669 2670 2671

    Examples:
       .. code-block:: python

2672 2673
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2674
    """
2675 2676
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2677
    if not isinstance(input, Variable):
2678
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2679 2680
    input_channel = input.shape[1]

2681 2682 2683
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2684

C
chengduoZH 已提交
2685 2686 2687
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2688 2689 2690 2691 2692 2693
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2694 2695 2696
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2697

2698
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2699
                         padding[0] - 1) // dilation[0] + 1
2700
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2701
                         padding[1] - 1) // dilation[1] + 1
2702
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2703
                         padding[2] - 1) // dilation[2] + 1
2704
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2705
    else:
2706 2707
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2708

2709
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2710
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2711 2712 2713
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2714
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2715
    helper.append_op(
2716
        type=l_type,
Y
Yu Yang 已提交
2717 2718
        inputs={'Input': [input],
                'Filter': [img_filter]},
2719
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2720 2721 2722 2723
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2724
            'groups': groups,
C
chengduoZH 已提交
2725 2726
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2727

2728 2729
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2730
    return out
Y
yangyaming 已提交
2731 2732


Y
yangyaming 已提交
2733
def sequence_expand(x, y, ref_level=-1, name=None):
2734
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2735 2736 2737 2738
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2739 2740 2741 2742 2743

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2744
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2745
                x.data = [[a], [b], [c], [d]]
2746 2747 2748
                x.dims = [4, 1]

            y is a LoDTensor:
2749 2750
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2751

Y
yangyaming 已提交
2752
            ref_level: 0
2753

Y
yangyaming 已提交
2754
            then output is a 1-level LoDTensor:
2755
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2756
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2757 2758 2759 2760
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2761
                x.data = [[a], [b], [c]]
2762 2763 2764
                x.dims = [3, 1]

            y is a LoDTensor:
2765
                y.lod = [[2, 0, 3]]
2766

Y
yangyaming 已提交
2767
            ref_level: -1
2768

Y
yangyaming 已提交
2769 2770 2771
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2772 2773 2774
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2775 2776
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2777
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2778
                        will be named automatically.
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2789
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2790
    """
Y
yangyaming 已提交
2791
    helper = LayerHelper('sequence_expand', input=x, **locals())
2792 2793 2794
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2795 2796 2797 2798 2799
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2800
    return tmp
2801 2802


C
chengduo 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2868
@templatedoc()
2869
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2870 2871 2872 2873 2874
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2875 2876 2877
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2878
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2879 2880 2881 2882
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2883 2884 2885
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2886

F
fengjiayi 已提交
2887
    Returns:
M
minqiyang 已提交
2888
        Variable: The padded sequence batch and the original lengths before
2889
                  padding. All sequences has the same length.
M
minqiyang 已提交
2890

F
fengjiayi 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2905 2906 2907 2908 2909
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2910 2911 2912 2913 2914 2915
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2916 2917
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2918
        attrs={'padded_length': maxlen})
2919
    return out, length
F
fengjiayi 已提交
2920 2921


2922
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
2923
    """
2924
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
2940
	specified by input Variable **length**:
Y
Yibing Liu 已提交
2941 2942 2943 2944 2945 2946

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
2947
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
2948 2949 2950 2951 2952 2953

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
2954 2955
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


2982 2983 2984 2985 2986 2987 2988 2989 2990
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2991 2992
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2993 2994 2995

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2996 2997

    This layer does the search in beams for one time step. Specifically, it
2998 2999 3000 3001 3002 3003
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3004

3005 3006 3007 3008 3009 3010 3011 3012
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3013

3014
    Args:
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3040

3041
    Returns:
3042 3043
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3044 3045 3046 3047

    Examples:
        .. code-block:: python

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3076
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3094 3095 3096 3097 3098 3099 3100
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3111

3112 3113 3114 3115 3116 3117
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3118

3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3144 3145 3146 3147
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3148
              param_attr=None,
C
caoying03 已提交
3149 3150
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3151 3152 3153 3154
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3155
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3156

3157
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3158

3159
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3160

3161
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3162 3163 3164

            h_t & = o_t tanh(c_t)

3165 3166 3167 3168 3169 3170
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3171 3172 3173

        .. math::

3174
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3175 3176 3177 3178 3179 3180 3181 3182

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3183
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3184 3185

    Args:
Y
yangyaming 已提交
3186 3187 3188 3189 3190 3191
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3192
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3193 3194
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3195 3196
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3197 3198
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3199 3200

    Returns:
Y
yangyaming 已提交
3201
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3202 3203

    Raises:
3204 3205 3206 3207
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3208 3209 3210 3211 3212 3213

