hugetlb.c 42.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in base page units.
 */
static pgoff_t vma_page_offset(struct vm_area_struct *vma,
				unsigned long address)
{
	return ((address - vma->vm_start) >> PAGE_SHIFT) +
					(vma->vm_pgoff >> PAGE_SHIFT);
}

/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
static pgoff_t vma_pagecache_offset(struct vm_area_struct *vma,
					unsigned long address)
{
	return ((address - vma->vm_start) >> HPAGE_SHIFT) +
			(vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
}

190 191 192
#define HPAGE_RESV_OWNER    (1UL << (BITS_PER_LONG - 1))
#define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
193 194 195 196 197 198 199 200 201 202
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
 */
203 204 205 206 207 208 209 210 211 212 213
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

214 215 216 217
static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
218
		return get_vma_private_data(vma) & ~HPAGE_RESV_MASK;
219 220 221 222 223 224 225 226 227
	return 0;
}

static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
							unsigned long reserve)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

228 229
	set_vma_private_data(vma,
		(get_vma_private_data(vma) & HPAGE_RESV_MASK) | reserve);
230 231 232 233 234
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
235 236 237
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
238 239 240 241 242
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
243 244

	return (get_vma_private_data(vma) & flag) != 0;
245 246 247 248 249 250 251 252 253 254 255 256 257
}

/* Decrement the reserved pages in the hugepage pool by one */
static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
		resv_huge_pages--;
	} else {
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
258 259
		if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
			unsigned long flags, reserve;
260
			resv_huge_pages--;
261 262
			flags = (unsigned long)vma->vm_private_data &
							HPAGE_RESV_MASK;
263
			reserve = (unsigned long)vma->vm_private_data - 1;
264
			vma->vm_private_data = (void *)(reserve | flags);
265 266 267 268
		}
	}
}

269
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
	if (!vma_resv_huge_pages(vma))
		return 0;
	return 1;
}

287 288 289 290 291 292 293
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
294
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
295 296 297 298
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
299
			   unsigned long addr, struct vm_area_struct *vma)
300 301 302 303 304 305
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
306
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
307 308 309
	}
}

L
Linus Torvalds 已提交
310 311 312 313 314 315 316 317
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
337
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
338
{
339
	int nid;
L
Linus Torvalds 已提交
340
	struct page *page = NULL;
341
	struct mempolicy *mpol;
342
	nodemask_t *nodemask;
343
	struct zonelist *zonelist = huge_zonelist(vma, address,
344
					htlb_alloc_mask, &mpol, &nodemask);
345 346
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
347

348 349 350 351 352 353 354 355 356
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
			free_huge_pages - resv_huge_pages == 0)
		return NULL;

357 358 359 360
	/* If reserves cannot be used, ensure enough pages are in the pool */
	if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
		return NULL;

361 362
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
363 364
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
A
Andrew Morton 已提交
365 366 367 368 369 370
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
371 372 373

			if (!avoid_reserve)
				decrement_hugepage_resv_vma(vma);
374

K
Ken Chen 已提交
375
			break;
A
Andrew Morton 已提交
376
		}
L
Linus Torvalds 已提交
377
	}
378
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
379 380 381
	return page;
}

A
Adam Litke 已提交
382 383 384 385 386 387 388 389 390 391 392 393
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
394
	arch_release_hugepage(page);
A
Adam Litke 已提交
395 396 397
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

398 399
static void free_huge_page(struct page *page)
{
400
	int nid = page_to_nid(page);
401
	struct address_space *mapping;
402

403
	mapping = (struct address_space *) page_private(page);
404
	set_page_private(page, 0);
405
	BUG_ON(page_count(page));
406 407 408
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
409 410 411 412 413 414 415
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
416
	spin_unlock(&hugetlb_lock);
417
	if (mapping)
418
		hugetlb_put_quota(mapping, 1);
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

456
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
457 458
{
	struct page *page;
459

460
	page = alloc_pages_node(nid,
461 462
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
463
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
464
	if (page) {
465 466
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
467
			return NULL;
468
		}
469
		set_compound_page_dtor(page, free_huge_page);
470
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
471
		nr_huge_pages++;
472
		nr_huge_pages_node[nid]++;
473
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
474
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
475
	}
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

