hugetlb.c 79.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/node.h>
32
#include "internal.h"
L
Linus Torvalds 已提交
33 34

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
35 36
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
37

38
static int hugetlb_max_hstate;
39 40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

42 43
__initdata LIST_HEAD(huge_boot_pages);

44 45 46
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
47
static unsigned long __initdata default_hstate_size;
48 49

#define for_each_hstate(h) \
50
	for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
51

52 53 54 55
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

135 136 137
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
138 139 140 141 142 143
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
144
 *	down_write(&mm->mmap_sem);
145
 * or
146 147
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
228
		/* We overlap with this area, if it extends further than
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

270 271 272 273 274 275 276
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
277 278
		long seg_from;
		long seg_to;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

294 295 296 297
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
298 299
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
300
{
301 302
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
303 304
}

305 306 307 308 309 310
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
326
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
327

328 329 330 331 332 333 334 335 336 337 338 339 340
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

341 342 343 344 345 346 347
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
348
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
349

350 351 352 353 354 355 356 357 358
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
359 360 361 362 363 364 365 366 367
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
368
 */
369 370 371 372 373 374 375 376 377 378 379
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

380 381 382 383 384
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

385
static struct resv_map *resv_map_alloc(void)
386 387 388 389 390 391 392 393 394 395 396
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

397
static void resv_map_release(struct kref *ref)
398 399 400 401 402 403 404 405 406
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 408
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
409
	if (!(vma->vm_flags & VM_MAYSHARE))
410 411
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
412
	return NULL;
413 414
}

415
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 417
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
418
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419

420 421
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
422 423 424 425 426
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
427
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 429

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
430 431 432 433 434
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 436

	return (get_vma_private_data(vma) & flag) != 0;
437 438 439
}

/* Decrement the reserved pages in the hugepage pool by one */
440 441
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
442
{
443 444 445
	if (vma->vm_flags & VM_NORESERVE)
		return;

446
	if (vma->vm_flags & VM_MAYSHARE) {
447
		/* Shared mappings always use reserves */
448
		h->resv_huge_pages--;
449
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
450 451 452 453
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
454
		h->resv_huge_pages--;
455 456 457
	}
}

458
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
459 460 461
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462
	if (!(vma->vm_flags & VM_MAYSHARE))
463 464 465 466
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
467
static int vma_has_reserves(struct vm_area_struct *vma)
468
{
469
	if (vma->vm_flags & VM_MAYSHARE)
470 471 472 473
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

510
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
511 512
{
	int nid = page_to_nid(page);
513
	list_move(&page->lru, &h->hugepage_freelists[nid]);
514 515
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
516 517
}

518 519 520 521 522 523 524
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
525
	list_move(&page->lru, &h->hugepage_activelist);
526
	set_page_refcounted(page);
527 528 529 530 531
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

532 533
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
534
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
535
{
536
	struct page *page = NULL;
537
	struct mempolicy *mpol;
538
	nodemask_t *nodemask;
539
	struct zonelist *zonelist;
540 541
	struct zone *zone;
	struct zoneref *z;
542
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
543

544 545
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
546 547
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
548 549 550 551 552
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
553
	if (!vma_has_reserves(vma) &&
554
			h->free_huge_pages - h->resv_huge_pages == 0)
555
		goto err;
556

557
	/* If reserves cannot be used, ensure enough pages are in the pool */
558
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559
		goto err;
560

561 562
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
563 564 565 566 567 568 569
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
570
		}
L
Linus Torvalds 已提交
571
	}
572

573
	mpol_cond_put(mpol);
574 575
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
576
	return page;
577 578 579 580

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
581 582
}

583
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
584 585
{
	int i;
586

587 588
	VM_BUG_ON(h->order >= MAX_ORDER);

589 590 591
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
592 593 594 595
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
596 597 598
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
599
	arch_release_hugepage(page);
600
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
601 602
}

603 604 605 606 607 608 609 610 611 612 613
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

614 615
static void free_huge_page(struct page *page)
{
616 617 618 619
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
620
	struct hstate *h = page_hstate(page);
621
	int nid = page_to_nid(page);
622 623
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
624

625
	set_page_private(page, 0);
626
	page->mapping = NULL;
627
	BUG_ON(page_count(page));
628
	BUG_ON(page_mapcount(page));
629 630

	spin_lock(&hugetlb_lock);
631
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
632 633
		/* remove the page from active list */
		list_del(&page->lru);
634 635 636
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
637
	} else {
638
		enqueue_huge_page(h, page);
639
	}
640
	spin_unlock(&hugetlb_lock);
641
	hugepage_subpool_put_pages(spool, 1);
642 643
}

644
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645
{
646
	INIT_LIST_HEAD(&page->lru);
647 648
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
649 650
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
651 652 653 654
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

