hugetlb.c 127.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/sched/signal.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include <linux/userfaultfd_k.h>
37
#include "internal.h"
L
Linus Torvalds 已提交
38

39
int hugepages_treat_as_movable;
40

41
int hugetlb_max_hstate __read_mostly;
42 43
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
44 45 46 47 48
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
49

50 51
__initdata LIST_HEAD(huge_boot_pages);

52 53 54
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
55
static unsigned long __initdata default_hstate_size;
56
static bool __initdata parsed_valid_hugepagesz = true;
57

58
/*
59 60
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
61
 */
62
DEFINE_SPINLOCK(hugetlb_lock);
63

64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
69
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
70

71 72 73
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

74 75 76 77 78 79 80
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
81 82 83 84 85 86
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
87
		kfree(spool);
88
	}
89 90
}

91 92
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
93 94 95
{
	struct hugepage_subpool *spool;

96
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
97 98 99 100 101
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
102 103 104 105 106 107 108 109 110
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
111 112 113 114 115 116 117 118 119 120 121 122

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

123 124 125 126 127 128 129 130 131
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
132 133
				      long delta)
{
134
	long ret = delta;
135 136

	if (!spool)
137
		return ret;
138 139

	spin_lock(&spool->lock);
140 141 142 143 144 145 146 147

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
148 149
	}

150 151
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
167 168 169
	return ret;
}

170 171 172 173 174 175 176
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
177 178
				       long delta)
{
179 180
	long ret = delta;

181
	if (!spool)
182
		return delta;
183 184

	spin_lock(&spool->lock);
185 186 187 188

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

189 190
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
191 192 193 194 195 196 197 198 199 200 201 202 203 204
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
205
	unlock_or_release_subpool(spool);
206 207

	return ret;
208 209 210 211 212 213 214 215 216
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
217
	return subpool_inode(file_inode(vma->vm_file));
218 219
}

220 221 222
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
223
 *
224 225 226 227 228 229 230 231 232 233 234 235 236 237
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
238 239 240 241 242 243 244
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

245 246
/*
 * Add the huge page range represented by [f, t) to the reserve
247 248 249 250 251 252 253 254
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
255 256 257
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
258
 */
259
static long region_add(struct resv_map *resv, long f, long t)
260
{
261
	struct list_head *head = &resv->regions;
262
	struct file_region *rg, *nrg, *trg;
263
	long add = 0;
264

265
	spin_lock(&resv->lock);
266 267 268 269 270
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
311 312 313 314 315
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
316 317 318 319
			list_del(&rg->link);
			kfree(rg);
		}
	}
320 321

	add += (nrg->from - f);		/* Added to beginning of region */
322
	nrg->from = f;
323
	add += t - nrg->to;		/* Added to end of region */
324
	nrg->to = t;
325

326 327
out_locked:
	resv->adds_in_progress--;
328
	spin_unlock(&resv->lock);
329 330
	VM_BUG_ON(add < 0);
	return add;
331 332
}

333 334 335 336 337 338 339 340 341 342 343 344 345
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
346 347 348 349 350 351 352 353
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
354
 */
355
static long region_chg(struct resv_map *resv, long f, long t)
356
{
357
	struct list_head *head = &resv->regions;
358
	struct file_region *rg, *nrg = NULL;
359 360
	long chg = 0;

361 362
retry:
	spin_lock(&resv->lock);
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
379 380
		if (!trg) {
			kfree(nrg);
381
			return -ENOMEM;
382
		}
383 384 385 386 387 388 389

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

390 391 392 393 394 395 396 397 398
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
399
		if (!nrg) {
400
			resv->adds_in_progress--;
401 402 403 404 405 406 407 408 409 410
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
411

412 413 414
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
415 416 417 418 419 420 421 422 423 424 425 426
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
427
			goto out;
428

L
Lucas De Marchi 已提交
429
		/* We overlap with this area, if it extends further than
430 431 432 433 434 435 436 437
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
438 439 440 441 442 443 444 445

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
446 447 448
	return chg;
}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

468
/*
469 470 471 472 473 474 475 476 477 478 479 480
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
481
 */
482
static long region_del(struct resv_map *resv, long f, long t)
483
{
484
	struct list_head *head = &resv->regions;
485
	struct file_region *rg, *trg;
486 487
	struct file_region *nrg = NULL;
	long del = 0;
488

489
retry:
490
	spin_lock(&resv->lock);
491
	list_for_each_entry_safe(rg, trg, head, link) {
492 493 494 495 496 497 498 499
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
500
			continue;
501

502
		if (rg->from >= t)
503 504
			break;

505 506 507 508 509 510 511 512 513 514 515 516 517
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
518

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
539
			break;
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
556
	}
557 558

	spin_unlock(&resv->lock);
559 560
	kfree(nrg);
	return del;
561 562
}

563 564 565 566 567 568 569 570 571
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
572
void hugetlb_fix_reserve_counts(struct inode *inode)
573 574 575 576 577
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
578
	if (rsv_adjust) {
579 580 581 582 583 584
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

585 586 587 588
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
589
static long region_count(struct resv_map *resv, long f, long t)
590
{
591
	struct list_head *head = &resv->regions;
592 593 594
	struct file_region *rg;
	long chg = 0;

595
	spin_lock(&resv->lock);
596 597
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
598 599
		long seg_from;
		long seg_to;
600 601 602 603 604 605 606 607 608 609 610

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
611
	spin_unlock(&resv->lock);
612 613 614 615

	return chg;
}

616 617 618 619
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
620 621
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
622
{
623 624
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
625 626
}

627 628 629 630 631
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
632
EXPORT_SYMBOL_GPL(linear_hugepage_index);
633

634 635 636 637 638 639 640 641 642 643 644 645 646
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

647
	return 1UL << huge_page_shift(hstate);
648
}
649
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
650

651 652 653 654 655 656 657 658 659 660 661 662 663
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

664 665 666 667 668 669 670
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
671
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
672

673 674 675 676 677 678 679 680 681
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
682 683 684 685 686 687 688 689 690
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
691
 */
692 693 694 695 696 697 698 699 700 701 702
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

703
struct resv_map *resv_map_alloc(void)
704 705
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
706 707 708 709 710
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
711
		return NULL;
712
	}
713 714

	kref_init(&resv_map->refs);
715
	spin_lock_init(&resv_map->lock);
716 717
	INIT_LIST_HEAD(&resv_map->regions);

718 719 720 721 722 723
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

724 725 726
	return resv_map;
}

727
void resv_map_release(struct kref *ref)
728 729
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
730 731
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
732 733

	/* Clear out any active regions before we release the map. */
734
	region_del(resv_map, 0, LONG_MAX);
735 736 737 738 739 740 741 742 743

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

744 745 746
	kfree(resv_map);
}

747 748 749 750 751
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

752
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
753
{
754
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 756 757 758 759 760 761
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
762 763
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
764
	}
765 766
}

767
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
768
{
769 770
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
771

772 773
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
774 775 776 777
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
778 779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
780 781

