hugetlb.c 117.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
		if (!trg)
			return -ENOMEM;

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

384 385 386 387 388 389 390 391 392
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
393
		if (!nrg) {
394
			resv->adds_in_progress--;
395 396 397 398 399 400 401 402 403 404
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
405

406 407 408
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
409 410 411 412 413 414 415 416 417 418 419 420
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
421
			goto out;
422

L
Lucas De Marchi 已提交
423
		/* We overlap with this area, if it extends further than
424 425 426 427 428 429 430 431
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
432 433 434 435 436 437 438 439

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
440 441 442
	return chg;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

462
/*
463 464 465 466 467 468 469 470 471 472 473 474
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
475
 */
476
static long region_del(struct resv_map *resv, long f, long t)
477
{
478
	struct list_head *head = &resv->regions;
479
	struct file_region *rg, *trg;
480 481
	struct file_region *nrg = NULL;
	long del = 0;
482

483
retry:
484
	spin_lock(&resv->lock);
485 486 487 488
	list_for_each_entry_safe(rg, trg, head, link) {
		if (rg->to <= f)
			continue;
		if (rg->from >= t)
489 490
			break;

491 492 493 494 495 496 497 498 499 500 501 502 503
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
525
			break;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
542
	}
543 544

	spin_unlock(&resv->lock);
545 546
	kfree(nrg);
	return del;
547 548
}

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

571 572 573 574
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
575
static long region_count(struct resv_map *resv, long f, long t)
576
{
577
	struct list_head *head = &resv->regions;
578 579 580
	struct file_region *rg;
	long chg = 0;

581
	spin_lock(&resv->lock);
582 583
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
584 585
		long seg_from;
		long seg_to;
586 587 588 589 590 591 592 593 594 595 596

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
597
	spin_unlock(&resv->lock);
598 599 600 601

	return chg;
}

602 603 604 605
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
606 607
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
608
{
609 610
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
611 612
}

613 614 615 616 617 618
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

632
	return 1UL << huge_page_shift(hstate);
633
}
634
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635

636 637 638 639 640 641 642 643 644 645 646 647 648
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

649 650 651 652 653 654 655
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
656
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657

658 659 660 661 662 663 664 665 666
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
667 668 669 670 671 672 673 674 675
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
676
 */
677 678 679 680 681 682 683 684 685 686 687
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

688
struct resv_map *resv_map_alloc(void)
689 690
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 692 693 694 695
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
696
		return NULL;
697
	}
698 699

	kref_init(&resv_map->refs);
700
	spin_lock_init(&resv_map->lock);
701 702
	INIT_LIST_HEAD(&resv_map->regions);

703 704 705 706 707 708
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

709 710 711
	return resv_map;
}

712
void resv_map_release(struct kref *ref)
713 714
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 716
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
717 718

	/* Clear out any active regions before we release the map. */
719
	region_del(resv_map, 0, LONG_MAX);
720 721 722 723 724 725 726 727 728

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

729 730 731
	kfree(resv_map);
}

732 733 734 735 736
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

737
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738
{
739
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 741 742 743 744 745 746
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
747 748
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
749
	}
750 751
}

752
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753
{
754 755
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756

757 758
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
759 760 761 762
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
763 764
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765 766

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 768 769 770
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
771
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772 773

	return (get_vma_private_data(vma) & flag) != 0;
774 775
}

776
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 778
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
779
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780
	if (!(vma->vm_flags & VM_MAYSHARE))
781 782 783 784
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
785
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786
{
787 788 789 790 791 792 793 794 795 796 797
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798
			return true;
799
		else
800
			return false;
801
	}
802 803

	/* Shared mappings always use reserves */
804 805 806 807 808 809 810 811 812 813 814 815 816
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
817 818 819 820 821

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
822
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823
		return true;
824

825
	return false;
826 827
}

828
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
829 830
{
	int nid = page_to_nid(page);
831
	list_move(&page->lru, &h->hugepage_freelists[nid]);
832 833
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
834 835
}

836 837 838 839
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

840 841 842 843 844 845 846 847
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
848
		return NULL;
849
	list_move(&page->lru, &h->hugepage_activelist);
850
	set_page_refcounted(page);
851 852 853 854 855
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

856 857 858
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
859
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 861 862 863 864
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

865 866
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
867 868
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
869
{
870
	struct page *page = NULL;
871
	struct mempolicy *mpol;
872
	nodemask_t *nodemask;
873
	struct zonelist *zonelist;
874 875
	struct zone *zone;
	struct zoneref *z;
876
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
877

878 879 880 881 882
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
883
	if (!vma_has_reserves(vma, chg) &&
884
			h->free_huge_pages - h->resv_huge_pages == 0)
885
		goto err;
886

887
	/* If reserves cannot be used, ensure enough pages are in the pool */
888
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889
		goto err;
890

891
retry_cpuset:
892
	cpuset_mems_cookie = read_mems_allowed_begin();
893
	zonelist = huge_zonelist(vma, address,
894
					htlb_alloc_mask(h), &mpol, &nodemask);
895

896 897
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
898
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 900
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
901 902 903 904 905
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

906
				SetPagePrivate(page);
907
				h->resv_huge_pages--;
908 909
				break;
			}
A
Andrew Morton 已提交
910
		}
L
Linus Torvalds 已提交
911
	}
912

913
	mpol_cond_put(mpol);
914
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915
		goto retry_cpuset;
L
Linus Torvalds 已提交
916
	return page;
917 918 919

err:
	return NULL;
L
Linus Torvalds 已提交
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1133
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1134 1135
{
	int i;
1136

1137 1138
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1139

1140 1141 1142
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1143 1144
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1145 1146
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1147
	}
1148
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
1149 1150
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
1151 1152 1153 1154 1155 1156
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1195
void free_huge_page(struct page *page)
1196
{
1197 1198 1199 1200
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1201
	struct hstate *h = page_hstate(page);
1202
	int nid = page_to_nid(page);
1203 1204
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1205
	bool restore_reserve;
1206

1207
	set_page_private(page, 0);
1208
	page->mapping = NULL;
1209
	BUG_ON(page_count(page));
1210
	BUG_ON(page_mapcount(page));
1211
	restore_reserve = PagePrivate(page);
1212
	ClearPagePrivate(page);
1213