655 656 657 658 659 660 661 662 663 664 665
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
666
		set_page_count(p, 0);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
683 684
EXPORT_SYMBOL_GPL(PageHuge);

685
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
686 687
{
	struct page *page;
688

689 690 691
	if (h->order >= MAX_ORDER)
		return NULL;

692
	page = alloc_pages_exact_node(nid,
693 694
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
695
		huge_page_order(h));
L
Linus Torvalds 已提交
696
	if (page) {
697
		if (arch_prepare_hugepage(page)) {
698
			__free_pages(page, huge_page_order(h));
699
			return NULL;
700
		}
701
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
702
	}
703 704 705 706

	return page;
}

707
/*
708 709 710 711 712
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
713
 */
714
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
715
{
716
	nid = next_node(nid, *nodes_allowed);
717
	if (nid == MAX_NUMNODES)
718
		nid = first_node(*nodes_allowed);
719 720 721 722 723
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

724 725 726 727 728 729 730
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

731
/*
732 733 734 735
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
736
 */
737 738
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
739
{
740 741 742 743 744 745
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
746 747

	return nid;
748 749
}

750
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
751 752 753 754 755 756
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

757
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
758
	next_nid = start_nid;
759 760

	do {
761
		page = alloc_fresh_huge_page_node(h, next_nid);
762
		if (page) {
763
			ret = 1;
764 765
			break;
		}
766
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
767
	} while (next_nid != start_nid);
768

769 770 771 772 773
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

774
	return ret;
L
Linus Torvalds 已提交
775 776
}

777
/*
778 779 780 781
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
782
 */
783
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
784
{
785 786 787 788 789 790
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
791 792

	return nid;
793 794 795 796 797 798 799 800
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
801 802
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
803 804 805 806 807
{
	int start_nid;
	int next_nid;
	int ret = 0;

808
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
809 810 811
	next_nid = start_nid;

	do {
812 813 814 815 816 817
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
818 819 820 821 822 823
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
824 825 826 827
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
828 829
			update_and_free_page(h, page);
			ret = 1;
830
			break;
831
		}
832
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
833
	} while (next_nid != start_nid);
834 835 836 837

	return ret;
}

838
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
839 840
{
	struct page *page;
841
	unsigned int r_nid;
842

843 844 845
	if (h->order >= MAX_ORDER)
		return NULL;

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
870
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
871 872 873
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
874 875
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
876 877 878
	}
	spin_unlock(&hugetlb_lock);

879 880 881 882 883 884 885 886
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
887

888 889
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
890
		page = NULL;
891 892
	}

893
	spin_lock(&hugetlb_lock);
894
	if (page) {
895
		INIT_LIST_HEAD(&page->lru);
896
		r_nid = page_to_nid(page);
897
		set_compound_page_dtor(page, free_huge_page);
898 899 900
		/*
		 * We incremented the global counters already
		 */
901 902
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
903
		__count_vm_event(HTLB_BUDDY_PGALLOC);
904
	} else {
905 906
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
907
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
908
	}
909
	spin_unlock(&hugetlb_lock);
910 911 912 913

	return page;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

933
/*
L
Lucas De Marchi 已提交
934
 * Increase the hugetlb pool such that it can accommodate a reservation
935 936
 * of size 'delta'.
 */
937
static int gather_surplus_pages(struct hstate *h, int delta)
938 939 940 941 942
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
943
	bool alloc_ok = true;
944

945
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
946
	if (needed <= 0) {
947
		h->resv_huge_pages += delta;
948
		return 0;
949
	}
950 951 952 953 954 955 956 957

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
958
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
959 960 961 962
		if (!page) {
			alloc_ok = false;
			break;
		}
963 964
		list_add(&page->lru, &surplus_list);
	}
965
	allocated += i;
966 967 968 969 970 971

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
972 973
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
974 975 976 977 978 979 980 981 982 983
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
984 985
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
986
	 * needed to accommodate the reservation.  Add the appropriate number
987
	 * of pages to the hugetlb pool and free the extras back to the buddy
988 989 990
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
991 992
	 */
	needed += allocated;
993
	h->resv_huge_pages += delta;
994
	ret = 0;
995

996
	/* Free the needed pages to the hugetlb pool */
997
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
998 999
		if ((--needed) < 0)
			break;
1000 1001 1002 1003 1004 1005
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1006
		enqueue_huge_page(h, page);
1007
	}
1008
free:
1009
	spin_unlock(&hugetlb_lock);
1010 1011 1012 1013

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1014
			put_page(page);
1015
		}
1016
	}
1017
	spin_lock(&hugetlb_lock);
1018 1019 1020 1021 1022 1023 1024 1025

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1026
 * Called with hugetlb_lock held.
1027
 */
1028 1029
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1030 1031 1032
{
	unsigned long nr_pages;