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
782 783 784 785
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
786
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
787 788

	return (get_vma_private_data(vma) & flag) != 0;
789 790
}

791
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 793
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
794
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
795
	if (!(vma->vm_flags & VM_MAYSHARE))
796 797 798 799
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
800
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
801
{
802 803 804 805 806 807 808 809 810 811 812
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
813
			return true;
814
		else
815
			return false;
816
	}
817 818

	/* Shared mappings always use reserves */
819 820 821 822 823 824 825 826 827 828 829 830 831
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
832 833 834 835 836

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
858

859
	return false;
860 861
}

862
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
863 864
{
	int nid = page_to_nid(page);
865
	list_move(&page->lru, &h->hugepage_freelists[nid]);
866 867
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
868 869
}

870 871 872 873
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

874 875 876 877 878 879 880 881
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
882
		return NULL;
883
	list_move(&page->lru, &h->hugepage_activelist);
884
	set_page_refcounted(page);
885 886 887 888 889
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

890 891 892
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
893
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
894 895 896 897 898
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

899 900
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
901 902
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
903
{
904
	struct page *page = NULL;
905
	struct mempolicy *mpol;
906
	nodemask_t *nodemask;
907
	struct zonelist *zonelist;
908 909
	struct zone *zone;
	struct zoneref *z;
910
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
911

912 913 914 915 916
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
917
	if (!vma_has_reserves(vma, chg) &&
918
			h->free_huge_pages - h->resv_huge_pages == 0)
919
		goto err;
920

921
	/* If reserves cannot be used, ensure enough pages are in the pool */
922
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
923
		goto err;
924

925
retry_cpuset:
926
	cpuset_mems_cookie = read_mems_allowed_begin();
927
	zonelist = huge_zonelist(vma, address,
928
					htlb_alloc_mask(h), &mpol, &nodemask);
929

930 931
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
932
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
933 934
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
935 936 937 938 939
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

940
				SetPagePrivate(page);
941
				h->resv_huge_pages--;
942 943
				break;
			}
A
Andrew Morton 已提交
944
		}
L
Linus Torvalds 已提交
945
	}
946

947
	mpol_cond_put(mpol);
948
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
949
		goto retry_cpuset;
L
Linus Torvalds 已提交
950
	return page;
951 952 953

err:
	return NULL;
L
Linus Torvalds 已提交
954 955
}

956 957 958 959 960 961 962 963 964
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
965
	nid = next_node_in(nid, *nodes_allowed);
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1027
#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1028 1029
	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
	defined(CONFIG_CMA))
1030
static void destroy_compound_gigantic_page(struct page *page,
1031
					unsigned int order)
1032 1033 1034 1035 1036
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1037
	atomic_set(compound_mapcount_ptr(page), 0);
1038
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1039
		clear_compound_head(p);
1040 1041 1042 1043 1044 1045 1046
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1047
static void free_gigantic_page(struct page *page, unsigned int order)
1048 1049 1050 1051 1052 1053 1054 1055
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
1056 1057
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  GFP_KERNEL);
1058 1059
}

1060 1061
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1072 1073 1074
		if (page_zone(page) != z)
			return false;

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1095
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1107
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1131
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1164
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1165
static inline void destroy_compound_gigantic_page(struct page *page,
1166
						unsigned int order) { }
1167 1168 1169 1170
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1171
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1172 1173
{
	int i;
1174

1175 1176
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1177

1178 1179 1180
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1181 1182
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1183 1184
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1185
	}
1186
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1187
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1188
	set_page_refcounted(page);
1189 1190 1191 1192 1193 1194
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1233
void free_huge_page(struct page *page)
1234
{
1235 1236 1237 1238
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1239
	struct hstate *h = page_hstate(page);
1240
	int nid = page_to_nid(page);
1241 1242
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1243
	bool restore_reserve;
1244

1245
	set_page_private(page, 0);
1246
	page->mapping = NULL;
1247 1248
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1249
	restore_reserve = PagePrivate(page);
1250
	ClearPagePrivate(page);
1251

1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1260
	spin_lock(&hugetlb_lock);
1261
	clear_page_huge_active(page);
1262 1263
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1264 1265 1266
	if (restore_reserve)
		h->resv_huge_pages++;

1267
	if (h->surplus_huge_pages_node[nid]) {
1268 1269
		/* remove the page from active list */
		list_del(&page->lru);
1270 1271 1272
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1273
	} else {
1274
		arch_clear_hugepage_flags(page);
1275
		enqueue_huge_page(h, page);
1276
	}
1277 1278 1279
	spin_unlock(&hugetlb_lock);
}

1280
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1281
{
1282
	INIT_LIST_HEAD(&page->lru);
1283
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1284
	spin_lock(&hugetlb_lock);
1285
	set_hugetlb_cgroup(page, NULL);
1286 1287
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1288 1289 1290 1291
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1292
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1293 1294 1295 1296 1297 1298 1299
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1300
	__ClearPageReserved(page);
1301
	__SetPageHead(page);
1302
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1316
		set_page_count(p, 0);
1317
		set_compound_head(p, page);
1318
	}
1319
	atomic_set(compound_mapcount_ptr(page), -1);
1320 1321
}

A
Andrew Morton 已提交
1322 1323 1324 1325 1326
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1327 1328 1329 1330 1331 1332
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1333
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1334
}
1335 1336
EXPORT_SYMBOL_GPL(PageHuge);

1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1346
	return get_compound_page_dtor(page_head) == free_huge_page;
1347 1348
}

1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1366
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1367 1368
{
	struct page *page;
1369

1370
	page = __alloc_pages_node(nid,
1371
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1372
						__GFP_REPEAT|__GFP_NOWARN,
1373
		huge_page_order(h));
L
Linus Torvalds 已提交
1374
	if (page) {
1375
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1376
	}
1377 1378 1379 1380

	return page;
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1403 1404 1405 1406 1407 1408
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1409 1410
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1411
{
1412
	int nr_nodes, node;
1413 1414
	int ret = 0;

1415
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1416 1417 1418 1419
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1420 1421
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1422
			struct page *page =
1423
				list_entry(h->hugepage_freelists[node].next,
1424 1425 1426
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1427
			h->free_huge_pages_node[node]--;
1428 1429
			if (acct_surplus) {
				h->surplus_huge_pages--;
1430
				h->surplus_huge_pages_node[node]--;
1431
			}
1432 1433
			update_and_free_page(h, page);
			ret = 1;
1434
			break;
1435
		}
1436
	}
1437 1438 1439 1440

	return ret;
}

1441 1442
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1443 1444 1445
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1446
 */
1447
static int dissolve_free_huge_page(struct page *page)
1448
{
1449 1450
	int rc = 0;

1451 1452
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1453 1454 1455
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1456 1457 1458 1459
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1460
		list_del(&head->lru);
1461 1462
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1463
		h->max_huge_pages--;
1464
		update_and_free_page(h, head);
1465
	}
1466
out:
1467
	spin_unlock(&hugetlb_lock);
1468
	return rc;
1469 1470 1471 1472 1473
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1474 1475
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1476 1477
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1478
 */
1479
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1480 1481
{
	unsigned long pfn;
1482
	struct page *page;
1483
	int rc = 0;
1484