1214 1215 1216 1217 1218 1219 1220 1221
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1222
	spin_lock(&hugetlb_lock);
1223
	clear_page_huge_active(page);
1224 1225
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1226 1227 1228
	if (restore_reserve)
		h->resv_huge_pages++;

1229
	if (h->surplus_huge_pages_node[nid]) {
1230 1231
		/* remove the page from active list */
		list_del(&page->lru);
1232 1233 1234
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1235
	} else {
1236
		arch_clear_hugepage_flags(page);
1237
		enqueue_huge_page(h, page);
1238
	}
1239 1240 1241
	spin_unlock(&hugetlb_lock);
}

1242
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243
{
1244
	INIT_LIST_HEAD(&page->lru);
1245 1246
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1247
	set_hugetlb_cgroup(page, NULL);
1248 1249
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1250 1251 1252 1253
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1254
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 1256 1257 1258 1259 1260 1261 1262
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1263
	__ClearPageReserved(page);
1264
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1278
		set_page_count(p, 0);
1279
		p->first_page = page;
1280 1281 1282
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1283 1284 1285
	}
}

A
Andrew Morton 已提交
1286 1287 1288 1289 1290
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1291 1292 1293 1294 1295 1296
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1297
	return get_compound_page_dtor(page) == free_huge_page;
1298
}
1299 1300
EXPORT_SYMBOL_GPL(PageHuge);

1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1310
	return get_compound_page_dtor(page_head) == free_huge_page;
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1330
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1331 1332
{
	struct page *page;
1333

1334
	page = __alloc_pages_node(nid,
1335
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336
						__GFP_REPEAT|__GFP_NOWARN,
1337
		huge_page_order(h));
L
Linus Torvalds 已提交
1338
	if (page) {
1339
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1340
	}
1341 1342 1343 1344

	return page;
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1367 1368 1369 1370 1371 1372
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1373 1374
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1375
{
1376
	int nr_nodes, node;
1377 1378
	int ret = 0;

1379
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 1381 1382 1383
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1384 1385
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1386
			struct page *page =
1387
				list_entry(h->hugepage_freelists[node].next,
1388 1389 1390
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1391
			h->free_huge_pages_node[node]--;
1392 1393
			if (acct_surplus) {
				h->surplus_huge_pages--;
1394
				h->surplus_huge_pages_node[node]--;
1395
			}
1396 1397
			update_and_free_page(h, page);
			ret = 1;
1398
			break;
1399
		}
1400
	}
1401 1402 1403 1404

	return ret;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1432 1433 1434
	if (!hugepages_supported())
		return;

1435 1436
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 1438 1439
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
	 * have one, we use the 'nid' argument
	 */
	if (!vma) {
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
	 * allocate a huge page with it.
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1510 1511
{
	struct page *page;
1512
	unsigned int r_nid;
1513

1514
	if (hstate_is_gigantic(h))
1515 1516
		return NULL;

1517 1518 1519 1520 1521 1522 1523 1524 1525
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
		WARN_ON_ONCE(addr == -1);
		WARN_ON_ONCE(nid != NUMA_NO_NODE);
	}
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1550
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1551 1552 1553
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1554 1555
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1556 1557 1558
	}
	spin_unlock(&hugetlb_lock);

1559
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1560 1561

	spin_lock(&hugetlb_lock);
1562
	if (page) {
1563
		INIT_LIST_HEAD(&page->lru);
1564
		r_nid = page_to_nid(page);
1565
		set_compound_page_dtor(page, free_huge_page);
1566
		set_hugetlb_cgroup(page, NULL);
1567 1568 1569
		/*
		 * We incremented the global counters already
		 */
1570 1571
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1572
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1573
	} else {
1574 1575
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1576
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1577
	}
1578
	spin_unlock(&hugetlb_lock);
1579 1580 1581 1582

	return page;
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1604 1605 1606 1607 1608 1609 1610
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1611
	struct page *page = NULL;
1612 1613

	spin_lock(&hugetlb_lock);
1614 1615
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1616 1617
	spin_unlock(&hugetlb_lock);

1618
	if (!page)
1619
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1620 1621 1622 1623

	return page;
}

1624
/*
L
Lucas De Marchi 已提交
1625
 * Increase the hugetlb pool such that it can accommodate a reservation
1626 1627
 * of size 'delta'.
 */
1628
static int gather_surplus_pages(struct hstate *h, int delta)
1629 1630 1631 1632 1633
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1634
	bool alloc_ok = true;
1635

1636
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1637
	if (needed <= 0) {
1638
		h->resv_huge_pages += delta;
1639
		return 0;
1640
	}
1641 1642 1643 1644 1645 1646 1647 1648

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1649
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1650 1651 1652 1653
		if (!page) {
			alloc_ok = false;
			break;
		}
1654 1655
		list_add(&page->lru, &surplus_list);
	}
1656
	allocated += i;
1657 1658 1659 1660 1661 1662

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1663 1664
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1675 1676
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1677
	 * needed to accommodate the reservation.  Add the appropriate number
1678
	 * of pages to the hugetlb pool and free the extras back to the buddy
1679 1680 1681
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1682 1683
	 */
	needed += allocated;
1684
	h->resv_huge_pages += delta;
1685
	ret = 0;
1686

1687
	/* Free the needed pages to the hugetlb pool */
1688
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1689 1690
		if ((--needed) < 0)
			break;
1691 1692 1693 1694 1695
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1696
		VM_BUG_ON_PAGE(page_count(page), page);
1697
		enqueue_huge_page(h, page);
1698
	}
1699
free:
1700
	spin_unlock(&hugetlb_lock);
1701 1702

	/* Free unnecessary surplus pages to the buddy allocator */
1703 1704
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1705
	spin_lock(&hugetlb_lock);
1706 1707 1708 1709 1710 1711 1712 1713

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1714
 * Called with hugetlb_lock held.
1715
 */
1716 1717
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1718 1719 1720
{
	unsigned long nr_pages;

1721
	/* Uncommit the reservation */
1722
	h->resv_huge_pages -= unused_resv_pages;
1723

1724
	/* Cannot return gigantic pages currently */
1725
	if (hstate_is_gigantic(h))
1726 1727
		return;