1033
	/* Uncommit the reservation */
1034
	h->resv_huge_pages -= unused_resv_pages;
1035

1036 1037 1038 1039
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1040
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1041

1042 1043
	/*
	 * We want to release as many surplus pages as possible, spread
1044 1045 1046 1047 1048
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1049 1050
	 */
	while (nr_pages--) {
1051
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
1052
			break;
1053 1054 1055
	}
}

1056 1057 1058
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1059 1060 1061 1062 1063 1064
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1065
 */
1066
static long vma_needs_reservation(struct hstate *h,
1067
			struct vm_area_struct *vma, unsigned long addr)
1068 1069 1070 1071
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1072
	if (vma->vm_flags & VM_MAYSHARE) {
1073
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1074 1075 1076
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1077 1078
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1079

1080
	} else  {
1081
		long err;
1082
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083 1084 1085 1086 1087 1088 1089
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1090
}
1091 1092
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1093 1094 1095 1096
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1097
	if (vma->vm_flags & VM_MAYSHARE) {
1098
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1099
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1100 1101

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1102
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1103 1104 1105 1106
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1107 1108 1109
	}
}

1110
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1111
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1112
{
1113
	struct hugepage_subpool *spool = subpool_vma(vma);
1114
	struct hstate *h = hstate_vma(vma);
1115
	struct page *page;
1116
	long chg;
1117 1118

	/*
1119 1120 1121 1122 1123 1124
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1125
	 */
1126
	chg = vma_needs_reservation(h, vma, addr);
1127
	if (chg < 0)
1128
		return ERR_PTR(-ENOMEM);
1129
	if (chg)
1130
		if (hugepage_subpool_get_pages(spool, chg))
1131
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1132 1133

	spin_lock(&hugetlb_lock);
1134
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1135
	spin_unlock(&hugetlb_lock);
1136

K
Ken Chen 已提交
1137
	if (!page) {
1138
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1139
		if (!page) {
1140
			hugepage_subpool_put_pages(spool, chg);
1141
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1142 1143
		}
	}
1144

1145
	set_page_private(page, (unsigned long)spool);
1146

1147
	vma_commit_reservation(h, vma, addr);
1148

1149
	return page;
1150 1151
}

1152
int __weak alloc_bootmem_huge_page(struct hstate *h)
1153 1154
{
	struct huge_bootmem_page *m;
1155
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1156 1157 1158 1159 1160

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1161
				NODE_DATA(hstate_next_node_to_alloc(h,
1162
						&node_states[N_HIGH_MEMORY])),
1163 1164 1165 1166 1167 1168 1169 1170 1171
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1172
			goto found;
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1186 1187 1188 1189 1190 1191 1192 1193
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1194 1195 1196 1197 1198 1199 1200
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1201 1202 1203 1204 1205 1206 1207 1208 1209
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1210 1211
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1212
		prep_compound_huge_page(page, h->order);
1213
		prep_new_huge_page(h, page, page_to_nid(page));
1214 1215 1216 1217 1218 1219 1220 1221
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1222 1223 1224
	}
}

1225
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1226 1227
{
	unsigned long i;
1228

1229
	for (i = 0; i < h->max_huge_pages; ++i) {
1230 1231 1232
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1233 1234
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1235 1236
			break;
	}
1237
	h->max_huge_pages = i;
1238 1239 1240 1241 1242 1243 1244
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1245 1246 1247
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1248 1249 1250
	}
}

A
Andi Kleen 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1262 1263 1264 1265 1266
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1267 1268 1269 1270 1271
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1272 1273 1274
	}
}

L
Linus Torvalds 已提交
1275
#ifdef CONFIG_HIGHMEM
1276 1277
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1278
{
1279 1280
	int i;

1281 1282 1283
	if (h->order >= MAX_ORDER)
		return;

1284
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1285
		struct page *page, *next;
1286 1287 1288
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1289
				return;
L
Linus Torvalds 已提交
1290 1291 1292
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1293
			update_and_free_page(h, page);
1294 1295
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1296 1297 1298 1299
		}
	}
}
#else
1300 1301
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1302 1303 1304 1305
{
}
#endif

1306 1307 1308 1309 1310
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1311 1312
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1313
{
1314
	int start_nid, next_nid;
1315 1316 1317 1318
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1319
	if (delta < 0)
1320
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1321
	else
1322
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1323 1324 1325 1326 1327 1328 1329 1330
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1331
			if (!h->surplus_huge_pages_node[nid]) {
1332 1333
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1334
				continue;
1335
			}
1336 1337 1338 1339 1340 1341
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1342
						h->nr_huge_pages_node[nid]) {
1343 1344
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1345
				continue;
1346
			}
1347
		}
1348 1349 1350 1351 1352