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3214
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3215
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3216
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3233
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3234 3235 3236 3237
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3238 3239
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3240 3241 3242
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3243
    size = cell_t_prev.shape[1]
3244
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3245 3246
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3247
                param_attr=param_attr,
3248
                bias_attr=bias_attr)
Y
yangyaming 已提交
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3261
    return h, c
G
guosheng 已提交
3262 3263


C
caoying03 已提交
3264
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3265
    """
Y
yangyaming 已提交
3266
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3267 3268 3269

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3270
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3271 3272
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3273 3274
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3275
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3276
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3277
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3278 3279
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3280 3281 3282

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3283

G
guosheng 已提交
3284 3285 3286 3287 3288 3289
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3290
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3291 3292 3293 3294
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3295 3296 3297 3298

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3299
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3300 3301 3302
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3303 3304 3305
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3306 3307
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3308 3309 3310 3311 3312
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3313
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3314 3315 3316 3317
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3318 3319


C
caoying03 已提交
3320
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3321
    """
Y
Yibing Liu 已提交
3322
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3323 3324 3325

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3326 3327 3328
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3329
            must be in the range :math:`[-rank(input), rank(input))`. If
3330
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3331
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3332 3333
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3334
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3335
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3336
                       will be named automatically.
G
guosheng 已提交
3337 3338

    Returns:
Y
Yibing Liu 已提交
3339
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3340

G
guosheng 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3351 3352
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3353 3354 3355 3356 3357 3358 3359

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3360 3361 3362
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3363 3364
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3365 3366 3367 3368 3369
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3370
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3371 3372 3373 3374
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3375 3376


C
caoying03 已提交
3377
def reduce_max(input, dim=None, keep_dim=False, name=None):
3378
    """
Y
yangyaming 已提交
3379
    Computes the maximum of tensor elements over the given dimension.
3380 3381 3382

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3383
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3384 3385 3386
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3387
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3388 3389
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3390
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3391 3392
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3393 3394 3395

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3408 3409 3410 3411 3412 3413 3414

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3415 3416 3417
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3418 3419
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3420 3421 3422 3423 3424
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3425
            'dim': dim if dim != None else [0],
3426 3427 3428 3429 3430 3431
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3432
def reduce_min(input, dim=None, keep_dim=False, name=None):
3433
    """
Y
yangyaming 已提交
3434
    Computes the minimum of tensor elements over the given dimension.
3435 3436 3437

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3438
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3439 3440 3441
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3442
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3443 3444
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3445
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3446 3447
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3448 3449 3450

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3451

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3463 3464 3465 3466 3467 3468 3469

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3470 3471 3472
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3473 3474
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3475 3476 3477 3478 3479
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3480
            'dim': dim if dim != None else [0],
3481 3482 3483 3484
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3485 3486


3487 3488 3489 3490 3491 3492
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3493
        dim (list|int|None): The dimensions along which the product is performed. If
3494 3495
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3496 3497
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3498 3499 3500
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3501
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3502
            layer will be named automatically.
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3517
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3518
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3519 3520 3521 3522 3523 3524 3525

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3526 3527 3528
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3529 3530
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3531 3532 3533 3534 3535
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3536
            'dim': dim if dim != None else [0],
3537 3538 3539 3540 3541 3542
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3543
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3544
    """
C
caoying03 已提交
3545
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3546 3547 3548

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3549 3550 3551 3552 3553
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3554
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3555
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3556
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3557 3558
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3559 3560

    Returns:
D
dzhwinter 已提交
3561
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3571 3572
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3602 3603 3604 3605 3606 3607 3608 3609 3610


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3611
    .. math::
3612 3613

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3614 3615 3616 3617 3618

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3619
        x(Variable|list): The input tensor to l2_normalize layer.
3620
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3621 3622
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3623
        epsilon(float): The epsilon value is used to avoid division by zero, \
3624
            the defalut value is 1e-10.
3625
        name(str|None): A name for this layer(optional). If set None, the layer \
3626
            will be named automatically.
C
caoying03 已提交
3627 3628

    Returns:
3629
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3630 3631

    Examples:
3632

C
caoying03 已提交
3633 3634
        .. code-block:: python

3635 3636 3637 3638
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3639 3640
    """

F
fengjiayi 已提交
3641 3642
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3643 3644
    helper = LayerHelper("l2_normalize", **locals())

3645 3646
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3647
    helper.append_op(
3648 3649 3650 3651
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3652
        attrs={
3653 3654
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3655 3656
        })
    return out
3657 3658


S
sneaxiy 已提交
3659
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3660
    """
Y
ying 已提交
3661 3662 3663 3664
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3665

C
chengduoZH 已提交
3666
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3667
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3668

3669 3670 3671 3672 3673
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3674
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3675

C
chengduoZH 已提交
3676
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3677
      performs in the following way.
G
guosheng 已提交
3678

