hugetlb.c 92.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

513
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
514 515
{
	int nid = page_to_nid(page);
516
	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 518
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
519 520
}

521 522 523 524
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

525 526 527 528 529 530 531 532
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
533
		return NULL;
534
	list_move(&page->lru, &h->hugepage_activelist);
535
	set_page_refcounted(page);
536 537 538 539 540
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

541 542 543 544 545 546 547 548 549
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

550 551
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
552 553
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
554
{
555
	struct page *page = NULL;
556
	struct mempolicy *mpol;
557
	nodemask_t *nodemask;
558
	struct zonelist *zonelist;
559 560
	struct zone *zone;
	struct zoneref *z;
561
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
562

563 564 565 566 567
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
568
	if (!vma_has_reserves(vma, chg) &&
569
			h->free_huge_pages - h->resv_huge_pages == 0)
570
		goto err;
571

572
	/* If reserves cannot be used, ensure enough pages are in the pool */
573
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574
		goto err;
575

576 577 578
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
579
					htlb_alloc_mask(h), &mpol, &nodemask);
580

581 582
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
583
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 585
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
586 587 588 589 590
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

591
				SetPagePrivate(page);
592
				h->resv_huge_pages--;
593 594
				break;
			}
A
Andrew Morton 已提交
595
		}
L
Linus Torvalds 已提交
596
	}
597

598
	mpol_cond_put(mpol);
599 600
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
601
	return page;
602 603 604

err:
	return NULL;
L
Linus Torvalds 已提交
605 606
}

607
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
608 609
{
	int i;
610

611 612
	VM_BUG_ON(h->order >= MAX_ORDER);

613 614 615
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
616 617 618 619
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
620
	}
621
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
622 623
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
624
	arch_release_hugepage(page);
625
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
626 627
}

628 629 630 631 632 633 634 635 636 637 638
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

639 640
static void free_huge_page(struct page *page)
{
641 642 643 644
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
645
	struct hstate *h = page_hstate(page);
646
	int nid = page_to_nid(page);
647 648
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
649
	bool restore_reserve;
650

651
	set_page_private(page, 0);
652
	page->mapping = NULL;
653
	BUG_ON(page_count(page));
654
	BUG_ON(page_mapcount(page));
655
	restore_reserve = PagePrivate(page);
656
	ClearPagePrivate(page);
657 658

	spin_lock(&hugetlb_lock);
659 660
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
661 662 663
	if (restore_reserve)
		h->resv_huge_pages++;

664
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665 666
		/* remove the page from active list */
		list_del(&page->lru);
667 668 669
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
670
	} else {
671
		arch_clear_hugepage_flags(page);
672
		enqueue_huge_page(h, page);
673
	}
674
	spin_unlock(&hugetlb_lock);
675
	hugepage_subpool_put_pages(spool, 1);
676 677
}

678
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679
{
680
	INIT_LIST_HEAD(&page->lru);
681 682
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
683
	set_hugetlb_cgroup(page, NULL);
684 685
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
686 687 688 689
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

690 691 692 693 694 695 696 697 698
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
699
	__ClearPageReserved(page);
700 701
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
702 703 704 705 706 707 708 709 710 711 712 713 714
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
715
		set_page_count(p, 0);
716 717 718 719
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
720 721 722 723 724
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
725 726 727 728 729 730 731 732 733 734 735 736
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
737 738
EXPORT_SYMBOL_GPL(PageHuge);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

756
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
757 758
{
	struct page *page;
759

760 761 762
	if (h->order >= MAX_ORDER)
		return NULL;

763
	page = alloc_pages_exact_node(nid,
764
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
765
						__GFP_REPEAT|__GFP_NOWARN,
766
		huge_page_order(h));
L
Linus Torvalds 已提交
767
	if (page) {
768
		if (arch_prepare_hugepage(page)) {
769
			__free_pages(page, huge_page_order(h));
770
			return NULL;
771
		}
772
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
773
	}
774 775 776 777

	return page;
}

778
/*
779 780 781 782 783
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
784
 */
785
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
786
{
787
	nid = next_node(nid, *nodes_allowed);
788
	if (nid == MAX_NUMNODES)
789
		nid = first_node(*nodes_allowed);
790 791 792 793 794
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