1485
	if (!hugepages_supported())
1486
		return rc;
1487

1488 1489 1490 1491 1492 1493 1494 1495
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1496 1497

	return rc;
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1518 1519 1520 1521 1522 1523
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1524
	 */
D
Dave Hansen 已提交
1525
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1542 1543
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1576 1577
{
	struct page *page;
1578
	unsigned int r_nid;
1579

1580
	if (hstate_is_gigantic(h))
1581 1582
		return NULL;

1583 1584 1585 1586 1587 1588
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1589 1590
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1591
	}
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1616
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1617 1618 1619
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1620 1621
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1622 1623 1624
	}
	spin_unlock(&hugetlb_lock);

1625
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1626 1627

	spin_lock(&hugetlb_lock);
1628
	if (page) {
1629
		INIT_LIST_HEAD(&page->lru);
1630
		r_nid = page_to_nid(page);
1631
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1632
		set_hugetlb_cgroup(page, NULL);
1633 1634 1635
		/*
		 * We incremented the global counters already
		 */
1636 1637
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1638
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1639
	} else {
1640 1641
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1642
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1643
	}
1644
	spin_unlock(&hugetlb_lock);
1645 1646 1647 1648

	return page;
}

1649 1650 1651 1652 1653
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1654
static
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1665
static
1666 1667 1668 1669 1670 1671
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1672 1673 1674 1675 1676 1677 1678
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1679
	struct page *page = NULL;
1680 1681

	spin_lock(&hugetlb_lock);
1682 1683
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1684 1685
	spin_unlock(&hugetlb_lock);

1686
	if (!page)
1687
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1688 1689 1690 1691

	return page;
}

1692
/*
L
Lucas De Marchi 已提交
1693
 * Increase the hugetlb pool such that it can accommodate a reservation
1694 1695
 * of size 'delta'.
 */
1696
static int gather_surplus_pages(struct hstate *h, int delta)
1697 1698 1699 1700 1701
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1702
	bool alloc_ok = true;
1703

1704
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1705
	if (needed <= 0) {
1706
		h->resv_huge_pages += delta;
1707
		return 0;
1708
	}
1709 1710 1711 1712 1713 1714 1715 1716

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1717
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1718 1719 1720 1721
		if (!page) {
			alloc_ok = false;
			break;
		}
1722 1723
		list_add(&page->lru, &surplus_list);
	}
1724
	allocated += i;
1725 1726 1727 1728 1729 1730

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1731 1732
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1743 1744
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1745
	 * needed to accommodate the reservation.  Add the appropriate number
1746
	 * of pages to the hugetlb pool and free the extras back to the buddy
1747 1748 1749
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1750 1751
	 */
	needed += allocated;
1752
	h->resv_huge_pages += delta;
1753
	ret = 0;
1754

1755
	/* Free the needed pages to the hugetlb pool */
1756
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1757 1758
		if ((--needed) < 0)
			break;
1759 1760 1761 1762 1763
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1764
		VM_BUG_ON_PAGE(page_count(page), page);
1765
		enqueue_huge_page(h, page);
1766
	}
1767
free:
1768
	spin_unlock(&hugetlb_lock);
1769 1770

	/* Free unnecessary surplus pages to the buddy allocator */
1771 1772
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1773
	spin_lock(&hugetlb_lock);
1774 1775 1776 1777 1778

	return ret;
}

/*
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1791
 */
1792 1793
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1794 1795 1796
{
	unsigned long nr_pages;

1797
	/* Cannot return gigantic pages currently */
1798
	if (hstate_is_gigantic(h))
1799
		goto out;
1800

1801 1802 1803 1804
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1805
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1806

1807 1808
	/*
	 * We want to release as many surplus pages as possible, spread
1809 1810 1811 1812 1813
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1814 1815 1816 1817
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1818 1819
	 */
	while (nr_pages--) {
1820 1821
		h->resv_huge_pages--;
		unused_resv_pages--;
1822
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1823
			goto out;
1824
		cond_resched_lock(&hugetlb_lock);
1825
	}
1826 1827 1828 1829

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1830 1831
}

1832

1833
/*
1834
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1835
 * are used by the huge page allocation routines to manage reservations.
1836 1837 1838 1839 1840 1841
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1842 1843 1844
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1845 1846 1847 1848 1849 1850
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1851 1852 1853 1854 1855
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1856
 */
1857 1858 1859
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1860
	VMA_END_RESV,
1861
	VMA_ADD_RESV,
1862
};
1863 1864
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1865
				enum vma_resv_mode mode)
1866
{
1867 1868
	struct resv_map *resv;
	pgoff_t idx;
1869
	long ret;
1870

1871 1872
	resv = vma_resv_map(vma);
	if (!resv)
1873
		return 1;
1874

1875
	idx = vma_hugecache_offset(h, vma, addr);
1876 1877
	switch (mode) {
	case VMA_NEEDS_RESV:
1878
		ret = region_chg(resv, idx, idx + 1);
1879 1880 1881 1882
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1883
	case VMA_END_RESV:
1884 1885 1886
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1887 1888 1889 1890 1891 1892 1893 1894
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1895 1896 1897
	default:
		BUG();
	}
1898

1899
	if (vma->vm_flags & VM_MAYSHARE)
1900
		return ret;
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1920
	else
1921
		return ret < 0 ? ret : 0;
1922
}
1923 1924

static long vma_needs_reservation(struct hstate *h,
1925
			struct vm_area_struct *vma, unsigned long addr)
1926
{
1927
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1928
}
1929

1930 1931 1932
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1933 1934 1935
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1936
static void vma_end_reservation(struct hstate *h,
1937 1938
			struct vm_area_struct *vma, unsigned long addr)
{
1939
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1940 1941
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1992
struct page *alloc_huge_page(struct vm_area_struct *vma,
1993
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1994
{
1995
	struct hugepage_subpool *spool = subpool_vma(vma);
1996
	struct hstate *h = hstate_vma(vma);
1997
	struct page *page;
1998 1999
	long map_chg, map_commit;
	long gbl_chg;
2000 2001
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2002

2003
	idx = hstate_index(h);
2004
	/*
2005 2006 2007
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2008
	 */
2009 2010
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2011
		return ERR_PTR(-ENOMEM);
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2023
			vma_end_reservation(h, vma, addr);
2024
			return ERR_PTR(-ENOSPC);
2025
		}
L
Linus Torvalds 已提交
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2039
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2040 2041 2042
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2043
	spin_lock(&hugetlb_lock);
2044 2045 2046 2047 2048 2049
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2050
	if (!page) {
2051
		spin_unlock(&hugetlb_lock);
2052
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2053 2054
		if (!page)
			goto out_uncharge_cgroup;
2055 2056 2057 2058
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2059 2060
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2061
		/* Fall through */
K
Ken Chen 已提交
2062
	}
2063 2064
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2065

2066
	set_page_private(page, (unsigned long)spool);
2067

2068 2069
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2084
	return page;
2085 2086 2087 2088