3679
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3680
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3681
        last two dimensions and a batched matrix multiply supporting broadcast
3682
        applies on the two tensors.
G
guosheng 已提交
3683

Y
ying 已提交
3684 3685
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3686
    removed after matrix multiplication.
G
guosheng 已提交
3687 3688 3689

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3690 3691 3692
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3693
        alpha (float): The scale of output. Default 1.0.
3694
        name(str|None): A name for this layer(optional). If set None, the layer
3695
            will be named automatically.
G
guosheng 已提交
3696 3697

    Returns:
3698
        Variable: The product Tensor variable.
G
guosheng 已提交
3699

G
guosheng 已提交
3700 3701 3702
    Examples:
        .. code-block:: python

3703
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3704 3705
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3706

3707 3708
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3709

3710 3711
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3712

3713 3714
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3715 3716 3717 3718

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3719 3720
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3721

Y
ying 已提交
3722
            # x: [M], y: [N]
3723
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3724
    """
Y
ying 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3737
            y_shape = y_shape + [1]
Y
ying 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3754
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3755
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3756
    helper.append_op(
3757 3758 3759 3760
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3761 3762 3763
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3764
            'alpha': float(alpha),
S
sneaxiy 已提交
3765
        })
3766
    return out
3767 3768


3769
def topk(input, k, name=None):
Q
qingqing01 已提交
3770 3771 3772 3773
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3774
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3775 3776 3777 3778 3779 3780
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3802 3803 3804
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3805
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3806
                 of input.
3807
        name(str|None): A name for this layer(optional). If set None, the layer
3808
                       will be named automatically.
F
fengjiayi 已提交
3809
                       Default: None
Q
qingqing01 已提交
3810 3811

    Returns:
3812 3813 3814
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3815
        within the last dimension of input.
Q
qingqing01 已提交
3816

F
fengjiayi 已提交
3817 3818
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3839
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3840
    """
Y
ying 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3850

Y
ying 已提交
3851
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3852

3853
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3854 3855
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3856
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3857

3858
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3859 3860
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3861

3862 3863 3864
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3865
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3866
                          the length of reference string.
3867
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3868
                                     calculating edit distance.
3869
        name (str): The name of this layer. It is optional.
3870

W
wanghaoshuang 已提交
3871
    Returns:
W
wanghaoshuang 已提交
3872
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3873 3874 3875 3876 3877

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3878
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3879
            cost = fluid.layers.edit_distance(input=x,label=y)
3880
    """
3881
    helper = LayerHelper("edit_distance", **locals())
3882

3883
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3884
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3885 3886 3887 3888 3889 3890 3891
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3892
            attrs={"tokens": ignored_tokens})
3893 3894 3895 3896 3897
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3898
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3899
            attrs={"tokens": ignored_tokens})
3900 3901
        label = erased_label

3902 3903
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3904
    sequence_num = helper.create_tmp_variable(dtype="int64")
3905 3906 3907 3908
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3909 3910
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3911 3912
        attrs={"normalized": normalized})

3913
    return edit_distance_out, sequence_num
3914 3915 3916 3917 3918


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3919

Y
ying 已提交
3920 3921 3922 3923
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3941
        input.lod = [[4, 4]]
3942 3943 3944 3945 3946 3947 3948

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3949
        output.lod = [[2, 1]]
3950 3951 3952

    Args:

Y
ying 已提交
3953 3954 3955 3956 3957 3958 3959 3960 3961
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3962
        name (str): The name of this layer. It is optional.
3963 3964

    Returns:
3965
        Variable: CTC greedy decode result. If all the sequences in result were
3966
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3967 3968 3969 3970 3971

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3972

3973
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3974
    """
3975
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3976
    _, topk_indices = topk(input, k=1)
3977 3978 3979 3980 3981 3982

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3983
        outputs={"Output": [ctc_out]},
3984 3985
        attrs={"merge_repeated": True,
               "blank": blank})
3986
    return ctc_out
3987 3988


F
fengjiayi 已提交
3989
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3990
    """
3991 3992
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3993
    to compute Connectionist Temporal Classification (CTC) loss.
3994 3995
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3996 3997 3998
    input tensor.