795 796 797 798 799 800 801
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

802
/*
803 804 805 806
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
807
 */
808 809
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
810
{
811 812 813 814 815 816
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
817 818

	return nid;
819 820
}

821
/*
822 823 824 825
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
826
 */
827
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
828
{
829 830 831 832 833 834
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
835 836

	return nid;
837 838
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

873 874 875 876 877 878
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
879 880
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
881
{
882
	int nr_nodes, node;
883 884
	int ret = 0;

885
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
886 887 888 889
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
890 891
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
892
			struct page *page =
893
				list_entry(h->hugepage_freelists[node].next,
894 895 896
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
897
			h->free_huge_pages_node[node]--;
898 899
			if (acct_surplus) {
				h->surplus_huge_pages--;
900
				h->surplus_huge_pages_node[node]--;
901
			}
902 903
			update_and_free_page(h, page);
			ret = 1;
904
			break;
905
		}
906
	}
907 908 909 910

	return ret;
}

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

949
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
950 951
{
	struct page *page;
952
	unsigned int r_nid;
953

954 955 956
	if (h->order >= MAX_ORDER)
		return NULL;

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
981
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
982 983 984
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
985 986
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
987 988 989
	}
	spin_unlock(&hugetlb_lock);

990
	if (nid == NUMA_NO_NODE)
991
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
992 993 994 995
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
996
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
997
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
998

999 1000
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1001
		page = NULL;
1002 1003
	}

1004
	spin_lock(&hugetlb_lock);
1005
	if (page) {
1006
		INIT_LIST_HEAD(&page->lru);
1007
		r_nid = page_to_nid(page);
1008
		set_compound_page_dtor(page, free_huge_page);
1009
		set_hugetlb_cgroup(page, NULL);
1010 1011 1012
		/*
		 * We incremented the global counters already
		 */
1013 1014
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1015
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1016
	} else {
1017 1018
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1019
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1020
	}
1021
	spin_unlock(&hugetlb_lock);
1022 1023 1024 1025

	return page;
}

1026 1027 1028 1029 1030 1031 1032
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1033
	struct page *page = NULL;
1034 1035

	spin_lock(&hugetlb_lock);
1036 1037
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1038 1039
	spin_unlock(&hugetlb_lock);

1040
	if (!page)
1041 1042 1043 1044 1045
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1046
/*
L
Lucas De Marchi 已提交
1047
 * Increase the hugetlb pool such that it can accommodate a reservation
1048 1049
 * of size 'delta'.
 */
1050
static int gather_surplus_pages(struct hstate *h, int delta)
1051 1052 1053 1054 1055
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1056
	bool alloc_ok = true;
1057

1058
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1059
	if (needed <= 0) {
1060
		h->resv_huge_pages += delta;
1061
		return 0;
1062
	}
1063 1064 1065 1066 1067 1068 1069 1070

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1071
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1072 1073 1074 1075
		if (!page) {
			alloc_ok = false;
			break;
		}
1076 1077
		list_add(&page->lru, &surplus_list);
	}
1078
	allocated += i;
1079 1080 1081 1082 1083 1084

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1085 1086
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1097 1098
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1099
	 * needed to accommodate the reservation.  Add the appropriate number
1100
	 * of pages to the hugetlb pool and free the extras back to the buddy
1101 1102 1103
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1104 1105
	 */
	needed += allocated;
1106
	h->resv_huge_pages += delta;
1107
	ret = 0;
1108

1109
	/* Free the needed pages to the hugetlb pool */
1110
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1111 1112
		if ((--needed) < 0)
			break;
1113 1114 1115 1116 1117 1118
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1119
		enqueue_huge_page(h, page);
1120
	}
1121
free:
1122
	spin_unlock(&hugetlb_lock);
1123 1124

	/* Free unnecessary surplus pages to the buddy allocator */
1125 1126
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1127
	spin_lock(&hugetlb_lock);
1128 1129 1130 1131 1132 1133 1134 1135

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1136
 * Called with hugetlb_lock held.
1137
 */
1138 1139
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1140 1141 1142
{
	unsigned long nr_pages;

1143
	/* Uncommit the reservation */
1144
	h->resv_huge_pages -= unused_resv_pages;
1145

1146 1147 1148 1149
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1150
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1151