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1353
	} while (next_nid != start_nid);
1354 1355 1356 1357

	return ret;
}

1358
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1359 1360
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1361
{
1362
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1363

1364 1365 1366
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1367 1368 1369 1370
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1371 1372 1373 1374 1375 1376
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1377
	 */
L
Linus Torvalds 已提交
1378
	spin_lock(&hugetlb_lock);
1379
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1380
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1381 1382 1383
			break;
	}

1384
	while (count > persistent_huge_pages(h)) {
1385 1386 1387 1388 1389 1390
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1391
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1392 1393 1394 1395
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1396 1397 1398
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1399 1400 1401 1402 1403 1404 1405 1406
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1407 1408 1409 1410 1411 1412 1413 1414
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1415
	 */
1416
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1417
	min_count = max(count, min_count);
1418
	try_to_free_low(h, min_count, nodes_allowed);
1419
	while (min_count < persistent_huge_pages(h)) {
1420
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1421 1422
			break;
	}
1423
	while (count < persistent_huge_pages(h)) {
1424
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1425 1426 1427
			break;
	}
out:
1428
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1429
	spin_unlock(&hugetlb_lock);
1430
	return ret;
L
Linus Torvalds 已提交
1431 1432
}

1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1443 1444 1445
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1446 1447
{
	int i;
1448

1449
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1450 1451 1452
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1453
			return &hstates[i];
1454 1455 1456
		}

	return kobj_to_node_hstate(kobj, nidp);
1457 1458
}

1459
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1460 1461
					struct kobj_attribute *attr, char *buf)
{
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1473
}
1474

1475 1476 1477
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1478 1479
{
	int err;
1480
	int nid;
1481
	unsigned long count;
1482
	struct hstate *h;
1483
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1484

1485
	err = strict_strtoul(buf, 10, &count);
1486
	if (err)
1487
		goto out;
1488

1489
	h = kobj_to_hstate(kobj, &nid);
1490 1491 1492 1493 1494
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1514
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1515

1516
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1517 1518 1519
		NODEMASK_FREE(nodes_allowed);

	return len;
1520 1521 1522
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1535 1536 1537
}
HSTATE_ATTR(nr_hugepages);

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1559 1560 1561
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1562
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1563 1564
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1565

1566 1567 1568 1569 1570
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1571
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1572

1573 1574 1575
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1576 1577
	err = strict_strtoul(buf, 10, &input);
	if (err)
1578
		return err;
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1602 1603 1604 1605 1606 1607
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1608
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1609 1610 1611 1612 1613 1614 1615
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1627 1628 1629 1630 1631 1632 1633 1634 1635
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1636 1637 1638
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1639 1640 1641 1642 1643 1644 1645
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1646 1647 1648
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1649 1650
{
	int retval;
1651
	int hi = hstate_index(h);
1652

1653 1654
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1655 1656
		return -ENOMEM;

1657
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1658
	if (retval)
1659
		kobject_put(hstate_kobjs[hi]);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1674 1675
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1676 1677 1678 1679 1680 1681
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1682 1683 1684 1685
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1686 1687 1688
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1689 1690 1691 1692 1693 1694 1695 1696 1697
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1698
 * A subset of global hstate attributes for node devices
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1712
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1735
 * Unregister hstate attributes from a single node device.
1736 1737 1738 1739 1740
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1741
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1742 1743

	if (!nhs->hugepages_kobj)
1744
		return;		/* no hstate attributes */
1745

1746 1747 1748 1749 1750
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1751
		}
1752
	}
1753 1754 1755 1756 1757 1758

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1759
 * hugetlb module exit:  unregister hstate attributes from node devices
1760 1761 1762 1763 1764 1765 1766
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1767
	 * disable node device registrations.
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
1779
 * Register hstate attributes for a single node device.
1780 1781 1782 1783 1784
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1785
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1786 1787 1788 1789 1790 1791
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1792
							&node->dev.kobj);
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1803
						h->name, node->dev.id);
1804 1805 1806 1807 1808 1809 1810
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1811
 * hugetlb init time:  register hstate attributes for all registered node
1812 1813
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1814 1815 1816 1817 1818
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1819
	for_each_node_state(nid, N_HIGH_MEMORY) {
1820
		struct node *node = &node_devices[nid];
1821
		if (node->dev.id == nid)
1822 1823 1824 1825
			hugetlb_register_node(node);
	}

	/*
1826
	 * Let the node device driver know we're here so it can
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1848 1849 1850 1851
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1852 1853
	hugetlb_unregister_all_nodes();

1854
	for_each_hstate(h) {
1855
		kobject_put(hstate_kobjs[hstate_index(h)]);
1856 1857 1858 1859 1860 1861 1862 1863
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1864 1865 1866 1867 1868 1869
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1870