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2089
	if (map_chg || avoid_reserve)
2090
		hugepage_subpool_put_pages(spool, 1);
2091
	vma_end_reservation(h, vma, addr);
2092
	return ERR_PTR(-ENOSPC);
2093 2094
}

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2109
int __weak alloc_bootmem_huge_page(struct hstate *h)
2110 2111
{
	struct huge_bootmem_page *m;
2112
	int nr_nodes, node;
2113

2114
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2115 2116
		void *addr;

2117 2118 2119
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2120 2121 2122 2123 2124 2125 2126
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2127
			goto found;
2128 2129 2130 2131 2132
		}
	}
	return 0;

found:
2133
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2134 2135 2136 2137 2138 2139
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2140 2141
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2142 2143 2144 2145 2146 2147 2148
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2149 2150 2151 2152 2153 2154 2155
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2156 2157 2158 2159
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2160 2161
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2162 2163 2164
#else
		page = virt_to_page(m);
#endif
2165
		WARN_ON(page_count(page) != 1);
2166
		prep_compound_huge_page(page, h->order);
2167
		WARN_ON(PageReserved(page));
2168
		prep_new_huge_page(h, page, page_to_nid(page));
2169 2170 2171 2172 2173 2174
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2175
		if (hstate_is_gigantic(h))
2176
			adjust_managed_page_count(page, 1 << h->order);
2177 2178 2179
	}
}

2180
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2181 2182
{
	unsigned long i;
2183

2184
	for (i = 0; i < h->max_huge_pages; ++i) {
2185
		if (hstate_is_gigantic(h)) {
2186 2187
			if (!alloc_bootmem_huge_page(h))
				break;
2188
		} else if (!alloc_fresh_huge_page(h,
2189
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2190 2191
			break;
	}
2192
	h->max_huge_pages = i;
2193 2194 2195 2196 2197 2198 2199
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2200 2201 2202
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2203
		/* oversize hugepages were init'ed in early boot */
2204
		if (!hstate_is_gigantic(h))
2205
			hugetlb_hstate_alloc_pages(h);
2206
	}
2207
	VM_BUG_ON(minimum_order == UINT_MAX);
2208 2209
}

A
Andi Kleen 已提交
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2221 2222 2223 2224 2225
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2226
		char buf[32];
2227
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2228 2229
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2230 2231 2232
	}
}

L
Linus Torvalds 已提交
2233
#ifdef CONFIG_HIGHMEM
2234 2235
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2236
{
2237 2238
	int i;

2239
	if (hstate_is_gigantic(h))
2240 2241
		return;

2242
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2243
		struct page *page, *next;
2244 2245 2246
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2247
				return;
L
Linus Torvalds 已提交
2248 2249 2250
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2251
			update_and_free_page(h, page);
2252 2253
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2254 2255 2256 2257
		}
	}
}
#else
2258 2259
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2260 2261 2262 2263
{
}
#endif

2264 2265 2266 2267 2268
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2269 2270
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2271
{
2272
	int nr_nodes, node;
2273 2274 2275

	VM_BUG_ON(delta != -1 && delta != 1);

2276 2277 2278 2279
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2280
		}
2281 2282 2283 2284 2285
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2286
		}
2287 2288
	}
	return 0;
2289

2290 2291 2292 2293
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2294 2295
}

2296
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2297 2298
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2299
{
2300
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2301

2302
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2303 2304
		return h->max_huge_pages;

2305 2306 2307 2308
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2309
	 *
N
Naoya Horiguchi 已提交
2310
	 * We might race with __alloc_buddy_huge_page() here and be unable
2311 2312 2313 2314
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2315
	 */
L
Linus Torvalds 已提交
2316
	spin_lock(&hugetlb_lock);
2317
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2318
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2319 2320 2321
			break;
	}

2322
	while (count > persistent_huge_pages(h)) {
2323 2324 2325 2326 2327 2328
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2329 2330 2331 2332

		/* yield cpu to avoid soft lockup */
		cond_resched();

2333 2334 2335 2336
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2337 2338 2339 2340
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2341 2342 2343
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2344 2345 2346 2347 2348 2349 2350 2351
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2352 2353 2354 2355
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2356
	 * __alloc_buddy_huge_page() is checking the global counter,
2357 2358 2359
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2360
	 */
2361
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2362
	min_count = max(count, min_count);
2363
	try_to_free_low(h, min_count, nodes_allowed);
2364
	while (min_count < persistent_huge_pages(h)) {
2365
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2366
			break;
2367
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2368
	}
2369
	while (count < persistent_huge_pages(h)) {
2370
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2371 2372 2373
			break;
	}
out:
2374
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2375
	spin_unlock(&hugetlb_lock);
2376
	return ret;
L
Linus Torvalds 已提交
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2389 2390 2391
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2392 2393
{
	int i;
2394

2395
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2396 2397 2398
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2399
			return &hstates[i];
2400 2401 2402
		}

	return kobj_to_node_hstate(kobj, nidp);
2403 2404
}

2405
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2406 2407
					struct kobj_attribute *attr, char *buf)
{
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2419
}
2420

2421 2422 2423
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2424 2425
{
	int err;
2426
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2427

2428
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2429 2430 2431 2432
		err = -EINVAL;
		goto out;
	}

2433 2434 2435 2436 2437 2438 2439
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2440
			nodes_allowed = &node_states[N_MEMORY];
2441 2442 2443 2444 2445 2446 2447 2448 2449
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2450
		nodes_allowed = &node_states[N_MEMORY];
2451

2452
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2453

2454
	if (nodes_allowed != &node_states[N_MEMORY])
2455 2456 2457
		NODEMASK_FREE(nodes_allowed);

	return len;
2458 2459 2460
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2461 2462
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2480 2481 2482 2483 2484 2485 2486 2487 2488
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2489
	return nr_hugepages_store_common(false, kobj, buf, len);
2490 2491 2492
}
HSTATE_ATTR(nr_hugepages);

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2508
	return nr_hugepages_store_common(true, kobj, buf, len);
2509 2510 2511 2512 2513
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2514 2515 2516
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2517
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2518 2519
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2520

2521 2522 2523 2524 2525
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2526
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2527

2528
	if (hstate_is_gigantic(h))
2529 2530
		return -EINVAL;

2531
	err = kstrtoul(buf, 10, &input);
2532
	if (err)
2533
		return err;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2557 2558 2559 2560 2561 2562
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2563
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2564 2565 2566 2567 2568 2569 2570
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2582 2583 2584 2585 2586 2587 2588 2589 2590
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2591 2592 2593
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2594 2595 2596 2597 2598 2599 2600
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2601 2602 2603
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2604 2605
{
	int retval;
2606
	int hi = hstate_index(h);
2607

2608 2609
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2610 2611
		return -ENOMEM;

2612
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2613
	if (retval)
2614
		kobject_put(hstate_kobjs[hi]);
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2629 2630
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2631
		if (err)
2632
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2633 2634 2635
	}
}

2636 2637 2638 2639
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2640 2641 2642
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2643 2644 2645 2646 2647 2648
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2649
static struct node_hstate node_hstates[MAX_NUMNODES];
2650 2651