1152 1153
	/*
	 * We want to release as many surplus pages as possible, spread
1154 1155 1156 1157 1158
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1159 1160
	 */
	while (nr_pages--) {
1161
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1162
			break;
1163 1164 1165
	}
}

1166 1167 1168
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1169 1170 1171 1172 1173 1174
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1175
 */
1176
static long vma_needs_reservation(struct hstate *h,
1177
			struct vm_area_struct *vma, unsigned long addr)
1178 1179 1180 1181
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1182
	if (vma->vm_flags & VM_MAYSHARE) {
1183
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184 1185 1186
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1187 1188
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1189

1190
	} else  {
1191
		long err;
1192
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1193
		struct resv_map *resv = vma_resv_map(vma);
1194

1195
		err = region_chg(&resv->regions, idx, idx + 1);
1196 1197 1198 1199
		if (err < 0)
			return err;
		return 0;
	}
1200
}
1201 1202
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1203 1204 1205 1206
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1207
	if (vma->vm_flags & VM_MAYSHARE) {
1208
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1209
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1210 1211

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1212
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1213
		struct resv_map *resv = vma_resv_map(vma);
1214 1215

		/* Mark this page used in the map. */
1216
		region_add(&resv->regions, idx, idx + 1);
1217 1218 1219
	}
}

1220
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1222
{
1223
	struct hugepage_subpool *spool = subpool_vma(vma);
1224
	struct hstate *h = hstate_vma(vma);
1225
	struct page *page;
1226
	long chg;
1227 1228
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1229

1230
	idx = hstate_index(h);
1231
	/*
1232 1233 1234 1235 1236 1237
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1238
	 */
1239
	chg = vma_needs_reservation(h, vma, addr);
1240
	if (chg < 0)
1241
		return ERR_PTR(-ENOMEM);
1242 1243
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1244
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1245

1246 1247
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1248 1249
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1250 1251
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1252
	spin_lock(&hugetlb_lock);
1253
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254
	if (!page) {
1255
		spin_unlock(&hugetlb_lock);
1256
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1257
		if (!page) {
1258 1259 1260
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1261 1262
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1263
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1264
		}
1265 1266
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1267
		/* Fall through */
K
Ken Chen 已提交
1268
	}
1269 1270
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1271

1272
	set_page_private(page, (unsigned long)spool);
1273

1274
	vma_commit_reservation(h, vma, addr);
1275
	return page;
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1292
int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 1294
{
	struct huge_bootmem_page *m;
1295
	int nr_nodes, node;
1296

1297
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298 1299
		void *addr;

1300
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1301 1302 1303 1304 1305 1306 1307 1308 1309
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1310
			goto found;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1323 1324 1325 1326 1327 1328 1329 1330
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1331 1332 1333 1334 1335 1336 1337
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1338 1339 1340 1341 1342 1343 1344 1345 1346
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1347
		WARN_ON(page_count(page) != 1);
1348
		prep_compound_huge_page(page, h->order);
1349
		WARN_ON(PageReserved(page));
1350
		prep_new_huge_page(h, page, page_to_nid(page));
1351 1352 1353 1354 1355 1356 1357
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1358
			adjust_managed_page_count(page, 1 << h->order);
1359 1360 1361
	}
}

1362
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1363 1364
{
	unsigned long i;
1365

1366
	for (i = 0; i < h->max_huge_pages; ++i) {
1367 1368 1369
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1370
		} else if (!alloc_fresh_huge_page(h,
1371
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1372 1373
			break;
	}
1374
	h->max_huge_pages = i;
1375 1376 1377 1378 1379 1380 1381
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1382 1383 1384
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1385 1386 1387
	}
}

A
Andi Kleen 已提交
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1399 1400 1401 1402 1403
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1404
		char buf[32];
1405
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1406 1407
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1408 1409 1410
	}
}

L
Linus Torvalds 已提交
1411
#ifdef CONFIG_HIGHMEM
1412 1413
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1414
{
1415 1416
	int i;

1417 1418 1419
	if (h->order >= MAX_ORDER)
		return;

1420
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1421
		struct page *page, *next;
1422 1423 1424
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1425
				return;
L
Linus Torvalds 已提交
1426 1427 1428
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1429
			update_and_free_page(h, page);
1430 1431
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1432 1433 1434 1435
		}
	}
}
#else
1436 1437
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1438 1439 1440 1441
{
}
#endif