1728
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1729

1730 1731
	/*
	 * We want to release as many surplus pages as possible, spread
1732 1733 1734 1735 1736
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1737 1738
	 */
	while (nr_pages--) {
1739
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1740
			break;
1741
		cond_resched_lock(&hugetlb_lock);
1742 1743 1744
	}
}

1745

1746
/*
1747
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1748
 * are used by the huge page allocation routines to manage reservations.
1749 1750 1751 1752 1753 1754
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1755 1756 1757
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1758 1759 1760 1761 1762 1763
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1764
 */
1765 1766 1767
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1768
	VMA_END_RESV,
1769
};
1770 1771
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1772
				enum vma_resv_mode mode)
1773
{
1774 1775
	struct resv_map *resv;
	pgoff_t idx;
1776
	long ret;
1777

1778 1779
	resv = vma_resv_map(vma);
	if (!resv)
1780
		return 1;
1781

1782
	idx = vma_hugecache_offset(h, vma, addr);
1783 1784
	switch (mode) {
	case VMA_NEEDS_RESV:
1785
		ret = region_chg(resv, idx, idx + 1);
1786 1787 1788 1789
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1790
	case VMA_END_RESV:
1791 1792 1793 1794 1795 1796
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1797

1798
	if (vma->vm_flags & VM_MAYSHARE)
1799
		return ret;
1800
	else
1801
		return ret < 0 ? ret : 0;
1802
}
1803 1804

static long vma_needs_reservation(struct hstate *h,
1805
			struct vm_area_struct *vma, unsigned long addr)
1806
{
1807
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1808
}
1809

1810 1811 1812
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1813 1814 1815
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1816
static void vma_end_reservation(struct hstate *h,
1817 1818
			struct vm_area_struct *vma, unsigned long addr)
{
1819
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1820 1821
}

1822
struct page *alloc_huge_page(struct vm_area_struct *vma,
1823
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1824
{
1825
	struct hugepage_subpool *spool = subpool_vma(vma);
1826
	struct hstate *h = hstate_vma(vma);
1827
	struct page *page;
1828 1829
	long map_chg, map_commit;
	long gbl_chg;
1830 1831
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1832

1833
	idx = hstate_index(h);
1834
	/*
1835 1836 1837
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1838
	 */
1839 1840
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1841
		return ERR_PTR(-ENOMEM);
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1853
			vma_end_reservation(h, vma, addr);
1854
			return ERR_PTR(-ENOSPC);
1855
		}
L
Linus Torvalds 已提交
1856

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1869
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1870 1871 1872
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1873
	spin_lock(&hugetlb_lock);
1874 1875 1876 1877 1878 1879
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1880
	if (!page) {
1881
		spin_unlock(&hugetlb_lock);
1882
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1883 1884 1885
		if (!page)
			goto out_uncharge_cgroup;

1886 1887
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1888
		/* Fall through */
K
Ken Chen 已提交
1889
	}
1890 1891
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1892

1893
	set_page_private(page, (unsigned long)spool);
1894

1895 1896
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1911
	return page;
1912 1913 1914 1915

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1916
	if (map_chg || avoid_reserve)
1917
		hugepage_subpool_put_pages(spool, 1);
1918
	vma_end_reservation(h, vma, addr);
1919
	return ERR_PTR(-ENOSPC);
1920 1921
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1936
int __weak alloc_bootmem_huge_page(struct hstate *h)
1937 1938
{
	struct huge_bootmem_page *m;
1939
	int nr_nodes, node;
1940

1941
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1942 1943
		void *addr;

1944 1945 1946
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1947 1948 1949 1950 1951 1952 1953
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1954
			goto found;
1955 1956 1957 1958 1959
		}
	}
	return 0;

found:
1960
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1961 1962 1963 1964 1965 1966
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1967
static void __init prep_compound_huge_page(struct page *page, int order)
1968 1969 1970 1971 1972 1973 1974
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1975 1976 1977 1978 1979 1980 1981
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1982 1983 1984 1985
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1986 1987
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1988 1989 1990
#else
		page = virt_to_page(m);
#endif
1991
		WARN_ON(page_count(page) != 1);
1992
		prep_compound_huge_page(page, h->order);
1993
		WARN_ON(PageReserved(page));
1994
		prep_new_huge_page(h, page, page_to_nid(page));
1995 1996 1997 1998 1999 2000
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2001
		if (hstate_is_gigantic(h))
2002
			adjust_managed_page_count(page, 1 << h->order);
2003 2004 2005
	}
}

2006
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2007 2008
{
	unsigned long i;
2009

2010
	for (i = 0; i < h->max_huge_pages; ++i) {
2011
		if (hstate_is_gigantic(h)) {
2012 2013
			if (!alloc_bootmem_huge_page(h))
				break;
2014
		} else if (!alloc_fresh_huge_page(h,
2015
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2016 2017
			break;
	}
2018
	h->max_huge_pages = i;
2019 2020 2021 2022 2023 2024 2025
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2026 2027 2028
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2029
		/* oversize hugepages were init'ed in early boot */
2030
		if (!hstate_is_gigantic(h))
2031
			hugetlb_hstate_alloc_pages(h);
2032
	}
2033
	VM_BUG_ON(minimum_order == UINT_MAX);
2034 2035
}

A
Andi Kleen 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2047 2048 2049 2050 2051
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2052
		char buf[32];
2053
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2054 2055
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2056 2057 2058
	}
}

L
Linus Torvalds 已提交
2059
#ifdef CONFIG_HIGHMEM
2060 2061
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2062
{
2063 2064
	int i;

2065
	if (hstate_is_gigantic(h))
2066 2067
		return;

2068
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2069
		struct page *page, *next;
2070 2071 2072
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2073
				return;
L
Linus Torvalds 已提交
2074 2075 2076
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2077
			update_and_free_page(h, page);
2078 2079
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2080 2081 2082 2083
		}
	}
}
#else
2084 2085
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2086 2087 2088 2089
{
}
#endif

2090 2091 2092 2093 2094
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2095 2096
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2097
{
2098
	int nr_nodes, node;
2099 2100 2101

	VM_BUG_ON(delta != -1 && delta != 1);

2102 2103 2104 2105
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2106
		}
2107 2108 2109 2110 2111
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2112
		}
2113 2114
	}
	return 0;
2115

2116 2117 2118 2119
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2120 2121
}