/*
2652
 * A subset of global hstate attributes for node devices
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2666
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2689
 * Unregister hstate attributes from a single node device.
2690 2691
 * No-op if no hstate attributes attached.
 */
2692
static void hugetlb_unregister_node(struct node *node)
2693 2694
{
	struct hstate *h;
2695
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2696 2697

	if (!nhs->hugepages_kobj)
2698
		return;		/* no hstate attributes */
2699

2700 2701 2702 2703 2704
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2705
		}
2706
	}
2707 2708 2709 2710 2711 2712 2713

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2714
 * Register hstate attributes for a single node device.
2715 2716
 * No-op if attributes already registered.
 */
2717
static void hugetlb_register_node(struct node *node)
2718 2719
{
	struct hstate *h;
2720
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2721 2722 2723 2724 2725 2726
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2727
							&node->dev.kobj);
2728 2729 2730 2731 2732 2733 2734 2735
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2736 2737
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2738 2739 2740 2741 2742 2743 2744
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2745
 * hugetlb init time:  register hstate attributes for all registered node
2746 2747
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2748
 */
2749
static void __init hugetlb_register_all_nodes(void)
2750 2751 2752
{
	int nid;

2753
	for_each_node_state(nid, N_MEMORY) {
2754
		struct node *node = node_devices[nid];
2755
		if (node->dev.id == nid)
2756 2757 2758 2759
			hugetlb_register_node(node);
	}

	/*
2760
	 * Let the node device driver know we're here so it can
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2780 2781
static int __init hugetlb_init(void)
{
2782 2783
	int i;

2784
	if (!hugepages_supported())
2785
		return 0;
2786

2787 2788 2789 2790
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2791
	}
2792
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2793 2794 2795 2796
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2797 2798

	hugetlb_init_hstates();
2799
	gather_bootmem_prealloc();
2800 2801 2802
	report_hugepages();

	hugetlb_sysfs_init();
2803
	hugetlb_register_all_nodes();
2804
	hugetlb_cgroup_file_init();
2805

2806 2807 2808 2809 2810
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2811
	hugetlb_fault_mutex_table =
2812
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2813
	BUG_ON(!hugetlb_fault_mutex_table);
2814 2815

	for (i = 0; i < num_fault_mutexes; i++)
2816
		mutex_init(&hugetlb_fault_mutex_table[i]);
2817 2818
	return 0;
}
2819
subsys_initcall(hugetlb_init);
2820 2821

/* Should be called on processing a hugepagesz=... option */
2822 2823 2824 2825 2826
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2827
void __init hugetlb_add_hstate(unsigned int order)
2828 2829
{
	struct hstate *h;
2830 2831
	unsigned long i;

2832
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2833
		pr_warn("hugepagesz= specified twice, ignoring\n");
2834 2835
		return;
	}
2836
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2837
	BUG_ON(order == 0);
2838
	h = &hstates[hugetlb_max_hstate++];
2839 2840
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2841 2842 2843 2844
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2845
	INIT_LIST_HEAD(&h->hugepage_activelist);
2846 2847
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2848 2849
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2850

2851 2852 2853
	parsed_hstate = h;
}

2854
static int __init hugetlb_nrpages_setup(char *s)
2855 2856
{
	unsigned long *mhp;
2857
	static unsigned long *last_mhp;
2858

2859 2860 2861 2862 2863 2864
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2865
	/*
2866
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2867 2868
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2869
	else if (!hugetlb_max_hstate)
2870 2871 2872 2873
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2874
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2875
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2876 2877 2878
		return 1;
	}

2879 2880 2881
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2882 2883 2884 2885 2886
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2887
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2888 2889 2890 2891
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2892 2893
	return 1;
}
2894 2895 2896 2897 2898 2899 2900 2901
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2902

2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2915 2916 2917
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2918
{
2919
	struct hstate *h = &default_hstate;
2920
	unsigned long tmp = h->max_huge_pages;
2921
	int ret;
2922

2923
	if (!hugepages_supported())
2924
		return -EOPNOTSUPP;
2925

2926 2927
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2928 2929 2930
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2931

2932 2933 2934
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2935 2936
out:
	return ret;
L
Linus Torvalds 已提交
2937
}
2938

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2956
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2957
			void __user *buffer,
2958 2959
			size_t *length, loff_t *ppos)
{
2960
	struct hstate *h = &default_hstate;
2961
	unsigned long tmp;
2962
	int ret;
2963

2964
	if (!hugepages_supported())
2965
		return -EOPNOTSUPP;
2966

2967
	tmp = h->nr_overcommit_huge_pages;
2968

2969
	if (write && hstate_is_gigantic(h))
2970 2971
		return -EINVAL;

2972 2973
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2974 2975 2976
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2977 2978 2979 2980 2981 2982

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2983 2984
out:
	return ret;
2985 2986
}

L
Linus Torvalds 已提交
2987 2988
#endif /* CONFIG_SYSCTL */

2989
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2990
{
2991
	struct hstate *h = &default_hstate;
2992 2993
	if (!hugepages_supported())
		return;
2994
	seq_printf(m,
2995 2996 2997 2998 2999
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
3000 3001 3002 3003 3004
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
3005 3006 3007 3008
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3009
	struct hstate *h = &default_hstate;
3010 3011
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3012 3013
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3014 3015
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3016 3017 3018
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3019 3020
}

3021 3022 3023 3024 3025
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3026 3027 3028
	if (!hugepages_supported())
		return;

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3039 3040 3041 3042 3043 3044
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3045 3046 3047
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3048 3049 3050 3051 3052 3053
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3054 3055
}

3056
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3079
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3080 3081
			goto out;

3082 3083
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3084 3085 3086 3087 3088 3089
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3090
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3091 3092 3093 3094 3095 3096

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3097 3098
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3099
	struct resv_map *resv = vma_resv_map(vma);
3100 3101 3102 3103 3104

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3105
	 * has a reference to the reservation map it cannot disappear until
3106 3107 3108
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3109
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3110
		kref_get(&resv->refs);
3111 3112
}

3113 3114
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3115
	struct hstate *h = hstate_vma(vma);
3116
	struct resv_map *resv = vma_resv_map(vma);
3117
	struct hugepage_subpool *spool = subpool_vma(vma);
3118
	unsigned long reserve, start, end;
3119
	long gbl_reserve;
3120

3121 3122
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3123

3124 3125
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3126

3127
	reserve = (end - start) - region_count(resv, start, end);
3128

3129 3130 3131
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3132 3133 3134 3135 3136 3137
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3138
	}
3139 3140
}

L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3147
static int hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3148 3149
{
	BUG();
N
Nick Piggin 已提交
3150
	return 0;
L
Linus Torvalds 已提交
3151 3152
}

3153
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3154
	.fault = hugetlb_vm_op_fault,
3155
	.open = hugetlb_vm_op_open,
3156
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3157 3158
};

3159 3160
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3161 3162 3163
{
	pte_t entry;