1442 1443 1444 1445 1446
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1447 1448
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1449
{
1450
	int nr_nodes, node;
1451 1452 1453

	VM_BUG_ON(delta != -1 && delta != 1);

1454 1455 1456 1457
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1458
		}
1459 1460 1461 1462 1463
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1464
		}
1465 1466
	}
	return 0;
1467

1468 1469 1470 1471
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1472 1473
}

1474
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 1476
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1477
{
1478
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1479

1480 1481 1482
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1483 1484 1485 1486
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1487 1488 1489 1490 1491 1492
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1493
	 */
L
Linus Torvalds 已提交
1494
	spin_lock(&hugetlb_lock);
1495
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497 1498 1499
			break;
	}

1500
	while (count > persistent_huge_pages(h)) {
1501 1502 1503 1504 1505 1506
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1507
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1508 1509 1510 1511
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1512 1513 1514
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1515 1516 1517 1518 1519 1520 1521 1522
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1523 1524 1525 1526 1527 1528 1529 1530
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1531
	 */
1532
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533
	min_count = max(count, min_count);
1534
	try_to_free_low(h, min_count, nodes_allowed);
1535
	while (min_count < persistent_huge_pages(h)) {
1536
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1537 1538
			break;
	}
1539
	while (count < persistent_huge_pages(h)) {
1540
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541 1542 1543
			break;
	}
out:
1544
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1545
	spin_unlock(&hugetlb_lock);
1546
	return ret;
L
Linus Torvalds 已提交
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1559 1560 1561
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 1563
{
	int i;
1564

1565
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566 1567 1568
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1569
			return &hstates[i];
1570 1571 1572
		}

	return kobj_to_node_hstate(kobj, nidp);
1573 1574
}

1575
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576 1577
					struct kobj_attribute *attr, char *buf)
{
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1589
}
1590

1591 1592 1593
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1594 1595
{
	int err;
1596
	int nid;
1597
	unsigned long count;
1598
	struct hstate *h;
1599
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600

1601
	err = kstrtoul(buf, 10, &count);
1602
	if (err)
1603
		goto out;
1604

1605
	h = kobj_to_hstate(kobj, &nid);
1606 1607 1608 1609 1610
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1611 1612 1613 1614 1615 1616 1617
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1618
			nodes_allowed = &node_states[N_MEMORY];
1619 1620 1621 1622 1623 1624 1625 1626 1627
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1628
		nodes_allowed = &node_states[N_MEMORY];
1629

1630
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631

1632
	if (nodes_allowed != &node_states[N_MEMORY])
1633 1634 1635
		NODEMASK_FREE(nodes_allowed);

	return len;
1636 1637 1638
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 1652 1653
}
HSTATE_ATTR(nr_hugepages);

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1675 1676 1677
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1678
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1679 1680
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1681

1682 1683 1684 1685 1686
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1687
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1688

1689 1690 1691
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1692
	err = kstrtoul(buf, 10, &input);
1693
	if (err)
1694
		return err;
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1718 1719 1720 1721 1722 1723
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1724
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1725 1726 1727 1728 1729 1730 1731
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 1744 1745 1746 1747 1748 1749 1750 1751
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1752 1753 1754
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1755 1756 1757 1758 1759 1760 1761
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1762 1763 1764
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1765 1766
{
	int retval;
1767
	int hi = hstate_index(h);
1768

1769 1770
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1771 1772
		return -ENOMEM;

1773
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774
	if (retval)
1775
		kobject_put(hstate_kobjs[hi]);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1790 1791
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1792
		if (err)
1793
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794 1795 1796
	}
}

1797 1798 1799 1800
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 1802 1803
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1804 1805 1806 1807 1808 1809 1810 1811 1812
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1813
 * A subset of global hstate attributes for node devices
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1827
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1850
 * Unregister hstate attributes from a single node device.
1851 1852
 * No-op if no hstate attributes attached.
 */
1853
static void hugetlb_unregister_node(struct node *node)
1854 1855
{
	struct hstate *h;
1856
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1857 1858

	if (!nhs->hugepages_kobj)
1859
		return;		/* no hstate attributes */
1860

1861 1862 1863 1864 1865
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1866
		}
1867
	}
1868 1869 1870 1871 1872 1873