    Args:
3999
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4000 4001 4002 4003
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4004
       label (Variable): The ground truth of variable-length sequence,
4005 4006 4007
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4008 4009
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4010 4011 4012
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4013
         follewed by a mean_op.
W
wanghaoshuang 已提交
4014 4015

    Returns:
4016 4017
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4018 4019

    Examples:
4020

W
wanghaoshuang 已提交
4021
        .. code-block:: python
4022

4023 4024 4025
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4026 4027

    """
F
fengjiayi 已提交
4028
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4055 4056 4057
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4058 4059 4060 4061 4062
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4063

4064
            out.lod  = [[0, 1, 3]]
4065 4066 4067 4068

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4069 4070 4071 4072 4073 4074 4075
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4076 4077 4078

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4079 4080

    Returns:
4081

4082 4083 4084 4085 4086
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4087
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4088
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4089 4090 4091 4092 4093 4094 4095 4096 4097
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4098 4099


4100 4101 4102 4103
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4104 4105 4106 4107 4108 4109 4110
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
4111 4112 4113 4114 4115 4116 4117
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4118 4119
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4120
            sample is 1.0.
4121 4122 4123
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
4124

4125
    Returns:
Y
Yibing Liu 已提交
4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4153
    """
Y
Yang Yu 已提交
4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4173 4174 4175 4176 4177 4178 4179 4180 4181
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4198
    return cost / (num_neg_samples + 1)
4199 4200


G
guosheng 已提交
4201
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4202 4203
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4204
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4205 4206 4207 4208 4209 4210 4211 4212 4213
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4214

W
weixing02 已提交
4215
    Args:
M
minqiyang 已提交
4216
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4217 4218 4219 4220 4221
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4222 4223
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4224
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4225 4226
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4227 4228 4229 4230 4231 4232 4233 4234

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4235 4236 4237
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4238 4239 4240 4241 4242 4243 4244 4245
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4246
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4247 4248 4249 4250 4251
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4252 4253 4254 4255 4256 4257 4258 4259
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4260 4261
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4262
        inputs=inputs,
W
weixing02 已提交
4263 4264 4265 4266 4267 4268
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4269
def transpose(x, perm, name=None):
Y
ying 已提交
4270 4271 4272 4273 4274 4275 4276
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4277 4278 4279
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4280 4281 4282 4283 4284 4285 4286 4287

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4288
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4289 4290
    """

Y
fix ci.  
ying 已提交
4291
    if len(perm) != len(x.shape):
Y
ying 已提交
4292 4293 4294
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4295 4296 4297 4298 4299 4300
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4301 4302

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4303
    out = helper.create_tmp_variable(x.dtype)
4304
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4305
    helper.append_op(
4306
        type='transpose2',
Y
fix ci.  
ying 已提交
4307
        inputs={'X': [x]},
4308 4309
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4310 4311
        attrs={'axis': perm})
    return out
4312 4313


4314 4315 4316 4317 4318 4319 4320
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4321
    """
4322 4323 4324 4325 4326 4327 4328
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4357 4358 4359 4360 4361 4362 4363 4364 4365
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4366 4367 4368
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4369 4370 4371 4372 4373
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4401 4402 4403
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4416
            output.dims = {8, 8}
4417

4418
            output.lod = [[4, 4]]
4419

D
dzhwinter 已提交
4420
     Examples:
4421 4422 4423

        .. code-block:: python

4424 4425
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4426 4427

    """
W
wanghaoshuang 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4438 4439 4440 4441 4442 4443 4444
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4445
    helper = LayerHelper('im2sequence', **locals())
4446 4447
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4448
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4449
    return out
4450 4451


Y
yuyang18 已提交
4452
@templatedoc()
4453
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4454 4455
    """
    ${comment}
4456 4457

    Args:
Y
yuyang18 已提交
4458
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4459 4460
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4461 4462 4463 4464 4465
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4466
        ${out_comment}.
4467 4468

    Examples:
Y
yuyang18 已提交
4469 4470 4471 4472
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4485
    return helper.append_activation(out)
4486 4487


Y
yuyang18 已提交
4488
@templatedoc()
4489 4490
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4491 4492 4493 4494 4495 4496 4497
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4498 4499

    Args:
Y
yuyang18 已提交
4500 4501
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4502 4503

    Returns:
Y
yuyang18 已提交
4504
        ${out_comment}.
4505 4506
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4507 4508 4509 4510 4511 4512

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4513 4514 4515 4516 4517 4518
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4519 4520


4521 4522 4523 4524
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4525 4526
    """
    **Softmax With Cross Entropy Operator.**
4527

4528 4529 4530 4531
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4532

4533 4534 4535
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4536

4537 4538 4539
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4540

4541
    The equation is as follows:
4542

4543
    1) Hard label (one-hot label, so every sample has exactly one class)
4544

4545 4546 4547 4548
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4549

4550 4551 4552
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4553

4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4566 4567
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4568 4569
                            if soft_label is set to False. Default: -100

4570 4571 4572 4573 4574 4575 4576 4577 4578
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4579 4580
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4591 4592
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4593 4594 4595 4596 4597
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4598 4599
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4600
    For each instance, it computes the smooth L1 loss element by element first
4601
    and then sums all the losses. So the shape of ouput Variable is
4602
    [batch_size, 1].
4603

4604 4605
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4606
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4607
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4608
            L1 loss op with same shape as :attr:`x`.
4609
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4610 4611
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4612
            by this tensor element by element.
4613
        outside_weight (Variable|None): A tensor with rank at least 2. This
4614 4615
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4616
            element by element.
4617
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4618 4619
           scalar with default value 1.0.