2122
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2123 2124
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2125
{
2126
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2127

2128
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2129 2130
		return h->max_huge_pages;

2131 2132 2133 2134
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2135 2136 2137 2138 2139 2140
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2141
	 */
L
Linus Torvalds 已提交
2142
	spin_lock(&hugetlb_lock);
2143
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2144
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2145 2146 2147
			break;
	}

2148
	while (count > persistent_huge_pages(h)) {
2149 2150 2151 2152 2153 2154
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2155 2156 2157 2158
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2159 2160 2161 2162
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2163 2164 2165
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2166 2167 2168 2169 2170 2171 2172 2173
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2174 2175 2176 2177 2178 2179 2180 2181
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2182
	 */
2183
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2184
	min_count = max(count, min_count);
2185
	try_to_free_low(h, min_count, nodes_allowed);
2186
	while (min_count < persistent_huge_pages(h)) {
2187
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2188
			break;
2189
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2190
	}
2191
	while (count < persistent_huge_pages(h)) {
2192
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2193 2194 2195
			break;
	}
out:
2196
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2197
	spin_unlock(&hugetlb_lock);
2198
	return ret;
L
Linus Torvalds 已提交
2199 2200
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2211 2212 2213
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2214 2215
{
	int i;
2216

2217
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2218 2219 2220
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2221
			return &hstates[i];
2222 2223 2224
		}

	return kobj_to_node_hstate(kobj, nidp);
2225 2226
}

2227
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2228 2229
					struct kobj_attribute *attr, char *buf)
{
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2241
}
2242

2243 2244 2245
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2246 2247
{
	int err;
2248
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2249

2250
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2251 2252 2253 2254
		err = -EINVAL;
		goto out;
	}

2255 2256 2257 2258 2259 2260 2261
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2262
			nodes_allowed = &node_states[N_MEMORY];
2263 2264 2265 2266 2267 2268 2269 2270 2271
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2272
		nodes_allowed = &node_states[N_MEMORY];
2273

2274
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2275

2276
	if (nodes_allowed != &node_states[N_MEMORY])
2277 2278 2279
		NODEMASK_FREE(nodes_allowed);

	return len;
2280 2281 2282
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2283 2284
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2302 2303 2304 2305 2306 2307 2308 2309 2310
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2311
	return nr_hugepages_store_common(false, kobj, buf, len);
2312 2313 2314
}
HSTATE_ATTR(nr_hugepages);

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2330
	return nr_hugepages_store_common(true, kobj, buf, len);
2331 2332 2333 2334 2335
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2336 2337 2338
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2339
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2340 2341
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2342

2343 2344 2345 2346 2347
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2348
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2349

2350
	if (hstate_is_gigantic(h))
2351 2352
		return -EINVAL;

2353
	err = kstrtoul(buf, 10, &input);
2354
	if (err)
2355
		return err;
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2379 2380 2381 2382 2383 2384
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2385
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2386 2387 2388 2389 2390 2391 2392
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2404 2405 2406 2407 2408 2409 2410 2411 2412
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2413 2414 2415
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2416 2417 2418 2419 2420 2421 2422
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2423 2424 2425
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2426 2427
{
	int retval;
2428
	int hi = hstate_index(h);
2429

2430 2431
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2432 2433
		return -ENOMEM;

2434
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2435
	if (retval)
2436
		kobject_put(hstate_kobjs[hi]);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2451 2452
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2453
		if (err)
2454
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2455 2456 2457
	}
}

2458 2459 2460 2461
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2462 2463 2464
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2465 2466 2467 2468 2469 2470
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2471
static struct node_hstate node_hstates[MAX_NUMNODES];
2472 2473

/*
2474
 * A subset of global hstate attributes for node devices
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2488
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2511
 * Unregister hstate attributes from a single node device.
2512 2513
 * No-op if no hstate attributes attached.
 */
2514
static void hugetlb_unregister_node(struct node *node)
2515 2516
{
	struct hstate *h;
2517
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2518 2519

	if (!nhs->hugepages_kobj)
2520
		return;		/* no hstate attributes */
2521

2522 2523 2524 2525 2526
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2527
		}
2528
	}
2529 2530 2531 2532 2533 2534

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2535
 * hugetlb module exit:  unregister hstate attributes from node devices
2536 2537 2538 2539 2540 2541 2542
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2543
	 * disable node device registrations.
2544 2545 2546 2547 2548 2549 2550
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2551
		hugetlb_unregister_node(node_devices[nid]);
2552 2553 2554
}

/*
2555
 * Register hstate attributes for a single node device.
2556 2557
 * No-op if attributes already registered.
 */
2558
static void hugetlb_register_node(struct node *node)
2559 2560
{
	struct hstate *h;
2561
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2562 2563 2564 2565 2566 2567
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2568
							&node->dev.kobj);
2569 2570 2571 2572 2573 2574 2575 2576
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2577 2578
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2579 2580 2581 2582 2583 2584 2585
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2586
 * hugetlb init time:  register hstate attributes for all registered node
2587 2588
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2589
 */
2590
static void __init hugetlb_register_all_nodes(void)
2591 2592 2593
{
	int nid;

2594
	for_each_node_state(nid, N_MEMORY) {
2595
		struct node *node = node_devices[nid];
2596
		if (node->dev.id == nid)
2597 2598 2599 2600
			hugetlb_register_node(node);
	}

	/*
2601
	 * Let the node device driver know we're here so it can
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2623 2624 2625 2626
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2627 2628
	hugetlb_unregister_all_nodes();

2629
	for_each_hstate(h) {
2630
		kobject_put(hstate_kobjs[hstate_index(h)]);
2631 2632 2633
	}

	kobject_put(hugepages_kobj);
2634
	kfree(hugetlb_fault_mutex_table);
2635 2636 2637 2638 2639
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2640 2641
	int i;

2642
	if (!hugepages_supported())
2643
		return 0;
2644

2645 2646 2647 2648
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2649
	}
2650
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2651 2652
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2653 2654

	hugetlb_init_hstates();
2655
	gather_bootmem_prealloc();
2656 2657 2658
	report_hugepages();

	hugetlb_sysfs_init();
2659
	hugetlb_register_all_nodes();
2660
	hugetlb_cgroup_file_init();
2661