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1874
 * hugetlb module exit:  unregister hstate attributes from node devices
1875 1876 1877 1878 1879 1880 1881
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1882
	 * disable node device registrations.
1883 1884 1885 1886 1887 1888 1889
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1890
		hugetlb_unregister_node(node_devices[nid]);
1891 1892 1893
}

/*
1894
 * Register hstate attributes for a single node device.
1895 1896
 * No-op if attributes already registered.
 */
1897
static void hugetlb_register_node(struct node *node)
1898 1899
{
	struct hstate *h;
1900
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1901 1902 1903 1904 1905 1906
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907
							&node->dev.kobj);
1908 1909 1910 1911 1912 1913 1914 1915
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1916 1917
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1918 1919 1920 1921 1922 1923 1924
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1925
 * hugetlb init time:  register hstate attributes for all registered node
1926 1927
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1928 1929 1930 1931 1932
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1933
	for_each_node_state(nid, N_MEMORY) {
1934
		struct node *node = node_devices[nid];
1935
		if (node->dev.id == nid)
1936 1937 1938 1939
			hugetlb_register_node(node);
	}

	/*
1940
	 * Let the node device driver know we're here so it can
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1962 1963 1964 1965
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1966 1967
	hugetlb_unregister_all_nodes();

1968
	for_each_hstate(h) {
1969
		kobject_put(hstate_kobjs[hstate_index(h)]);
1970 1971 1972 1973 1974 1975 1976 1977
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1978 1979 1980 1981 1982 1983
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1984

1985 1986 1987 1988
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1989
	}
1990
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1991 1992
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1993 1994

	hugetlb_init_hstates();
1995
	gather_bootmem_prealloc();
1996 1997 1998
	report_hugepages();

	hugetlb_sysfs_init();
1999
	hugetlb_register_all_nodes();
2000
	hugetlb_cgroup_file_init();
2001

2002 2003 2004 2005 2006 2007 2008 2009
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2010 2011
	unsigned long i;

2012
	if (size_to_hstate(PAGE_SIZE << order)) {
2013
		pr_warning("hugepagesz= specified twice, ignoring\n");
2014 2015
		return;
	}
2016
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2017
	BUG_ON(order == 0);
2018
	h = &hstates[hugetlb_max_hstate++];
2019 2020
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2021 2022 2023 2024
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2025
	INIT_LIST_HEAD(&h->hugepage_activelist);
2026 2027
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2028 2029
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2030

2031 2032 2033
	parsed_hstate = h;
}

2034
static int __init hugetlb_nrpages_setup(char *s)
2035 2036
{
	unsigned long *mhp;
2037
	static unsigned long *last_mhp;
2038 2039

	/*
2040
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2041 2042
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2043
	if (!hugetlb_max_hstate)
2044 2045 2046 2047
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2048
	if (mhp == last_mhp) {
2049 2050
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2051 2052 2053
		return 1;
	}

2054 2055 2056
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2057 2058 2059 2060 2061
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2062
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2063 2064 2065 2066
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2067 2068
	return 1;
}
2069 2070 2071 2072 2073 2074 2075 2076
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2090 2091 2092
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2093
{
2094 2095
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2096
	int ret;
2097

2098
	tmp = h->max_huge_pages;
2099

2100 2101 2102
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2103 2104
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2105 2106 2107
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2108

2109
	if (write) {
2110 2111
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2112 2113 2114
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2115
			nodes_allowed = &node_states[N_MEMORY];
2116 2117 2118
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2119
		if (nodes_allowed != &node_states[N_MEMORY])
2120 2121
			NODEMASK_FREE(nodes_allowed);
	}
2122 2123
out:
	return ret;
L
Linus Torvalds 已提交
2124
}
2125

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2143
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2144
			void __user *buffer,
2145 2146
			size_t *length, loff_t *ppos)
{
2147
	struct hstate *h = &default_hstate;
2148
	unsigned long tmp;
2149
	int ret;
2150

2151
	tmp = h->nr_overcommit_huge_pages;
2152

2153 2154 2155
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2156 2157
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2158 2159 2160
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2161 2162 2163 2164 2165 2166