4620
    Returns:
4621
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4622 4623 4624 4625 4626

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4627 4628
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4629
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4630
            out = fluid.layers.smooth_l1(x=fc, y=label)
4631
    """
4632

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4648 4649 4650 4651


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4652
    This layer creates the one-hot representations for input indices.
4653 4654

    Args:
Y
Yibing Liu 已提交
4655 4656
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4657 4658

    Returns:
Y
Yibing Liu 已提交
4659
        Variable: The one-hot representations of input.
4660 4661

    Examples:
C
caoying03 已提交
4662
        .. code-block:: python
4663

Y
Yibing Liu 已提交
4664 4665
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4666 4667 4668 4669 4670 4671 4672 4673 4674
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4675 4676


Y
Yu Yang 已提交
4677
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4678
    """
Y
yi.wu 已提交
4679 4680 4681
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4682 4683 4684 4685 4686 4687

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4688 4689
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4690 4691 4692 4693 4694 4695

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4696 4697
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4698 4699
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4700 4701 4702 4703 4704
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4705
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4706
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4707 4708
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4709 4710
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4711 4712 4713
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4714 4715


4716
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4717
    """
C
caoying03 已提交
4718 4719
    Gives a new shape to the input Tensor without changing its data.

4720 4721 4722 4723 4724
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4725

4726
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4727

4728 4729 4730 4731
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4732
    2. 0 means the actual dimension value is going to be copied from the
4733 4734 4735 4736
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4737 4738

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4739
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4740
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4741

4742
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4743 4744
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4745 4746
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4747
    dimensions.
C
caoying03 已提交
4748

4749
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4750 4751 4752 4753
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4754 4755

    Args:
4756
        x(variable): The input tensor.
C
caoying03 已提交
4757 4758
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4759 4760 4761 4762 4763
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4764
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4765 4766 4767 4768
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4769
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4770

4771 4772
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4773

X
Xin Pan 已提交
4774 4775 4776
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4777 4778
    Examples:
        .. code-block:: python
G
guosheng 已提交
4779

4780
            data = fluid.layers.data(
4781
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4782
            reshaped = fluid.layers.reshape(
4783
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4784 4785 4786
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4787
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4788 4789 4790 4791 4792
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4793

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4809
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4810
    out = helper.create_tmp_variable(dtype=x.dtype)
4811
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4812
    helper.append_op(
4813
        type="reshape2",
X
Xin Pan 已提交
4814
        inputs=inputs,
D
dzhwinter 已提交
4815
        attrs={"shape": shape},
4816 4817
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4818

D
dzhwinter 已提交
4819
    return helper.append_activation(out)
4820

4821

4822
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4823
    """
M
minqiyang 已提交
4824 4825 4826
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4827
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4828

Y
Yibing Liu 已提交
4829 4830
    Examples:
    Case 1:
M
minqiyang 已提交
4831
      Given
Y
Yibing Liu 已提交
4832 4833 4834 4835 4836 4837 4838 4839
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4840
        and
Y
Yibing Liu 已提交
4841 4842 4843
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4844

Y
Yibing Liu 已提交
4845
    Args:
4846
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4847
        axes (list): List of integers, indicating the dimensions to be squeezed.
4848
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4849 4850 4851 4852 4853 4854 4855 4856

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4857
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4858 4859
    """
    helper = LayerHelper("squeeze", **locals())
4860
    out = helper.create_tmp_variable(dtype=input.dtype)
4861
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4862
    helper.append_op(
4863
        type="squeeze2",
4864
        inputs={"X": input},
Y
Yibing Liu 已提交
4865
        attrs={"axes": axes},
4866 4867
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4868

4869 4870 4871
    return out


4872
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4873
    """
M
minqiyang 已提交
4874 4875 4876
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4877

M
minqiyang 已提交
4878 4879
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4880
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4881

Y
Yibing Liu 已提交
4882
    Args:
4883
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4884
        axes (list): List of integers, indicating the dimensions to be inserted.
4885
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4886 4887 4888 4889 4890 4891 4892 4893

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4894
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4895 4896
    """
    helper = LayerHelper("unsqueeze", **locals())
4897
    out = helper.create_tmp_variable(dtype=input.dtype)
4898
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4899
    helper.append_op(
4900
        type="unsqueeze2",
4901
        inputs={"X": input},
Y
Yibing Liu 已提交
4902
        attrs={"axes": axes},
4903 4904
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4905

4906 4907
    return out

4908

Y
yangyaming 已提交
4909
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4910
    """
Y
Yibing Liu 已提交
4911
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4912 4913 4914 4915
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4916
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4917 4918 4919 4920 4921 4922