2662 2663 2664 2665 2666
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2667
	hugetlb_fault_mutex_table =
2668
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2669
	BUG_ON(!hugetlb_fault_mutex_table);
2670 2671

	for (i = 0; i < num_fault_mutexes; i++)
2672
		mutex_init(&hugetlb_fault_mutex_table[i]);
2673 2674 2675 2676 2677 2678 2679 2680
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2681 2682
	unsigned long i;

2683
	if (size_to_hstate(PAGE_SIZE << order)) {
2684
		pr_warning("hugepagesz= specified twice, ignoring\n");
2685 2686
		return;
	}
2687
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2688
	BUG_ON(order == 0);
2689
	h = &hstates[hugetlb_max_hstate++];
2690 2691
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2692 2693 2694 2695
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2696
	INIT_LIST_HEAD(&h->hugepage_activelist);
2697 2698
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2699 2700
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2701

2702 2703 2704
	parsed_hstate = h;
}

2705
static int __init hugetlb_nrpages_setup(char *s)
2706 2707
{
	unsigned long *mhp;
2708
	static unsigned long *last_mhp;
2709 2710

	/*
2711
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2712 2713
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2714
	if (!hugetlb_max_hstate)
2715 2716 2717 2718
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2719
	if (mhp == last_mhp) {
2720 2721
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2722 2723 2724
		return 1;
	}

2725 2726 2727
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2728 2729 2730 2731 2732
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2733
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2734 2735 2736 2737
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2738 2739
	return 1;
}
2740 2741 2742 2743 2744 2745 2746 2747
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2748

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2761 2762 2763
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2764
{
2765
	struct hstate *h = &default_hstate;
2766
	unsigned long tmp = h->max_huge_pages;
2767
	int ret;
2768

2769 2770 2771
	if (!hugepages_supported())
		return -ENOTSUPP;

2772 2773
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2774 2775 2776
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2777

2778 2779 2780
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2781 2782
out:
	return ret;
L
Linus Torvalds 已提交
2783
}
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2802
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2803
			void __user *buffer,
2804 2805
			size_t *length, loff_t *ppos)
{
2806
	struct hstate *h = &default_hstate;
2807
	unsigned long tmp;
2808
	int ret;
2809

2810 2811 2812
	if (!hugepages_supported())
		return -ENOTSUPP;

2813
	tmp = h->nr_overcommit_huge_pages;
2814

2815
	if (write && hstate_is_gigantic(h))
2816 2817
		return -EINVAL;

2818 2819
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2820 2821 2822
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2823 2824 2825 2826 2827 2828

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2829 2830
out:
	return ret;
2831 2832
}

L
Linus Torvalds 已提交
2833 2834
#endif /* CONFIG_SYSCTL */

2835
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2836
{
2837
	struct hstate *h = &default_hstate;
2838 2839
	if (!hugepages_supported())
		return;
2840
	seq_printf(m,
2841 2842 2843 2844 2845
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2846 2847 2848 2849 2850
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2851 2852 2853 2854
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2855
	struct hstate *h = &default_hstate;
2856 2857
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2858 2859
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2860 2861
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2862 2863 2864
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2865 2866
}

2867 2868 2869 2870 2871
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2872 2873 2874
	if (!hugepages_supported())
		return;

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2885 2886 2887 2888 2889 2890
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2891 2892 2893
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2894 2895 2896 2897 2898 2899
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2900 2901
}

2902
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2925
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2926 2927
			goto out;

2928 2929
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2930 2931 2932 2933 2934 2935
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2936
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2937 2938 2939 2940 2941 2942

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2943 2944
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2945
	struct resv_map *resv = vma_resv_map(vma);
2946 2947 2948 2949 2950

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2951
	 * has a reference to the reservation map it cannot disappear until
2952 2953 2954
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2955
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2956
		kref_get(&resv->refs);
2957 2958
}

2959 2960
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2961
	struct hstate *h = hstate_vma(vma);
2962
	struct resv_map *resv = vma_resv_map(vma);
2963
	struct hugepage_subpool *spool = subpool_vma(vma);
2964
	unsigned long reserve, start, end;
2965
	long gbl_reserve;
2966

2967 2968
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2969

2970 2971
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2972

2973
	reserve = (end - start) - region_count(resv, start, end);
2974

2975 2976 2977
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2978 2979 2980 2981 2982 2983
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2984
	}
2985 2986
}

L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2993
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2994 2995
{
	BUG();
N
Nick Piggin 已提交
2996
	return 0;
L
Linus Torvalds 已提交
2997 2998
}

2999
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3000
	.fault = hugetlb_vm_op_fault,
3001
	.open = hugetlb_vm_op_open,
3002
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3003 3004
};

3005 3006
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3007 3008 3009
{
	pte_t entry;

3010
	if (writable) {
3011 3012
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3013
	} else {
3014 3015
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3016 3017 3018
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3019
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3020 3021 3022 3023

	return entry;
}

3024 3025 3026 3027 3028
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3029
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3030
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3031
		update_mmu_cache(vma, address, ptep);
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3059

D
David Gibson 已提交
3060 3061 3062 3063 3064
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3065
	unsigned long addr;
3066
	int cow;
3067 3068
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3069 3070 3071
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3072 3073

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3074

3075 3076 3077 3078 3079
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3080
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3081
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3082 3083 3084
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3085
		dst_pte = huge_pte_alloc(dst, addr, sz);
3086 3087 3088 3089
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3090 3091 3092 3093 3094

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3095 3096 3097
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3116
			if (cow) {
3117
				huge_ptep_set_wrprotect(src, addr, src_pte);
3118 3119 3120
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3121
			entry = huge_ptep_get(src_pte);
3122 3123
			ptepage = pte_page(entry);
			get_page(ptepage);
3124
			page_dup_rmap(ptepage);
3125
			set_huge_pte_at(dst, addr, dst_pte, entry);
3126
			hugetlb_count_add(pages_per_huge_page(h), dst);
3127
		}
3128 3129
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3130 3131
	}

3132 3133 3134 3135
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3136 3137
}

3138 3139 3140
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3141
{
3142
	int force_flush = 0;
D
David Gibson 已提交
3143 3144
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3145
	pte_t *ptep;
D
David Gibson 已提交
3146
	pte_t pte;
3147
	spinlock_t *ptl;
D
David Gibson 已提交
3148
	struct page *page;
3149 3150
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3151 3152
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3153