1871 1872 1873 1874
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1875
	}
1876
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1877 1878
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1879 1880 1881

	hugetlb_init_hstates();

1882 1883
	gather_bootmem_prealloc();

1884 1885 1886 1887
	report_hugepages();

	hugetlb_sysfs_init();

1888 1889
	hugetlb_register_all_nodes();

1890 1891 1892 1893 1894 1895 1896 1897
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1898 1899
	unsigned long i;

1900 1901 1902 1903
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1904
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1905
	BUG_ON(order == 0);
1906
	h = &hstates[hugetlb_max_hstate++];
1907 1908
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1909 1910 1911 1912
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1913
	INIT_LIST_HEAD(&h->hugepage_activelist);
1914 1915
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1916 1917
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1918

1919 1920 1921
	parsed_hstate = h;
}

1922
static int __init hugetlb_nrpages_setup(char *s)
1923 1924
{
	unsigned long *mhp;
1925
	static unsigned long *last_mhp;
1926 1927

	/*
1928
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1929 1930
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1931
	if (!hugetlb_max_hstate)
1932 1933 1934 1935
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1936 1937 1938 1939 1940 1941
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1942 1943 1944
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1945 1946 1947 1948 1949
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1950
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1951 1952 1953 1954
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1955 1956
	return 1;
}
1957 1958 1959 1960 1961 1962 1963 1964
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1965

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1978 1979 1980
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1981
{
1982 1983
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1984
	int ret;
1985

1986
	tmp = h->max_huge_pages;
1987

1988 1989 1990
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1991 1992
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1993 1994 1995
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1996

1997
	if (write) {
1998 1999
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
2010 2011
out:
	return ret;
L
Linus Torvalds 已提交
2012
}
2013

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2031
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2032
			void __user *buffer,
2033 2034
			size_t *length, loff_t *ppos)
{
2035
	proc_dointvec(table, write, buffer, length, ppos);
2036 2037 2038 2039 2040 2041 2042
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2043
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2044
			void __user *buffer,
2045 2046
			size_t *length, loff_t *ppos)
{
2047
	struct hstate *h = &default_hstate;
2048
	unsigned long tmp;
2049
	int ret;
2050

2051
	tmp = h->nr_overcommit_huge_pages;
2052

2053 2054 2055
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2056 2057
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2058 2059 2060
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2061 2062 2063 2064 2065 2066

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2067 2068
out:
	return ret;
2069 2070
}

L
Linus Torvalds 已提交
2071 2072
#endif /* CONFIG_SYSCTL */

2073
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2074
{
2075
	struct hstate *h = &default_hstate;
2076
	seq_printf(m,
2077 2078 2079 2080 2081
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2082 2083 2084 2085 2086
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2087 2088 2089 2090
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2091
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2092 2093
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2094 2095
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2096 2097 2098
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2104 2105
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2106 2107
}

2108
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2131
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2132 2133
			goto out;

2134 2135
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2136 2137 2138 2139 2140 2141
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2142
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2143 2144 2145 2146 2147 2148

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2149 2150 2151 2152 2153 2154 2155 2156
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2157
	 * has a reference to the reservation map it cannot disappear until
2158 2159 2160 2161 2162 2163 2164
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2165 2166 2167 2168 2169 2170 2171 2172 2173
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2174 2175
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2176
	struct hstate *h = hstate_vma(vma);
2177
	struct resv_map *reservations = vma_resv_map(vma);
2178
	struct hugepage_subpool *spool = subpool_vma(vma);
2179 2180 2181 2182 2183
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2184 2185
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2186 2187 2188 2189

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2190
		resv_map_put(vma);
2191

2192
		if (reserve) {
2193
			hugetlb_acct_memory(h, -reserve);
2194
			hugepage_subpool_put_pages(spool, reserve);
2195
		}
2196
	}
2197 2198
}

L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2205
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2206 2207
{
	BUG();
N
Nick Piggin 已提交
2208
	return 0;
L
Linus Torvalds 已提交
2209 2210
}

2211
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2212
	.fault = hugetlb_vm_op_fault,
2213
	.open = hugetlb_vm_op_open,
2214
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2215 2216
};

2217 2218
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2219 2220 2221
{
	pte_t entry;

2222
	if (writable) {
D
David Gibson 已提交
2223 2224 2225
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2226
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2227 2228 2229
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2230
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2231 2232 2233 2234

	return entry;
}

2235 2236 2237 2238 2239
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2240
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2241
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2242
		update_mmu_cache(vma, address, ptep);
2243 2244 2245
}


D
David Gibson 已提交
2246 2247 2248 2249 2250
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2251
	unsigned long addr;
2252
	int cow;
2253 2254
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2255 2256