510 511 512 513 514
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

515
	return ret;
L
Linus Torvalds 已提交
516 517
}

518 519 520 521
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
522
	unsigned int nid;
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

557 558
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
559
					HUGETLB_PAGE_ORDER);
560 561

	spin_lock(&hugetlb_lock);
562
	if (page) {
563 564 565 566 567 568
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
569
		nid = page_to_nid(page);
570
		set_compound_page_dtor(page, free_huge_page);
571 572 573 574 575
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
576
		__count_vm_event(HTLB_BUDDY_PGALLOC);
577 578 579
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
580
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
581
	}
582
	spin_unlock(&hugetlb_lock);
583 584 585 586

	return page;
}

587 588 589 590 591 592 593 594 595 596 597 598
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
599 600
	if (needed <= 0) {
		resv_huge_pages += delta;
601
		return 0;
602
	}
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
640 641 642
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
643 644
	 */
	needed += allocated;
645
	resv_huge_pages += delta;
646 647
	ret = 0;
free:
648
	/* Free the needed pages to the hugetlb pool */
649
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
650 651
		if ((--needed) < 0)
			break;
652
		list_del(&page->lru);
653 654 655 656 657 658 659 660
		enqueue_huge_page(page);
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
661
			/*
662 663 664
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
665 666 667
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
668
			free_huge_page(page);
669
		}
670
		spin_lock(&hugetlb_lock);
671 672 673 674 675 676 677 678 679 680
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
681
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
682 683 684 685 686
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

687 688 689 690 691 692 693 694
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

695 696 697
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

698 699
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

700
	while (remaining_iterations-- && nr_pages) {
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
718
			remaining_iterations = num_online_nodes();
719 720 721 722
		}
	}
}

723
static struct page *alloc_huge_page(struct vm_area_struct *vma,
724
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
725
{
726
	struct page *page;
727 728 729 730 731 732 733 734 735
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
	unsigned int chg = 0;

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
	 */
736 737
	if (!(vma->vm_flags & VM_SHARED) &&
			!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
738 739 740 741
		chg = 1;
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
742 743

	spin_lock(&hugetlb_lock);
744
	page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
745
	spin_unlock(&hugetlb_lock);
746

K
Ken Chen 已提交
747
	if (!page) {
748
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
749
		if (!page) {
750
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
751 752 753
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
754

755 756
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
757 758

	return page;
759 760
}

L
Linus Torvalds 已提交
761 762 763 764
static int __init hugetlb_init(void)
{
	unsigned long i;

765 766 767
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
768 769 770
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

771 772
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
773
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
774
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

791 792 793 794 795 796 797 798 799 800 801
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
802 803 804 805
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
806 807
	int i;

L
Linus Torvalds 已提交
808 809 810
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
811 812
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
813 814 815 816 817
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
818
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
819 820 821 822 823 824 825 826 827
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

828
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
829 830
static unsigned long set_max_huge_pages(unsigned long count)
{
831
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
832

833 834 835 836
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
837 838 839 840 841 842
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
843
	 */
L
Linus Torvalds 已提交
844
	spin_lock(&hugetlb_lock);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
870 871 872 873 874 875 876 877
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
878
	 */
879 880
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
881 882
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
883
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
884 885 886 887
		if (!page)
			break;
		update_and_free_page(page);
	}
888 889 890 891 892 893
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
894
	spin_unlock(&hugetlb_lock);
895
	return ret;
L
Linus Torvalds 已提交
896 897 898 899 900 901 902 903 904 905
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
906 907 908 909 910 911 912 913 914 915 916 917 918

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

919 920 921 922 923
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
924 925
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
926 927 928 929
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
930 931 932 933 934 935 936
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
937
			"HugePages_Rsvd:  %5lu\n"
938
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
939 940 941
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
942
			resv_huge_pages,
943
			surplus_huge_pages,
L
Linus Torvalds 已提交
944 945 946 947 948 949 950
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
951 952
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
L
Linus Torvalds 已提交
953
		nid, nr_huge_pages_node[nid],
954 955
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
956 957 958 959 960 961 962 963
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