D
David Gibson 已提交
3154
	WARN_ON(!is_vm_hugetlb_page(vma));
3155 3156
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3157

3158
	tlb_start_vma(tlb, vma);
3159
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3160
	address = start;
3161
again:
3162
	for (; address < end; address += sz) {
3163
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3164
		if (!ptep)
3165 3166
			continue;

3167
		ptl = huge_pte_lock(h, mm, ptep);
3168
		if (huge_pmd_unshare(mm, &address, ptep))
3169
			goto unlock;
3170

3171 3172
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3173
			goto unlock;
3174 3175

		/*
3176 3177
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3178
		 */
3179
		if (unlikely(!pte_present(pte))) {
3180
			huge_pte_clear(mm, address, ptep);
3181
			goto unlock;
3182
		}
3183 3184

		page = pte_page(pte);
3185 3186 3187 3188 3189 3190 3191
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3192
				goto unlock;
3193 3194 3195 3196 3197 3198 3199 3200 3201

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3202
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3203
		tlb_remove_tlb_entry(tlb, ptep, address);
3204
		if (huge_pte_dirty(pte))
3205
			set_page_dirty(page);
3206

3207
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3208 3209
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3210
		if (force_flush) {
3211
			address += sz;
3212
			spin_unlock(ptl);
3213
			break;
3214
		}
3215
		/* Bail out after unmapping reference page if supplied */
3216 3217
		if (ref_page) {
			spin_unlock(ptl);
3218
			break;
3219 3220 3221
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3222
	}
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3233
	}
3234
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3235
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3236
}
D
David Gibson 已提交
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3250
	 * is to clear it before releasing the i_mmap_rwsem. This works
3251
	 * because in the context this is called, the VMA is about to be
3252
	 * destroyed and the i_mmap_rwsem is held.
3253 3254 3255 3256
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3257
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3258
			  unsigned long end, struct page *ref_page)
3259
{
3260 3261 3262 3263 3264
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3265
	tlb_gather_mmu(&tlb, mm, start, end);
3266 3267
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3268 3269
}

3270 3271 3272 3273 3274 3275
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3276 3277
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3278
{
3279
	struct hstate *h = hstate_vma(vma);
3280 3281 3282 3283 3284 3285 3286 3287
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3288
	address = address & huge_page_mask(h);
3289 3290
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3291
	mapping = file_inode(vma->vm_file)->i_mapping;
3292

3293 3294 3295 3296 3297
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3298
	i_mmap_lock_write(mapping);
3299
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3300 3301 3302 3303
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3304 3305 3306 3307 3308 3309 3310 3311
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3312 3313 3314 3315 3316 3317 3318 3319
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3320 3321
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3322
	}
3323
	i_mmap_unlock_write(mapping);
3324 3325
}

3326 3327
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3328 3329 3330
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3331
 */
3332
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3333
			unsigned long address, pte_t *ptep, pte_t pte,
3334
			struct page *pagecache_page, spinlock_t *ptl)
3335
{
3336
	struct hstate *h = hstate_vma(vma);
3337
	struct page *old_page, *new_page;
3338
	int ret = 0, outside_reserve = 0;
3339 3340
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3341 3342 3343

	old_page = pte_page(pte);

3344
retry_avoidcopy:
3345 3346
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3347 3348
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3349
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3350
		return 0;
3351 3352
	}

3353 3354 3355 3356 3357 3358 3359 3360 3361
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3362
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3363 3364 3365
			old_page != pagecache_page)
		outside_reserve = 1;

3366
	page_cache_get(old_page);
3367

3368 3369 3370 3371
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3372
	spin_unlock(ptl);
3373
	new_page = alloc_huge_page(vma, address, outside_reserve);
3374

3375
	if (IS_ERR(new_page)) {
3376 3377 3378 3379 3380 3381 3382 3383
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3384
			page_cache_release(old_page);
3385
			BUG_ON(huge_pte_none(pte));
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3398 3399
		}

3400 3401 3402
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3403 3404
	}

3405 3406 3407 3408
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3409
	if (unlikely(anon_vma_prepare(vma))) {
3410 3411
		ret = VM_FAULT_OOM;
		goto out_release_all;
3412
	}
3413

A
Andrea Arcangeli 已提交
3414 3415
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3416
	__SetPageUptodate(new_page);
3417
	set_page_huge_active(new_page);
3418

3419 3420 3421
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3422

3423
	/*
3424
	 * Retake the page table lock to check for racing updates
3425 3426
	 * before the page tables are altered
	 */
3427
	spin_lock(ptl);
3428
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3429
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3430 3431
		ClearPagePrivate(new_page);

3432
		/* Break COW */
3433
		huge_ptep_clear_flush(vma, address, ptep);
3434
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3435 3436
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3437
		page_remove_rmap(old_page);
3438
		hugepage_add_new_anon_rmap(new_page, vma, address);
3439 3440 3441
		/* Make the old page be freed below */
		new_page = old_page;
	}
3442
	spin_unlock(ptl);
3443
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3444
out_release_all:
3445
	page_cache_release(new_page);
3446
out_release_old:
3447
	page_cache_release(old_page);
3448

3449 3450
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3451 3452
}

3453
/* Return the pagecache page at a given address within a VMA */
3454 3455
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3456 3457
{
	struct address_space *mapping;
3458
	pgoff_t idx;
3459 3460

	mapping = vma->vm_file->f_mapping;
3461
	idx = vma_hugecache_offset(h, vma, address);
3462 3463 3464 3465

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3466 3467 3468 3469 3470
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3503
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3504 3505
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3506
{
3507
	struct hstate *h = hstate_vma(vma);
3508
	int ret = VM_FAULT_SIGBUS;
3509
	int anon_rmap = 0;
A
Adam Litke 已提交
3510 3511
	unsigned long size;
	struct page *page;
3512
	pte_t new_pte;
3513
	spinlock_t *ptl;
A
Adam Litke 已提交
3514

3515 3516 3517
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3518
	 * COW. Warn that such a situation has occurred as it may not be obvious
3519 3520
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3521 3522
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3523 3524 3525
		return ret;
	}