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2257

2258
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2259 2260 2261
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2262
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2263 2264
		if (!dst_pte)
			goto nomem;
2265 2266 2267 2268 2269

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2270
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2271
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2272
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2273
			if (cow)
2274 2275
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2276 2277
			ptepage = pte_page(entry);
			get_page(ptepage);
2278
			page_dup_rmap(ptepage);
2279 2280 2281
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2282
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2283 2284 2285 2286 2287 2288 2289
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2290 2291 2292 2293 2294 2295 2296
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2297
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2298
		return 1;
2299
	else
N
Naoya Horiguchi 已提交
2300 2301 2302
		return 0;
}

2303 2304 2305 2306 2307 2308 2309
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2310
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2311
		return 1;
2312
	else
2313 2314 2315
		return 0;
}

2316 2317 2318
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2319
{
2320
	int force_flush = 0;
D
David Gibson 已提交
2321 2322
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2323
	pte_t *ptep;
D
David Gibson 已提交
2324 2325
	pte_t pte;
	struct page *page;
2326 2327 2328
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

D
David Gibson 已提交
2329
	WARN_ON(!is_vm_hugetlb_page(vma));
2330 2331
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2332

2333
	tlb_start_vma(tlb, vma);
A
Andrea Arcangeli 已提交
2334
	mmu_notifier_invalidate_range_start(mm, start, end);
2335
again:
2336
	spin_lock(&mm->page_table_lock);
2337
	for (address = start; address < end; address += sz) {
2338
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2339
		if (!ptep)
2340 2341
			continue;

2342 2343 2344
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

		page = pte_page(pte);
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2373
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2374
		tlb_remove_tlb_entry(tlb, ptep, address);
2375 2376
		if (pte_dirty(pte))
			set_page_dirty(page);
2377

2378 2379 2380 2381
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2382 2383 2384
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2385
	}
2386
	spin_unlock(&mm->page_table_lock);
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2397
	}
2398 2399
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2400
}
D
David Gibson 已提交
2401

2402
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2403
			  unsigned long end, struct page *ref_page)
2404
{
2405 2406 2407 2408 2409 2410 2411 2412
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2413 2414
}

2415 2416 2417 2418 2419 2420
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2421 2422
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2423
{
2424
	struct hstate *h = hstate_vma(vma);
2425 2426 2427 2428 2429 2430 2431 2432 2433
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2434
	address = address & huge_page_mask(h);
2435
	pgoff = vma_hugecache_offset(h, vma, address);
2436
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2437

2438 2439 2440 2441 2442
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2443
	mutex_lock(&mapping->i_mmap_mutex);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2457 2458
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2459
	}
2460
	mutex_unlock(&mapping->i_mmap_mutex);
2461 2462 2463 2464

	return 1;
}

2465 2466
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2467 2468 2469
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2470
 */
2471
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2472 2473
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2474
{
2475
	struct hstate *h = hstate_vma(vma);
2476
	struct page *old_page, *new_page;
2477
	int avoidcopy;
2478
	int outside_reserve = 0;
2479 2480 2481

	old_page = pte_page(pte);

2482
retry_avoidcopy:
2483 2484
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2485
	avoidcopy = (page_mapcount(old_page) == 1);
2486
	if (avoidcopy) {
2487 2488
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2489
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2490
		return 0;
2491 2492
	}

2493 2494 2495 2496 2497 2498 2499 2500 2501
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2502
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2503 2504 2505 2506
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2507
	page_cache_get(old_page);
2508 2509 2510

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2511
	new_page = alloc_huge_page(vma, address, outside_reserve);
2512

2513
	if (IS_ERR(new_page)) {
2514
		long err = PTR_ERR(new_page);
2515
		page_cache_release(old_page);
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2528
				spin_lock(&mm->page_table_lock);
2529 2530 2531 2532 2533 2534 2535 2536
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2537 2538 2539 2540
			}
			WARN_ON_ONCE(1);
		}

2541 2542
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2543 2544 2545 2546
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2547 2548
	}

2549 2550 2551 2552
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2553
	if (unlikely(anon_vma_prepare(vma))) {
2554 2555
		page_cache_release(new_page);
		page_cache_release(old_page);
2556 2557
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2558
		return VM_FAULT_OOM;
2559
	}
2560

A
Andrea Arcangeli 已提交
2561 2562
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2563
	__SetPageUptodate(new_page);
2564

2565 2566 2567 2568 2569
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2570
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2571
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2572
		/* Break COW */
2573 2574 2575
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2576
		huge_ptep_clear_flush(vma, address, ptep);
2577 2578
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2579
		page_remove_rmap(old_page);
2580
		hugepage_add_new_anon_rmap(new_page, vma, address);
2581 2582
		/* Make the old page be freed below */
		new_page = old_page;
2583 2584 2585
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2586 2587 2588
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2589
	return 0;
2590 2591
}