M
Mel Gorman 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1005 1006 1007 1008 1009 1010 1011
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
	unsigned long reserve = vma_resv_huge_pages(vma);
	if (reserve)
		hugetlb_acct_memory(-reserve);
}

L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1018
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1019 1020
{
	BUG();
N
Nick Piggin 已提交
1021
	return 0;
L
Linus Torvalds 已提交
1022 1023 1024
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1025
	.fault = hugetlb_vm_op_fault,
1026
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1027 1028
};

1029 1030
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1031 1032 1033
{
	pte_t entry;

1034
	if (writable) {
D
David Gibson 已提交
1035 1036 1037
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1038
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1039 1040 1041 1042 1043 1044 1045
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1046 1047 1048 1049 1050
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1051 1052
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1053 1054
		update_mmu_cache(vma, address, entry);
	}
1055 1056 1057
}


D
David Gibson 已提交
1058 1059 1060 1061 1062
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1063
	unsigned long addr;
1064 1065 1066
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1067

1068
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
1069 1070 1071
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
1072 1073 1074
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
1075 1076 1077 1078 1079

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1080
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1081
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1082
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1083
			if (cow)
1084 1085
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1086 1087 1088 1089 1090
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1091
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1092 1093 1094 1095 1096 1097 1098
	}
	return 0;

nomem:
	return -ENOMEM;
}

1099
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1100
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1101 1102 1103
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1104
	pte_t *ptep;
D
David Gibson 已提交
1105 1106
	pte_t pte;
	struct page *page;
1107
	struct page *tmp;
1108 1109 1110 1111 1112
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1113
	LIST_HEAD(page_list);
D
David Gibson 已提交
1114 1115 1116 1117 1118

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

1119
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1120
	for (address = start; address < end; address += HPAGE_SIZE) {
1121
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1122
		if (!ptep)
1123 1124
			continue;

1125 1126 1127
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1149
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1150
		if (huge_pte_none(pte))
D
David Gibson 已提交
1151
			continue;
1152

D
David Gibson 已提交
1153
		page = pte_page(pte);
1154 1155
		if (pte_dirty(pte))
			set_page_dirty(page);
1156
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1157
	}
L
Linus Torvalds 已提交
1158
	spin_unlock(&mm->page_table_lock);
1159
	flush_tlb_range(vma, start, end);
1160 1161 1162 1163
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1164
}
D
David Gibson 已提交
1165

1166
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1167
			  unsigned long end, struct page *ref_page)
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1179
		__unmap_hugepage_range(vma, start, end, ref_page);
1180 1181 1182 1183
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1230
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1231 1232
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1233 1234
{
	struct page *old_page, *new_page;
1235
	int avoidcopy;
1236
	int outside_reserve = 0;
1237 1238 1239

	old_page = pte_page(pte);

1240
retry_avoidcopy:
1241 1242 1243 1244 1245
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1246
		return 0;
1247 1248
	}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1263
	page_cache_get(old_page);
1264
	new_page = alloc_huge_page(vma, address, outside_reserve);
1265

1266
	if (IS_ERR(new_page)) {
1267
		page_cache_release(old_page);
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1286
		return -PTR_ERR(new_page);
1287 1288 1289
	}

	spin_unlock(&mm->page_table_lock);
1290
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1291
	__SetPageUptodate(new_page);
1292 1293 1294
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1295
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1296
		/* Break COW */
1297
		huge_ptep_clear_flush(vma, address, ptep);
1298 1299 1300 1301 1302 1303 1304
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1305
	return 0;
1306 1307
}

1308 1309 1310 1311 1312
/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
			unsigned long address)
{
	struct address_space *mapping;
1313
	pgoff_t idx;
1314 1315

	mapping = vma->vm_file->f_mapping;
1316
	idx = vma_pagecache_offset(vma, address);
1317 1318 1319 1320

	return find_lock_page(mapping, idx);
}

1321
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1322
			unsigned long address, pte_t *ptep, int write_access)
1323 1324
{
	int ret = VM_FAULT_SIGBUS;
1325
	pgoff_t idx;
A
Adam Litke 已提交
1326 1327 1328
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1329
	pte_t new_pte;
A
Adam Litke 已提交
1330