A
Adam Litke 已提交
3526 3527 3528 3529
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3530 3531 3532
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3533
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3534 3535
		if (idx >= size)
			goto out;
3536
		page = alloc_huge_page(vma, address, 0);
3537
		if (IS_ERR(page)) {
3538 3539 3540 3541 3542
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3543 3544
			goto out;
		}
A
Andrea Arcangeli 已提交
3545
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3546
		__SetPageUptodate(page);
3547
		set_page_huge_active(page);
3548

3549
		if (vma->vm_flags & VM_MAYSHARE) {
3550
			int err = huge_add_to_page_cache(page, mapping, idx);
3551 3552 3553 3554 3555 3556
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3557
		} else {
3558
			lock_page(page);
3559 3560 3561 3562
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3563
			anon_rmap = 1;
3564
		}
3565
	} else {
3566 3567 3568 3569 3570 3571
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3572
			ret = VM_FAULT_HWPOISON |
3573
				VM_FAULT_SET_HINDEX(hstate_index(h));
3574 3575
			goto backout_unlocked;
		}
3576
	}
3577

3578 3579 3580 3581 3582 3583
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3584
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3585 3586 3587 3588
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3589
		/* Just decrements count, does not deallocate */
3590
		vma_end_reservation(h, vma, address);
3591
	}
3592

3593 3594
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3595
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3596 3597 3598
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3599
	ret = 0;
3600
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3601 3602
		goto backout;

3603 3604
	if (anon_rmap) {
		ClearPagePrivate(page);
3605
		hugepage_add_new_anon_rmap(page, vma, address);
3606
	} else
3607
		page_dup_rmap(page);
3608 3609 3610 3611
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3612
	hugetlb_count_add(pages_per_huge_page(h), mm);
3613
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3614
		/* Optimization, do the COW without a second fault */
3615
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3616 3617
	}

3618
	spin_unlock(ptl);
A
Adam Litke 已提交
3619 3620
	unlock_page(page);
out:
3621
	return ret;
A
Adam Litke 已提交
3622 3623

backout:
3624
	spin_unlock(ptl);
3625
backout_unlocked:
A
Adam Litke 已提交
3626 3627 3628
	unlock_page(page);
	put_page(page);
	goto out;
3629 3630
}

3631
#ifdef CONFIG_SMP
3632
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3657
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3658 3659 3660 3661 3662 3663 3664 3665
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3666
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3667
			unsigned long address, unsigned int flags)
3668
{
3669
	pte_t *ptep, entry;
3670
	spinlock_t *ptl;
3671
	int ret;
3672 3673
	u32 hash;
	pgoff_t idx;
3674
	struct page *page = NULL;
3675
	struct page *pagecache_page = NULL;
3676
	struct hstate *h = hstate_vma(vma);
3677
	struct address_space *mapping;
3678
	int need_wait_lock = 0;
3679

3680 3681
	address &= huge_page_mask(h);

3682 3683 3684
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3685
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3686
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3687 3688
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3689
			return VM_FAULT_HWPOISON_LARGE |
3690
				VM_FAULT_SET_HINDEX(hstate_index(h));
3691 3692
	}

3693
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3694 3695 3696
	if (!ptep)
		return VM_FAULT_OOM;

3697 3698 3699
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3700 3701 3702 3703 3704
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3705 3706
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3707

3708 3709
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3710
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3711
		goto out_mutex;
3712
	}
3713

N
Nick Piggin 已提交
3714
	ret = 0;
3715

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3726 3727 3728 3729 3730 3731 3732 3733
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3734
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3735 3736
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3737
			goto out_mutex;
3738
		}
3739
		/* Just decrements count, does not deallocate */
3740
		vma_end_reservation(h, vma, address);
3741

3742
		if (!(vma->vm_flags & VM_MAYSHARE))
3743 3744 3745 3746
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3747 3748 3749 3750 3751 3752
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3753 3754 3755 3756 3757 3758 3759
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3760 3761 3762 3763
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3764

3765
	get_page(page);
3766

3767
	if (flags & FAULT_FLAG_WRITE) {
3768
		if (!huge_pte_write(entry)) {
3769
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3770
					pagecache_page, ptl);
3771
			goto out_put_page;
3772
		}
3773
		entry = huge_pte_mkdirty(entry);
3774 3775
	}
	entry = pte_mkyoung(entry);
3776 3777
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3778
		update_mmu_cache(vma, address, ptep);
3779 3780 3781 3782
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3783 3784
out_ptl:
	spin_unlock(ptl);
3785 3786 3787 3788 3789

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3790
out_mutex:
3791
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3792 3793 3794 3795 3796 3797 3798 3799 3800
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3801
	return ret;
3802 3803
}

3804 3805 3806 3807
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3808
{
3809 3810
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3811
	unsigned long remainder = *nr_pages;
3812
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3813 3814

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3815
		pte_t *pte;
3816
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3817
		int absent;
A
Adam Litke 已提交
3818
		struct page *page;
D
David Gibson 已提交
3819

3820 3821 3822 3823 3824 3825 3826 3827 3828
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3829 3830
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3831
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3832
		 * first, for the page indexing below to work.
3833 3834
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3835
		 */
3836
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3837 3838
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3839 3840 3841 3842
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3843 3844 3845 3846
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3847
		 */
H
Hugh Dickins 已提交
3848 3849
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3850 3851
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3852 3853 3854
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3855

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3867 3868
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3869
			int ret;
D
David Gibson 已提交
3870

3871 3872
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3873 3874
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3875
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3876
				continue;
D
David Gibson 已提交
3877

A
Adam Litke 已提交
3878 3879 3880 3881
			remainder = 0;
			break;
		}

3882
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3883
		page = pte_page(huge_ptep_get(pte));
3884
same_page:
3885
		if (pages) {
H
Hugh Dickins 已提交
3886
			pages[i] = mem_map_offset(page, pfn_offset);
3887
			get_page_foll(pages[i]);
3888
		}
D
David Gibson 已提交
3889 3890 3891 3892 3893

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3894
		++pfn_offset;
D
David Gibson 已提交
3895 3896
		--remainder;
		++i;
3897
		if (vaddr < vma->vm_end && remainder &&
3898
				pfn_offset < pages_per_huge_page(h)) {
3899 3900 3901 3902 3903 3904
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3905
		spin_unlock(ptl);
D
David Gibson 已提交
3906
	}
3907
	*nr_pages = remainder;
D
David Gibson 已提交
3908 3909
	*position = vaddr;