3164
	if (writable) {
3165 3166
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3167
	} else {
3168 3169
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3170 3171 3172
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3173
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3174 3175 3176 3177

	return entry;
}

3178 3179 3180 3181 3182
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3183
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3184
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3185
		update_mmu_cache(vma, address, ptep);
3186 3187
}

3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3213

D
David Gibson 已提交
3214 3215 3216 3217 3218
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3219
	unsigned long addr;
3220
	int cow;
3221 3222
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3223 3224 3225
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3226 3227

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3228

3229 3230 3231 3232 3233
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3234
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3235
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3236 3237 3238
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3239
		dst_pte = huge_pte_alloc(dst, addr, sz);
3240 3241 3242 3243
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3244 3245 3246 3247 3248

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3249 3250 3251
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3270
			if (cow) {
3271
				huge_ptep_set_wrprotect(src, addr, src_pte);
3272 3273 3274
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3275
			entry = huge_ptep_get(src_pte);
3276 3277
			ptepage = pte_page(entry);
			get_page(ptepage);
3278
			page_dup_rmap(ptepage, true);
3279
			set_huge_pte_at(dst, addr, dst_pte, entry);
3280
			hugetlb_count_add(pages_per_huge_page(h), dst);
3281
		}
3282 3283
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3284 3285
	}

3286 3287 3288 3289
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3290 3291
}

3292 3293 3294
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3295 3296 3297
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3298
	pte_t *ptep;
D
David Gibson 已提交
3299
	pte_t pte;
3300
	spinlock_t *ptl;
D
David Gibson 已提交
3301
	struct page *page;
3302 3303
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3304 3305
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3306

D
David Gibson 已提交
3307
	WARN_ON(!is_vm_hugetlb_page(vma));
3308 3309
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3310

3311 3312 3313 3314 3315
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3316
	tlb_start_vma(tlb, vma);
3317
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3318 3319
	address = start;
	for (; address < end; address += sz) {
3320
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3321
		if (!ptep)
3322 3323
			continue;

3324
		ptl = huge_pte_lock(h, mm, ptep);
3325 3326 3327 3328
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3329

3330
		pte = huge_ptep_get(ptep);
3331 3332 3333 3334
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3335 3336

		/*
3337 3338
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3339
		 */
3340
		if (unlikely(!pte_present(pte))) {
3341
			huge_pte_clear(mm, address, ptep);
3342 3343
			spin_unlock(ptl);
			continue;
3344
		}
3345 3346

		page = pte_page(pte);
3347 3348 3349 3350 3351 3352
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3353 3354 3355 3356
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3357 3358 3359 3360 3361 3362 3363 3364
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3365
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3366
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3367
		if (huge_pte_dirty(pte))
3368
			set_page_dirty(page);
3369

3370
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3371
		page_remove_rmap(page, true);
3372

3373
		spin_unlock(ptl);
3374
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3375 3376 3377 3378 3379
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3380
	}
3381
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3382
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3383
}
D
David Gibson 已提交
3384

3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3397
	 * is to clear it before releasing the i_mmap_rwsem. This works
3398
	 * because in the context this is called, the VMA is about to be
3399
	 * destroyed and the i_mmap_rwsem is held.
3400 3401 3402 3403
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3404
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3405
			  unsigned long end, struct page *ref_page)
3406
{
3407 3408 3409 3410 3411
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3412
	tlb_gather_mmu(&tlb, mm, start, end);
3413 3414
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3415 3416
}

3417 3418 3419 3420 3421 3422
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3423 3424
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3425
{
3426
	struct hstate *h = hstate_vma(vma);
3427 3428 3429 3430 3431 3432 3433 3434
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3435
	address = address & huge_page_mask(h);
3436 3437
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3438
	mapping = vma->vm_file->f_mapping;
3439

3440 3441 3442 3443 3444
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3445
	i_mmap_lock_write(mapping);
3446
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3447 3448 3449 3450
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3451 3452 3453 3454 3455 3456 3457 3458
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3459 3460 3461 3462 3463 3464 3465 3466
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3467 3468
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3469
	}
3470
	i_mmap_unlock_write(mapping);
3471 3472
}

3473 3474
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3475 3476 3477
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3478
 */
3479
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3480 3481
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3482
{
3483
	pte_t pte;
3484
	struct hstate *h = hstate_vma(vma);
3485
	struct page *old_page, *new_page;
3486
	int ret = 0, outside_reserve = 0;
3487 3488
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3489

3490
	pte = huge_ptep_get(ptep);
3491 3492
	old_page = pte_page(pte);

3493
retry_avoidcopy:
3494 3495
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3496
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3497
		page_move_anon_rmap(old_page, vma);
3498
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3499
		return 0;
3500 3501
	}

3502 3503 3504 3505 3506 3507 3508 3509 3510
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3511
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3512 3513 3514
			old_page != pagecache_page)
		outside_reserve = 1;

3515
	get_page(old_page);
3516

3517 3518 3519 3520
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3521
	spin_unlock(ptl);
3522
	new_page = alloc_huge_page(vma, address, outside_reserve);
3523

3524
	if (IS_ERR(new_page)) {
3525 3526 3527 3528 3529 3530 3531 3532
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3533
			put_page(old_page);
3534
			BUG_ON(huge_pte_none(pte));
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3547 3548
		}

3549 3550 3551
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3552 3553
	}

3554 3555 3556 3557
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3558
	if (unlikely(anon_vma_prepare(vma))) {
3559 3560
		ret = VM_FAULT_OOM;
		goto out_release_all;
3561
	}
3562

A
Andrea Arcangeli 已提交
3563 3564
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3565
	__SetPageUptodate(new_page);
3566
	set_page_huge_active(new_page);
3567

3568 3569 3570
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3571

3572
	/*
3573
	 * Retake the page table lock to check for racing updates
3574 3575
	 * before the page tables are altered
	 */
3576
	spin_lock(ptl);
3577
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3578
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3579 3580
		ClearPagePrivate(new_page);

3581
		/* Break COW */
3582
		huge_ptep_clear_flush(vma, address, ptep);
3583
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3584 3585
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3586
		page_remove_rmap(old_page, true);
3587
		hugepage_add_new_anon_rmap(new_page, vma, address);
3588 3589 3590
		/* Make the old page be freed below */
		new_page = old_page;
	}
3591
	spin_unlock(ptl);
3592
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3593
out_release_all:
3594
	restore_reserve_on_error(h, vma, address, new_page);
3595
	put_page(new_page);
3596
out_release_old:
3597
	put_page(old_page);
3598

3599 3600
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3601 3602
}

3603
/* Return the pagecache page at a given address within a VMA */
3604 3605
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3606 3607
{
	struct address_space *mapping;
3608
	pgoff_t idx;
3609 3610

	mapping = vma->vm_file->f_mapping;
3611
	idx = vma_hugecache_offset(h, vma, address);
3612 3613 3614 3615

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3616 3617 3618 3619 3620
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3653
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3654 3655
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3656
{
3657
	struct hstate *h = hstate_vma(vma);
3658
	int ret = VM_FAULT_SIGBUS;
3659
	int anon_rmap = 0;
A
Adam Litke 已提交
3660 3661
	unsigned long size;
	struct page *page;
3662
	pte_t new_pte;
3663
	spinlock_t *ptl;
A
Adam Litke 已提交
3664