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4923
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4924 4925 4926
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4927
            target_lod: [4, 2]
Y
yangyaming 已提交
4928 4929

            then we get a 1-level LoDTensor:
4930
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4931 4932 4933 4934 4935 4936
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4937
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4938 4939 4940 4941
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4942
                y.data = [[2, 4]]
Y
yangyaming 已提交
4943 4944 4945
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4946
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4947 4948 4949 4950 4951 4952
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4953
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4954 4955 4956 4957
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4958
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4959 4960 4961 4962
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4963
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4964 4965 4966 4967 4968
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4969
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4970
                           from :attr:`y`.
Y
yangyaming 已提交
4971
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4972
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4973 4974

    Returns:
Y
Yibing Liu 已提交
4975
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4976 4977

    Raises:
Y
Yibing Liu 已提交
4978
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5014
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5043 5044
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5072 5073 5074 5075


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5076
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5077
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5078

G
guosheng 已提交
5079 5080 5081 5082
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5105
                         The length of :attr:paddings must be
G
guosheng 已提交
5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5116

G
guosheng 已提交
5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5131 5132


C
chengduo 已提交
5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5213 5214 5215 5216 5217 5218 5219
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5220 5221
    called label-smoothing regularization (LSR).

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5245
                              be :math:`(1, class\_num)`.
5246 5247
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5248
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5276 5277


Y
yi.wu 已提交
5278
@templatedoc()
5279 5280
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5281
    ${comment}
5282 5283

    Args:
Y
yi.wu 已提交
5284 5285
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5286 5287 5288
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5289 5290

    Returns:
Y
update  
yi.wu 已提交
5291
        Variable: ${out_comment}.
5292 5293

    Examples:
5294 5295
        .. code-block:: python

5296
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5342 5343
        .. code-block:: python

W
whs 已提交
5344 5345 5346 5347
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5348
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5349 5350 5351 5352 5353 5354
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5355 5356


5357 5358 5359 5360 5361
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5362
    """
Q
qiaolongfei 已提交
5363
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5364

5365
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5366 5367 5368
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5369

5370
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5371

5372
    Args:
5373
        input (Variable): The input tensor of image resize layer,
5374 5375
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5376
        out_shape(list|tuple|Variable|None): Output shape of image resize
5377 5378
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5379
        scale(float|None): The multiplier for the input height or width.
5380 5381 5382
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5383 5384
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5385 5386
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5387 5388

    Returns:
Q
update  
qiaolongfei 已提交
5389 5390
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5391

5392 5393 5394
    Examples:
        .. code-block:: python

5395
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5396
    """
5397 5398 5399 5400
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5401 5402
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5403 5404
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5405 5406 5407 5408

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5409 5410 5411
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5412
    if out_shape is not None:
B
baiyf 已提交
5413 5414 5415
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5416 5417 5418 5419 5420 5421
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5422 5423 5424 5425
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5426 5427
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5428
        type=resample_methods[resample],
5429
        inputs=inputs,
5430 5431 5432 5433
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5434 5435


Y
yuyang18 已提交
5436
@templatedoc(op_type="bilinear_interp")
5437 5438
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5439 5440 5441 5442 5443 5444
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5445

Y
yuyang18 已提交
5446 5447 5448 5449 5450 5451 5452 5453
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5454 5455 5456 5457 5458 5459 5460
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5461 5462 5463
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5464 5465 5466 5467 5468 5469 5470
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5471
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5472

5473
    Returns:
Q
update  
qiaolongfei 已提交
5474
        Variable: The output is a 4-D tensor of the shape
5475
        (num_batches, channls, out_h, out_w).
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5486 5487 5488
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5489 5490 5491
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5492 5493
def gather(input, index):
    """
Q
qiaolongfei 已提交
5494 5495
    **Gather Layer**

5496
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5497 5498 5499 5500
    of X indexed by `index` and concatenate them together.

    .. math::

5501
        Out = X[Index]
W
whs 已提交
5502 5503 5504 5505 5506 5507 5508


    .. code-block:: text


                Given:

5509 5510
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5521
        input (Variable): The source input with rank>=1.
W
whs 已提交
5522 5523 5524 5525 5526 5527
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5528

W
whs 已提交
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5658

5659 5660 5661
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5662
    """
F
stash  
fengjiayi 已提交
5663
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5664
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5665
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5666
    if seed is None:
5667
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5668
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5669
    if isinstance(seed, int):
F
fengjiayi 已提交
5670 5671 5672 5673 5674
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5675 5676 5677 5678
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5679
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5680 5681
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5682 5683
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5684
    return out
W
whs 已提交
5685 5686


5687
def log(x, name=None):
W
wanghaoshuang 已提交
5688 5689 5690 5691 5692
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5693
        Out = \\ln(x)
W
wanghaoshuang 已提交
5694 5695

    Args:
5696
        x (Variable): Input tensor.
5697 5698
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5699 5700 5701 5702 5703 5704 5705 5706

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5707
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5708 5709
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5710
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5711
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5712
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5713 5714 5715
    return out


5716
def relu(x, name=None):
W
wanghaoshuang 已提交
5717 5718
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5719
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5720 5721 5722 5723
    the tensor elementwise.