H
Hugh Dickins 已提交
3910
	return i ? i : -EFAULT;
D
David Gibson 已提交
3911
}
3912

3913
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3914 3915 3916 3917 3918 3919
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3920
	struct hstate *h = hstate_vma(vma);
3921
	unsigned long pages = 0;
3922 3923 3924 3925

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3926
	mmu_notifier_invalidate_range_start(mm, start, end);
3927
	i_mmap_lock_write(vma->vm_file->f_mapping);
3928
	for (; address < end; address += huge_page_size(h)) {
3929
		spinlock_t *ptl;
3930 3931 3932
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3933
		ptl = huge_pte_lock(h, mm, ptep);
3934 3935
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3936
			spin_unlock(ptl);
3937
			continue;
3938
		}
3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3959
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3960
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3961
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3962
			set_huge_pte_at(mm, address, ptep, pte);
3963
			pages++;
3964
		}
3965
		spin_unlock(ptl);
3966
	}
3967
	/*
3968
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3969
	 * may have cleared our pud entry and done put_page on the page table:
3970
	 * once we release i_mmap_rwsem, another task can do the final put_page
3971 3972
	 * and that page table be reused and filled with junk.
	 */
3973
	flush_tlb_range(vma, start, end);
3974
	mmu_notifier_invalidate_range(mm, start, end);
3975
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3976
	mmu_notifier_invalidate_range_end(mm, start, end);
3977 3978

	return pages << h->order;
3979 3980
}

3981 3982
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3983
					struct vm_area_struct *vma,
3984
					vm_flags_t vm_flags)
3985
{
3986
	long ret, chg;
3987
	struct hstate *h = hstate_inode(inode);
3988
	struct hugepage_subpool *spool = subpool_inode(inode);
3989
	struct resv_map *resv_map;
3990
	long gbl_reserve;
3991

3992 3993 3994
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3995
	 * without using reserves
3996
	 */
3997
	if (vm_flags & VM_NORESERVE)
3998 3999
		return 0;

4000 4001 4002 4003 4004 4005
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4006
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4007
		resv_map = inode_resv_map(inode);
4008

4009
		chg = region_chg(resv_map, from, to);
4010 4011 4012

	} else {
		resv_map = resv_map_alloc();
4013 4014 4015
		if (!resv_map)
			return -ENOMEM;

4016
		chg = to - from;
4017

4018 4019 4020 4021
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4022 4023 4024 4025
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4026

4027 4028 4029 4030 4031 4032 4033
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4034 4035 4036
		ret = -ENOSPC;
		goto out_err;
	}
4037 4038

	/*
4039
	 * Check enough hugepages are available for the reservation.
4040
	 * Hand the pages back to the subpool if there are not
4041
	 */
4042
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4043
	if (ret < 0) {
4044 4045
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4046
		goto out_err;
K
Ken Chen 已提交
4047
	}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4078
	return 0;
4079
out_err:
4080 4081
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4082 4083
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4084
	return ret;
4085 4086
}

4087 4088
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4089
{
4090
	struct hstate *h = hstate_inode(inode);
4091
	struct resv_map *resv_map = inode_resv_map(inode);
4092
	long chg = 0;
4093
	struct hugepage_subpool *spool = subpool_inode(inode);
4094
	long gbl_reserve;
K
Ken Chen 已提交
4095

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4107
	spin_lock(&inode->i_lock);
4108
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4109 4110
	spin_unlock(&inode->i_lock);

4111 4112 4113 4114 4115 4116
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4117 4118

	return 0;
4119
}
4120

4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4147
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4148 4149 4150 4151 4152 4153 4154 4155 4156
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4157 4158
		return true;
	return false;
4159 4160 4161 4162 4163 4164 4165
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4166
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4180
	spinlock_t *ptl;
4181 4182 4183 4184

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4185
	i_mmap_lock_write(mapping);
4186 4187 4188 4189 4190 4191 4192 4193
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4194
				mm_inc_nr_pmds(mm);
4195 4196 4197 4198 4199 4200 4201 4202 4203
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4204 4205
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4206
	if (pud_none(*pud)) {
4207 4208
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4209
	} else {
4210
		put_page(virt_to_page(spte));
4211 4212
		mm_inc_nr_pmds(mm);
	}
4213
	spin_unlock(ptl);
4214 4215
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4216
	i_mmap_unlock_write(mapping);
4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4227
 * called with page table lock held.
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4243
	mm_dec_nr_pmds(mm);
4244 4245 4246
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4247 4248 4249 4250 4251 4252
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4253 4254 4255 4256 4257

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4258
#define want_pmd_share()	(0)
4259 4260
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4319
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4320
		pmd_t *pmd, int flags)
4321
{
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4334
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4350 4351 4352
	return page;
}

4353
struct page * __weak
4354
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4355
		pud_t *pud, int flags)
4356
{
4357 4358
	if (flags & FOLL_GET)
		return NULL;
4359

4360
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4361 4362
}

4363 4364
#ifdef CONFIG_MEMORY_FAILURE

4365 4366 4367 4368
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4369
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4370 4371 4372
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4373
	int ret = -EBUSY;
4374 4375

	spin_lock(&hugetlb_lock);
4376 4377 4378 4379 4380
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4381 4382 4383 4384 4385 4386 4387
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4388
		set_page_refcounted(hpage);
4389 4390 4391 4392
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4393
	spin_unlock(&hugetlb_lock);
4394
	return ret;
4395
}
4396
#endif
4397 4398 4399

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4400 4401
	bool ret = true;

4402
	VM_BUG_ON_PAGE(!PageHead(page), page);
4403
	spin_lock(&hugetlb_lock);
4404 4405 4406 4407 4408
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4409
	list_move_tail(&page->lru, list);
4410
unlock:
4411
	spin_unlock(&hugetlb_lock);
4412
	return ret;
4413 4414 4415 4416
}

void putback_active_hugepage(struct page *page)
{
4417
	VM_BUG_ON_PAGE(!PageHead(page), page);
4418
	spin_lock(&hugetlb_lock);
4419
	set_page_huge_active(page);
4420 4421 4422 4423
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}