3665 3666 3667
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3668
	 * COW. Warn that such a situation has occurred as it may not be obvious
3669 3670
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3671
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3672
			   current->pid);
3673 3674 3675
		return ret;
	}

A
Adam Litke 已提交
3676 3677 3678 3679
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3680 3681 3682
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3683
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3684 3685
		if (idx >= size)
			goto out;
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3718
		page = alloc_huge_page(vma, address, 0);
3719
		if (IS_ERR(page)) {
3720 3721 3722 3723 3724
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3725 3726
			goto out;
		}
A
Andrea Arcangeli 已提交
3727
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3728
		__SetPageUptodate(page);
3729
		set_page_huge_active(page);
3730

3731
		if (vma->vm_flags & VM_MAYSHARE) {
3732
			int err = huge_add_to_page_cache(page, mapping, idx);
3733 3734 3735 3736 3737 3738
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3739
		} else {
3740
			lock_page(page);
3741 3742 3743 3744
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3745
			anon_rmap = 1;
3746
		}
3747
	} else {
3748 3749 3750 3751 3752 3753
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3754
			ret = VM_FAULT_HWPOISON |
3755
				VM_FAULT_SET_HINDEX(hstate_index(h));
3756 3757
			goto backout_unlocked;
		}
3758
	}
3759

3760 3761 3762 3763 3764 3765
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3766
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3767 3768 3769 3770
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3771
		/* Just decrements count, does not deallocate */
3772
		vma_end_reservation(h, vma, address);
3773
	}
3774

3775
	ptl = huge_pte_lock(h, mm, ptep);
3776
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3777 3778 3779
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3780
	ret = 0;
3781
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3782 3783
		goto backout;

3784 3785
	if (anon_rmap) {
		ClearPagePrivate(page);
3786
		hugepage_add_new_anon_rmap(page, vma, address);
3787
	} else
3788
		page_dup_rmap(page, true);
3789 3790 3791 3792
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3793
	hugetlb_count_add(pages_per_huge_page(h), mm);
3794
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3795
		/* Optimization, do the COW without a second fault */
3796
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3797 3798
	}

3799
	spin_unlock(ptl);
A
Adam Litke 已提交
3800 3801
	unlock_page(page);
out:
3802
	return ret;
A
Adam Litke 已提交
3803 3804

backout:
3805
	spin_unlock(ptl);
3806
backout_unlocked:
A
Adam Litke 已提交
3807
	unlock_page(page);
3808
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3809 3810
	put_page(page);
	goto out;
3811 3812
}

3813
#ifdef CONFIG_SMP
3814
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3839
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3840 3841 3842 3843 3844 3845 3846 3847
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3848
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3849
			unsigned long address, unsigned int flags)
3850
{
3851
	pte_t *ptep, entry;
3852
	spinlock_t *ptl;
3853
	int ret;
3854 3855
	u32 hash;
	pgoff_t idx;
3856
	struct page *page = NULL;
3857
	struct page *pagecache_page = NULL;
3858
	struct hstate *h = hstate_vma(vma);
3859
	struct address_space *mapping;
3860
	int need_wait_lock = 0;
3861

3862 3863
	address &= huge_page_mask(h);

3864 3865 3866
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3867
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3868
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3869 3870
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3871
			return VM_FAULT_HWPOISON_LARGE |
3872
				VM_FAULT_SET_HINDEX(hstate_index(h));
3873 3874 3875 3876
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3877 3878
	}

3879 3880 3881
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3882 3883 3884 3885 3886
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3887 3888
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3889

3890 3891
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3892
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3893
		goto out_mutex;
3894
	}
3895

N
Nick Piggin 已提交
3896
	ret = 0;
3897

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3908 3909 3910 3911 3912 3913 3914 3915
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3916
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3917 3918
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3919
			goto out_mutex;
3920
		}
3921
		/* Just decrements count, does not deallocate */
3922
		vma_end_reservation(h, vma, address);
3923

3924
		if (!(vma->vm_flags & VM_MAYSHARE))
3925 3926 3927 3928
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3929 3930 3931 3932 3933 3934
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3935 3936 3937 3938 3939 3940 3941
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3942 3943 3944 3945
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3946

3947
	get_page(page);
3948

3949
	if (flags & FAULT_FLAG_WRITE) {
3950
		if (!huge_pte_write(entry)) {
3951 3952
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3953
			goto out_put_page;
3954
		}
3955
		entry = huge_pte_mkdirty(entry);
3956 3957
	}
	entry = pte_mkyoung(entry);
3958 3959
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3960
		update_mmu_cache(vma, address, ptep);
3961 3962 3963 3964
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3965 3966
out_ptl:
	spin_unlock(ptl);
3967 3968 3969 3970 3971

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3972
out_mutex:
3973
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3974 3975 3976 3977 3978 3979 3980 3981 3982
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3983
	return ret;
3984 3985
}

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
3997
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4012
						pages_per_huge_page(h), false);
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
		struct address_space *mapping = dst_vma->vm_file->f_mapping;
		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);

		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4046 4047 4048 4049 4050 4051 4052
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4053 4054 4055 4056 4057 4058
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4075 4076
	if (vm_shared)
		unlock_page(page);
4077 4078 4079 4080 4081
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4082 4083 4084
out_release_nounlock:
	if (vm_shared)
		unlock_page(page);
4085 4086 4087 4088
	put_page(page);
	goto out;
}

4089 4090 4091
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4092
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4093
{
4094 4095
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4096
	unsigned long remainder = *nr_pages;
4097
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
4098 4099

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4100
		pte_t *pte;
4101
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4102
		int absent;
A
Adam Litke 已提交
4103
		struct page *page;
D
David Gibson 已提交
4104

4105 4106 4107 4108 4109 4110 4111 4112 4113
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4114 4115
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4116
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4117
		 * first, for the page indexing below to work.
4118 4119
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4120
		 */
4121
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4122 4123
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4124 4125 4126 4127
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4128 4129 4130 4131
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4132
		 */
H
Hugh Dickins 已提交
4133 4134
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4135 4136
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4137 4138 4139
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4140

4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4152 4153
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4154
			int ret;
4155
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4156

4157 4158
			if (pte)
				spin_unlock(ptl);
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4192 4193
		}

4194
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4195
		page = pte_page(huge_ptep_get(pte));
4196
same_page:
4197
		if (pages) {
H
Hugh Dickins 已提交
4198
			pages[i] = mem_map_offset(page, pfn_offset);
4199
			get_page(pages[i]);
4200
		}
D
David Gibson 已提交
4201 4202 4203 4204 4205

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4206
		++pfn_offset;
D
David Gibson 已提交
4207 4208
		--remainder;
		++i;
4209
		if (vaddr < vma->vm_end && remainder &&
4210
				pfn_offset < pages_per_huge_page(h)) {
4211 4212 4213 4214 4215 4216
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4217
		spin_unlock(ptl);
D
David Gibson 已提交
4218
	}
4219
	*nr_pages = remainder;
4220 4221 4222 4223 4224
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4225 4226
	*position = vaddr;