    .. math::

5724
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5725 5726

    Args:
5727
        x (Variable): The input tensor.
5728 5729
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5730 5731 5732 5733 5734 5735 5736 5737

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5738
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5739 5740
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5741
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5742
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5743
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5744
    return out
5745 5746


W
whs 已提交
5747 5748 5749
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5750 5751 5752 5753
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5754
    .. math::
5755 5756

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5757

5758
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5759 5760 5761 5762 5763
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5764
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5765
                           Its shape should be the same as input.
5766
        num_classes (int): The possible number of labels.
W
whs 已提交
5767 5768 5769 5770

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5771
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5772 5773 5774 5775

    Examples:

        .. code-block:: python
5776

W
whs 已提交
5777 5778 5779 5780 5781 5782 5783 5784 5785
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5786 5787
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5788
        outputs={
W
whs 已提交
5789 5790 5791
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5792 5793 5794
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5869
                    isinstance(shape, Variable)):
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5903

5904 5905
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5906

5907 5908 5909 5910
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5911

5912 5913 5914 5915 5916
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5917 5918 5919

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5964 5965


M
minqiyang 已提交
5966 5967
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
5968
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
5969
    which compares left score and right score passed in.
M
minqiyang 已提交
5970
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
5971 5972 5973 5974 5975 5976

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
5977
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
5978 5979
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
5980
       margin (float): Indicates the given margin.
M
minqiyang 已提交
5981 5982 5983
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
5984
       Variable: The ranking loss.
M
minqiyang 已提交
5985
    Raises:
M
minqiyang 已提交
5986
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
5987 5988 5989 5990 5991 5992 5993
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
5994
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
5995 5996 5997 5998 5999 6000
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6001 6002
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6028

W
whs 已提交
6029 6030
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6031

W
whs 已提交
6032
      Case 0:
M
minqiyang 已提交
6033

W
whs 已提交
6034 6035 6036
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6037

W
whs 已提交
6038 6039 6040
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6041

W
whs 已提交
6042
      Case 1:
M
minqiyang 已提交
6043

W
whs 已提交
6044 6045
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6046

W
whs 已提交
6047 6048 6049
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6050

W
whs 已提交
6051
      Case 2:
M
minqiyang 已提交
6052

W
whs 已提交
6053 6054
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6055

W
whs 已提交
6056 6057 6058
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6059 6060


W
whs 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6258
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6259
                        will be named automatically.
J
jerrywgz 已提交
6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6378

6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6389 6390
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6406
        ValueError: If axis is not in range [0, rank(x)].
6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6424
    x_shape = helper.create_tmp_variable(x.dtype)
6425
    helper.append_op(
6426
        type='flatten2',
6427
        inputs={"X": x},
6428 6429
        outputs={'Out': out,
                 'XShape': x_shape},
6430 6431
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6432 6433


C
chenweihang 已提交
6434
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6435
    """
C
chenweihang 已提交
6436
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6437
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6438 6439
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6440

C
chenweihang 已提交
6441 6442 6443 6444
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6445
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6446 6447 6448 6449 6450 6451
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6452
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6453 6454 6455
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6456 6457 6458
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6470
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6471 6472 6473 6474 6475 6476
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6477
    return out
6478

6479

S
sneaxiy 已提交
6480 6481 6482 6483 6484 6485 6486 6487 6488
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6489

S
sneaxiy 已提交
6490
    .. math::
6491

S
sneaxiy 已提交
6492 6493 6494
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6495
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6496 6497 6498 6499
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6500 6501 6502
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6503 6504
    Returns:
        Variable: The output sequence mask.
6505

S
sneaxiy 已提交
6506 6507
    """

Q
qingqing01 已提交
6508
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6509 6510 6511 6512 6513
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6514 6515 6516
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6517 6518
        outputs={'Y': out},
        attrs={
6519
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6520 6521 6522
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6523 6524


X
Xin Pan 已提交
6525
def stack(x, axis=0):
S
sneaxiy 已提交
6526 6527 6528 6529
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6530 6531 6532 6533 6534 6535 6536

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6537
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6538
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6539 6540

    Args:
6541
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6542
        axis (int|None): The axis along which all inputs are stacked.
6543

S
sneaxiy 已提交
6544 6545
    Returns:
        Variable: The stacked variable.
6546

S
sneaxiy 已提交
6547 6548
    """