2592
/* Return the pagecache page at a given address within a VMA */
2593 2594
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2595 2596
{
	struct address_space *mapping;
2597
	pgoff_t idx;
2598 2599

	mapping = vma->vm_file->f_mapping;
2600
	idx = vma_hugecache_offset(h, vma, address);
2601 2602 2603 2604

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2605 2606 2607 2608 2609
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2625
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2626
			unsigned long address, pte_t *ptep, unsigned int flags)
2627
{
2628
	struct hstate *h = hstate_vma(vma);
2629
	int ret = VM_FAULT_SIGBUS;
2630
	int anon_rmap = 0;
2631
	pgoff_t idx;
A
Adam Litke 已提交
2632 2633 2634
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2635
	pte_t new_pte;
A
Adam Litke 已提交
2636

2637 2638 2639
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2640
	 * COW. Warn that such a situation has occurred as it may not be obvious
2641 2642 2643 2644 2645 2646 2647 2648
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2649
	mapping = vma->vm_file->f_mapping;
2650
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2651 2652 2653 2654 2655

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2656 2657 2658
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2659
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2660 2661
		if (idx >= size)
			goto out;
2662
		page = alloc_huge_page(vma, address, 0);
2663
		if (IS_ERR(page)) {
2664 2665 2666 2667 2668
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2669 2670
			goto out;
		}
A
Andrea Arcangeli 已提交
2671
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2672
		__SetPageUptodate(page);
2673

2674
		if (vma->vm_flags & VM_MAYSHARE) {
2675
			int err;
K
Ken Chen 已提交
2676
			struct inode *inode = mapping->host;
2677 2678 2679 2680 2681 2682 2683 2684

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2685 2686

			spin_lock(&inode->i_lock);
2687
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2688
			spin_unlock(&inode->i_lock);
2689
		} else {
2690
			lock_page(page);
2691 2692 2693 2694
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2695
			anon_rmap = 1;
2696
		}
2697
	} else {
2698 2699 2700 2701 2702 2703
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2704
			ret = VM_FAULT_HWPOISON |
2705
				VM_FAULT_SET_HINDEX(hstate_index(h));
2706 2707
			goto backout_unlocked;
		}
2708
	}
2709

2710 2711 2712 2713 2714 2715
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2716
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2717 2718 2719 2720
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2721

2722
	spin_lock(&mm->page_table_lock);
2723
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2724 2725 2726
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2727
	ret = 0;
2728
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2729 2730
		goto backout;

2731 2732 2733 2734
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2735 2736 2737 2738
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2739
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2740
		/* Optimization, do the COW without a second fault */
2741
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2742 2743
	}

2744
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2745 2746
	unlock_page(page);
out:
2747
	return ret;
A
Adam Litke 已提交
2748 2749 2750

backout:
	spin_unlock(&mm->page_table_lock);
2751
backout_unlocked:
A
Adam Litke 已提交
2752 2753 2754
	unlock_page(page);
	put_page(page);
	goto out;
2755 2756
}

2757
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2758
			unsigned long address, unsigned int flags)
2759 2760 2761
{
	pte_t *ptep;
	pte_t entry;
2762
	int ret;
2763
	struct page *page = NULL;
2764
	struct page *pagecache_page = NULL;
2765
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2766
	struct hstate *h = hstate_vma(vma);
2767

2768 2769
	address &= huge_page_mask(h);

2770 2771 2772
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2773 2774 2775 2776
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2777
			return VM_FAULT_HWPOISON_LARGE |
2778
				VM_FAULT_SET_HINDEX(hstate_index(h));
2779 2780
	}

2781
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2782 2783 2784
	if (!ptep)
		return VM_FAULT_OOM;

2785 2786 2787 2788 2789 2790
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2791 2792
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2793
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2794
		goto out_mutex;
2795
	}
2796

N
Nick Piggin 已提交
2797
	ret = 0;
2798

2799 2800 2801 2802 2803 2804 2805 2806
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2807
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2808 2809
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2810
			goto out_mutex;
2811
		}
2812

2813
		if (!(vma->vm_flags & VM_MAYSHARE))
2814 2815 2816 2817
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2818 2819 2820 2821 2822 2823 2824 2825
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2826
	get_page(page);
2827
	if (page != pagecache_page)
2828 2829
		lock_page(page);

2830 2831
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2832 2833 2834 2835
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2836
	if (flags & FAULT_FLAG_WRITE) {
2837
		if (!pte_write(entry)) {
2838 2839
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2840 2841 2842 2843 2844
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2845 2846
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2847
		update_mmu_cache(vma, address, ptep);
2848 2849

out_page_table_lock:
2850
	spin_unlock(&mm->page_table_lock);
2851 2852 2853 2854 2855