H
Hugh Dickins 已提交
4227
	return i ? i : -EFAULT;
D
David Gibson 已提交
4228
}
4229

4230 4231 4232 4233 4234 4235 4236 4237
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4238
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4239 4240 4241 4242 4243 4244
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4245
	struct hstate *h = hstate_vma(vma);
4246
	unsigned long pages = 0;
4247 4248 4249 4250

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4251
	mmu_notifier_invalidate_range_start(mm, start, end);
4252
	i_mmap_lock_write(vma->vm_file->f_mapping);
4253
	for (; address < end; address += huge_page_size(h)) {
4254
		spinlock_t *ptl;
4255 4256 4257
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
4258
		ptl = huge_pte_lock(h, mm, ptep);
4259 4260
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4261
			spin_unlock(ptl);
4262
			continue;
4263
		}
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4284
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4285
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4286
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4287
			set_huge_pte_at(mm, address, ptep, pte);
4288
			pages++;
4289
		}
4290
		spin_unlock(ptl);
4291
	}
4292
	/*
4293
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4294
	 * may have cleared our pud entry and done put_page on the page table:
4295
	 * once we release i_mmap_rwsem, another task can do the final put_page
4296 4297
	 * and that page table be reused and filled with junk.
	 */
4298
	flush_hugetlb_tlb_range(vma, start, end);
4299
	mmu_notifier_invalidate_range(mm, start, end);
4300
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4301
	mmu_notifier_invalidate_range_end(mm, start, end);
4302 4303

	return pages << h->order;
4304 4305
}

4306 4307
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4308
					struct vm_area_struct *vma,
4309
					vm_flags_t vm_flags)
4310
{
4311
	long ret, chg;
4312
	struct hstate *h = hstate_inode(inode);
4313
	struct hugepage_subpool *spool = subpool_inode(inode);
4314
	struct resv_map *resv_map;
4315
	long gbl_reserve;
4316

4317 4318 4319
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4320
	 * without using reserves
4321
	 */
4322
	if (vm_flags & VM_NORESERVE)
4323 4324
		return 0;

4325 4326 4327 4328 4329 4330
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4331
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4332
		resv_map = inode_resv_map(inode);
4333

4334
		chg = region_chg(resv_map, from, to);
4335 4336 4337

	} else {
		resv_map = resv_map_alloc();
4338 4339 4340
		if (!resv_map)
			return -ENOMEM;

4341
		chg = to - from;
4342

4343 4344 4345 4346
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4347 4348 4349 4350
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4351

4352 4353 4354 4355 4356 4357 4358
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4359 4360 4361
		ret = -ENOSPC;
		goto out_err;
	}
4362 4363

	/*
4364
	 * Check enough hugepages are available for the reservation.
4365
	 * Hand the pages back to the subpool if there are not
4366
	 */
4367
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4368
	if (ret < 0) {
4369 4370
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4371
		goto out_err;
K
Ken Chen 已提交
4372
	}
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4403
	return 0;
4404
out_err:
4405 4406
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4407 4408
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4409
	return ret;
4410 4411
}

4412 4413
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4414
{
4415
	struct hstate *h = hstate_inode(inode);
4416
	struct resv_map *resv_map = inode_resv_map(inode);
4417
	long chg = 0;
4418
	struct hugepage_subpool *spool = subpool_inode(inode);
4419
	long gbl_reserve;
K
Ken Chen 已提交
4420

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4432
	spin_lock(&inode->i_lock);
4433
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4434 4435
	spin_unlock(&inode->i_lock);

4436 4437 4438 4439 4440 4441
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4442 4443

	return 0;
4444
}
4445

4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4457 4458
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4472
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4473 4474 4475 4476 4477 4478 4479 4480 4481
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4482 4483
		return true;
	return false;
4484 4485 4486 4487 4488 4489 4490
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4491
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4505
	spinlock_t *ptl;
4506 4507 4508 4509

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4510
	i_mmap_lock_write(mapping);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4528
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4529
	if (pud_none(*pud)) {
4530 4531
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4532
		mm_inc_nr_pmds(mm);
4533
	} else {
4534
		put_page(virt_to_page(spte));
4535
	}
4536
	spin_unlock(ptl);
4537 4538
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4539
	i_mmap_unlock_write(mapping);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4550
 * called with page table lock held.
4551 4552 4553 4554 4555 4556 4557
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4558 4559
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4560 4561 4562 4563 4564 4565 4566

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4567
	mm_dec_nr_pmds(mm);
4568 4569 4570
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4571 4572 4573 4574 4575 4576
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4577 4578 4579 4580 4581

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4582
#define want_pmd_share()	(0)
4583 4584
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4585 4586 4587 4588 4589
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4590
	p4d_t *p4d;
4591 4592 4593 4594
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4595 4596
	p4d = p4d_offset(pgd, addr);
	pud = pud_alloc(mm, p4d, addr);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4608
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4609 4610 4611 4612 4613 4614 4615

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
4616
	p4d_t *p4d;
4617
	pud_t *pud;
4618
	pmd_t *pmd;
4619 4620

	pgd = pgd_offset(mm, addr);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
	if (!pud_present(*pud))
		return NULL;
	if (pud_huge(*pud))
		return (pte_t *)pud;
	pmd = pmd_offset(pud, addr);
4632 4633 4634
	return (pte_t *) pmd;
}

4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4649
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4650
		pmd_t *pmd, int flags)
4651
{
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4664
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4680 4681 4682
	return page;
}

4683
struct page * __weak
4684
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4685
		pud_t *pud, int flags)
4686
{
4687 4688
	if (flags & FOLL_GET)
		return NULL;
4689

4690
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4691 4692
}

4693 4694
#ifdef CONFIG_MEMORY_FAILURE

4695 4696 4697
/*
 * This function is called from memory failure code.
 */
4698
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4699 4700 4701
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4702
	int ret = -EBUSY;
4703 4704

	spin_lock(&hugetlb_lock);
4705 4706 4707 4708 4709
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4710 4711 4712 4713 4714 4715 4716
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4717
		set_page_refcounted(hpage);
4718 4719 4720 4721
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4722
	spin_unlock(&hugetlb_lock);
4723
	return ret;
4724
}
4725
#endif
4726 4727 4728

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4729 4730
	bool ret = true;

4731
	VM_BUG_ON_PAGE(!PageHead(page), page);
4732
	spin_lock(&hugetlb_lock);
4733 4734 4735 4736 4737
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4738
	list_move_tail(&page->lru, list);
4739
unlock:
4740
	spin_unlock(&hugetlb_lock);
4741
	return ret;
4742 4743 4744 4745
}

void putback_active_hugepage(struct page *page)
{
4746
	VM_BUG_ON_PAGE(!PageHead(page), page);
4747
	spin_lock(&hugetlb_lock);
4748
	set_page_huge_active(page);
4749 4750 4751 4752
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}