X
Xin Pan 已提交
6549 6550 6551 6552 6553 6554 6555 6556
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6557 6558
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6559

X
Xin Pan 已提交
6560
    return out
D
dzhwinter 已提交
6561 6562 6563 6564 6565 6566 6567


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6568

D
dzhwinter 已提交
6569 6570 6571
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6572
    raised.
D
dzhwinter 已提交
6573 6574

    Args:
M
minqiyang 已提交
6575
        x (Variable): Input variable.
D
dzhwinter 已提交
6576 6577
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6578

D
dzhwinter 已提交
6579 6580
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6581

D
dzhwinter 已提交
6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6614

W
whs 已提交
6615 6616 6617 6618
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6619

W
whs 已提交
6620
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6621

W
whs 已提交
6622
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6623

W
whs 已提交
6624 6625 6626 6627
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6628

W
whs 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6652 6653


G
fix  
gongweibao 已提交
6654 6655 6656
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6657
@templatedoc()
G
fix  
gongweibao 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6667
    ${comment}
G
fix  
gongweibao 已提交
6668 6669

    Args:
G
gongweibao 已提交
6670 6671 6672
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6673
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6674 6675 6676
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6677 6678
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6679
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6701 6702


G
gongweibao 已提交
6703
@templatedoc()
X
Xin Pan 已提交
6704
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6705
    """
G
gongweibao 已提交
6706
    ${comment}
G
fix  
gongweibao 已提交
6707 6708

    Args:
G
gongweibao 已提交
6709 6710 6711 6712
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6713 6714 6715
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6716
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6732
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6733 6734 6735 6736 6737
        })

    return out


G
gongweibao 已提交
6738
@templatedoc()
G
fix  
gongweibao 已提交
6739
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6740
    """
G
gongweibao 已提交
6741
    ${comment}
G
fix  
gongweibao 已提交
6742 6743

    Args:
G
gongweibao 已提交
6744 6745 6746 6747
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6748
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6749 6750

    Returns:
G
gongweibao 已提交
6751
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6752 6753 6754 6755

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6756
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6768
@templatedoc()
G
fix  
gongweibao 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6778
    ${comment}
G
fix  
gongweibao 已提交
6779 6780

    Args:
G
gongweibao 已提交
6781 6782
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6783
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6784 6785 6786 6787
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6788
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6789 6790

    Returns:
G
gongweibao 已提交
6791
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6814
@templatedoc()
X
Xin Pan 已提交
6815
def sum(x):
G
fix  
gongweibao 已提交
6816
    """
G
gongweibao 已提交
6817
    ${comment}
G
fix  
gongweibao 已提交
6818 6819

    Args:
G
gongweibao 已提交
6820
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6821 6822

    Returns:
G
gongweibao 已提交
6823
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6824 6825 6826
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6827
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6828 6829 6830 6831
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6832
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6833 6834 6835 6836

    return out


G
gongweibao 已提交
6837
@templatedoc()
G
fix  
gongweibao 已提交
6838 6839
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6840
    ${comment}
G
fix  
gongweibao 已提交
6841 6842

    Args:
G
gongweibao 已提交
6843 6844 6845 6846
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6847 6848

    Returns:
G
gongweibao 已提交
6849
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6850 6851 6852 6853

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6854
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6866
@templatedoc()
G
fix  
gongweibao 已提交
6867 6868
def shape(input):
    """
G
gongweibao 已提交
6869
    ${comment}
G
fix  
gongweibao 已提交
6870 6871

    Args:
G
gongweibao 已提交
6872
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6873 6874

    Returns:
G
gongweibao 已提交
6875
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6876 6877 6878 6879

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6880
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6881
    helper.append_op(
G
fix  
gongweibao 已提交
6882
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6883 6884

    return out
G
merge  
gongweibao 已提交
6885 6886


S
sneaxiy 已提交
6887 6888 6889 6890 6891 6892 6893 6894
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6895 6896 6897 6898 6899 6900
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6901

S
sneaxiy 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6913
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6914 6915 6916 6917 6918 6919 6920 6921
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6922
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6923
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6924 6925 6926 6927 6928 6929

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6930 6931 6932 6933 6934
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6935 6936 6937 6938 6939 6940 6941 6942 6943 6944

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6945
    return helper.append_activation(out)
S
sneaxiy 已提交
6946 6947


X
Xin Pan 已提交
6948
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6949 6950 6951
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6952
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6953 6954 6955
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6956
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6957 6958 6959
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6960
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6961 6962 6963
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6964
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6965 6966 6967
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6968
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6969 6970 6971
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6972
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6984 6985
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6986
        ])
M
minqiyang 已提交
6987 6988


6989
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6990 6991
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
6992 6993
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7013
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7032
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7051
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7070
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7207 7208
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out