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2856 2857
	if (page != pagecache_page)
		unlock_page(page);
2858
	put_page(page);
2859

2860
out_mutex:
2861
	mutex_unlock(&hugetlb_instantiation_mutex);
2862 2863

	return ret;
2864 2865
}

A
Andi Kleen 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2875 2876
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2877
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2878
			unsigned int flags)
D
David Gibson 已提交
2879
{
2880 2881
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2882
	int remainder = *length;
2883
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2884

2885
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2886
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2887
		pte_t *pte;
H
Hugh Dickins 已提交
2888
		int absent;
A
Adam Litke 已提交
2889
		struct page *page;
D
David Gibson 已提交
2890

A
Adam Litke 已提交
2891 2892
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2893
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2894 2895
		 * first, for the page indexing below to work.
		 */
2896
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2897 2898 2899 2900
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2901 2902 2903 2904
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2905
		 */
H
Hugh Dickins 已提交
2906 2907
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2908 2909 2910
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2911

H
Hugh Dickins 已提交
2912 2913
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2914
			int ret;
D
David Gibson 已提交
2915

A
Adam Litke 已提交
2916
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2917 2918
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2919
			spin_lock(&mm->page_table_lock);
2920
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2921
				continue;
D
David Gibson 已提交
2922

A
Adam Litke 已提交
2923 2924 2925 2926
			remainder = 0;
			break;
		}

2927
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2928
		page = pte_page(huge_ptep_get(pte));
2929
same_page:
2930
		if (pages) {
H
Hugh Dickins 已提交
2931
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2932
			get_page(pages[i]);
2933
		}
D
David Gibson 已提交
2934 2935 2936 2937 2938

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2939
		++pfn_offset;
D
David Gibson 已提交
2940 2941
		--remainder;
		++i;
2942
		if (vaddr < vma->vm_end && remainder &&
2943
				pfn_offset < pages_per_huge_page(h)) {
2944 2945 2946 2947 2948 2949
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2950
	}
2951
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2952 2953 2954
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2955
	return i ? i : -EFAULT;
D
David Gibson 已提交
2956
}
2957 2958 2959 2960 2961 2962 2963 2964

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2965
	struct hstate *h = hstate_vma(vma);
2966 2967 2968 2969

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2970
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2971
	spin_lock(&mm->page_table_lock);
2972
	for (; address < end; address += huge_page_size(h)) {
2973 2974 2975
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2976 2977
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2978
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2979 2980 2981 2982 2983 2984
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2985
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2986 2987 2988 2989

	flush_tlb_range(vma, start, end);
}

2990 2991
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2992
					struct vm_area_struct *vma,
2993
					vm_flags_t vm_flags)
2994
{
2995
	long ret, chg;
2996
	struct hstate *h = hstate_inode(inode);
2997
	struct hugepage_subpool *spool = subpool_inode(inode);
2998

2999 3000 3001
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3002
	 * without using reserves
3003
	 */
3004
	if (vm_flags & VM_NORESERVE)
3005 3006
		return 0;

3007 3008 3009 3010 3011 3012
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3013
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3014
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3015 3016 3017 3018 3019
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3020
		chg = to - from;
3021

3022 3023 3024 3025
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3026 3027 3028 3029
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3030

3031
	/* There must be enough pages in the subpool for the mapping */
3032 3033 3034 3035
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3036 3037

	/*
3038
	 * Check enough hugepages are available for the reservation.
3039
	 * Hand the pages back to the subpool if there are not
3040
	 */
3041
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3042
	if (ret < 0) {
3043
		hugepage_subpool_put_pages(spool, chg);
3044
		goto out_err;
K
Ken Chen 已提交
3045
	}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3058
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3059
		region_add(&inode->i_mapping->private_list, from, to);
3060
	return 0;
3061
out_err:
3062 3063
	if (vma)
		resv_map_put(vma);
3064
	return ret;
3065 3066 3067 3068
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3069
	struct hstate *h = hstate_inode(inode);
3070
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3071
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3072 3073

	spin_lock(&inode->i_lock);
3074
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3075 3076
	spin_unlock(&inode->i_lock);

3077
	hugepage_subpool_put_pages(spool, (chg - freed));
3078
	hugetlb_acct_memory(h, -(chg - freed));
3079
}
3080

3081 3082
#ifdef CONFIG_MEMORY_FAILURE

3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3097 3098 3099 3100
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3101
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3102 3103 3104
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3105
	int ret = -EBUSY;
3106 3107

	spin_lock(&hugetlb_lock);
3108 3109
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
3110
		set_page_refcounted(hpage);
3111 3112 3113 3114
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3115
	spin_unlock(&hugetlb_lock);
3116
	return ret;
3117
}
3118
#endif