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1343
	mapping = vma->vm_file->f_mapping;
1344
	idx = vma_pagecache_offset(vma, address);
A
Adam Litke 已提交
1345 1346 1347 1348 1349

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1350 1351 1352
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1353 1354 1355
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
1356
		page = alloc_huge_page(vma, address, 0);
1357 1358
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1359 1360
			goto out;
		}
1361
		clear_huge_page(page, address);
N
Nick Piggin 已提交
1362
		__SetPageUptodate(page);
1363

1364 1365
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1366
			struct inode *inode = mapping->host;
1367 1368 1369 1370 1371 1372 1373 1374

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1375 1376 1377 1378

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
1379 1380 1381
		} else
			lock_page(page);
	}
1382

1383
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
1384 1385 1386 1387
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1388
	ret = 0;
1389
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1390 1391
		goto backout;

1392 1393 1394 1395 1396 1397
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1398
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1399 1400
	}

1401
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1402 1403
	unlock_page(page);
out:
1404
	return ret;
A
Adam Litke 已提交
1405 1406 1407 1408 1409 1410

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1411 1412
}

1413 1414 1415 1416 1417
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1418
	int ret;
1419
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1420 1421 1422 1423 1424

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

1425 1426 1427 1428 1429 1430
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1431 1432
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1433 1434 1435 1436
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1437

N
Nick Piggin 已提交
1438
	ret = 0;
1439 1440 1441

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1442
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1443 1444 1445 1446 1447 1448 1449 1450 1451
		if (write_access && !pte_write(entry)) {
			struct page *page;
			page = hugetlbfs_pagecache_page(vma, address);
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1452
	spin_unlock(&mm->page_table_lock);
1453
	mutex_unlock(&hugetlb_instantiation_mutex);
1454 1455

	return ret;
1456 1457
}

D
David Gibson 已提交
1458 1459
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1460 1461
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1462
{
1463 1464
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1465 1466
	int remainder = *length;

1467
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1468
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1469 1470
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1471

A
Adam Litke 已提交
1472 1473 1474 1475 1476 1477
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1478

1479 1480
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1481
			int ret;
D
David Gibson 已提交
1482

A
Adam Litke 已提交
1483
			spin_unlock(&mm->page_table_lock);
1484
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1485
			spin_lock(&mm->page_table_lock);
1486
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1487
				continue;
D
David Gibson 已提交
1488

A
Adam Litke 已提交
1489 1490 1491 1492 1493 1494
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1495
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1496
		page = pte_page(huge_ptep_get(pte));
1497
same_page:
1498 1499
		if (pages) {
			get_page(page);
1500
			pages[i] = page + pfn_offset;
1501
		}
D
David Gibson 已提交
1502 1503 1504 1505 1506

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1507
		++pfn_offset;
D
David Gibson 已提交
1508 1509
		--remainder;
		++i;
1510 1511 1512 1513 1514 1515 1516 1517
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1518
	}
1519
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1520 1521 1522 1523 1524
	*length = remainder;
	*position = vaddr;

	return i;
}
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1537
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1538 1539 1540 1541 1542
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1543 1544
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1545
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1546 1547 1548 1549 1550 1551
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1552
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1553 1554 1555 1556

	flush_tlb_range(vma, start, end);
}

1557 1558 1559
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
1560 1561 1562
{
	long ret, chg;

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
		chg = to - from;
		set_vma_resv_huge_pages(vma, chg);
1574
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1575 1576
	}

1577 1578
	if (chg < 0)
		return chg;
1579

1580 1581
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1582
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1583 1584
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1585
		return ret;
K
Ken Chen 已提交
1586
	}
1587 1588
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
1589 1590 1591 1592 1593 1594
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1595 1596 1597 1598 1599

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1600 1601
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1602
}