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2167 2168
out:
	return ret;
2169 2170
}

L
Linus Torvalds 已提交
2171 2172
#endif /* CONFIG_SYSCTL */

2173
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2174
{
2175
	struct hstate *h = &default_hstate;
2176
	seq_printf(m,
2177 2178 2179 2180 2181
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2182 2183 2184 2185 2186
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2187 2188 2189 2190
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2191
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2192 2193
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2194 2195
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2196 2197 2198
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2199 2200
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2216 2217 2218
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2219 2220 2221 2222 2223 2224
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2225 2226
}

2227
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2250
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2251 2252
			goto out;

2253 2254
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2255 2256 2257 2258 2259 2260
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2261
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2262 2263 2264 2265 2266 2267

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2268 2269
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2270
	struct resv_map *resv = vma_resv_map(vma);
2271 2272 2273 2274 2275

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2276
	 * has a reference to the reservation map it cannot disappear until
2277 2278 2279
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2280 2281
	if (resv)
		kref_get(&resv->refs);
2282 2283
}

2284 2285
static void resv_map_put(struct vm_area_struct *vma)
{
2286
	struct resv_map *resv = vma_resv_map(vma);
2287

2288
	if (!resv)
2289
		return;
2290
	kref_put(&resv->refs, resv_map_release);
2291 2292
}

2293 2294
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2295
	struct hstate *h = hstate_vma(vma);
2296
	struct resv_map *resv = vma_resv_map(vma);
2297
	struct hugepage_subpool *spool = subpool_vma(vma);
2298 2299 2300 2301
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2302
	if (resv) {
2303 2304
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2305 2306

		reserve = (end - start) -
2307
			region_count(&resv->regions, start, end);
2308

2309
		resv_map_put(vma);
2310

2311
		if (reserve) {
2312
			hugetlb_acct_memory(h, -reserve);
2313
			hugepage_subpool_put_pages(spool, reserve);
2314
		}
2315
	}
2316 2317
}

L
Linus Torvalds 已提交
2318 2319 2320 2321 2322 2323
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2324
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2325 2326
{
	BUG();
N
Nick Piggin 已提交
2327
	return 0;
L
Linus Torvalds 已提交
2328 2329
}

2330
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2331
	.fault = hugetlb_vm_op_fault,
2332
	.open = hugetlb_vm_op_open,
2333
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2334 2335
};

2336 2337
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2338 2339 2340
{
	pte_t entry;

2341
	if (writable) {
2342 2343
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2344
	} else {
2345 2346
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2347 2348 2349
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2350
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2351 2352 2353 2354

	return entry;
}

2355 2356 2357 2358 2359
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2360
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2361
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2362
		update_mmu_cache(vma, address, ptep);
2363 2364 2365
}


D
David Gibson 已提交
2366 2367 2368 2369 2370
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2371
	unsigned long addr;
2372
	int cow;
2373 2374
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2375 2376

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2377

2378
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2379 2380 2381
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2382
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2383 2384
		if (!dst_pte)
			goto nomem;
2385 2386 2387 2388 2389

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2390
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2391
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2392
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2393
			if (cow)
2394 2395
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2396 2397
			ptepage = pte_page(entry);
			get_page(ptepage);
2398
			page_dup_rmap(ptepage);
2399 2400 2401
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2402
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2403 2404 2405 2406 2407 2408 2409
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2410 2411 2412 2413 2414 2415 2416
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2417
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2418
		return 1;
2419
	else
N
Naoya Horiguchi 已提交
2420 2421 2422
		return 0;
}

2423 2424 2425 2426 2427 2428 2429
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2430
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2431
		return 1;
2432
	else
2433 2434 2435
		return 0;
}

2436 2437 2438
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2439
{
2440
	int force_flush = 0;
D
David Gibson 已提交
2441 2442
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2443
	pte_t *ptep;
D
David Gibson 已提交
2444 2445
	pte_t pte;
	struct page *page;
2446 2447
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2448 2449
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2450

D
David Gibson 已提交
2451
	WARN_ON(!is_vm_hugetlb_page(vma));
2452 2453
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2454

2455
	tlb_start_vma(tlb, vma);
2456
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2457
again:
2458
	spin_lock(&mm->page_table_lock);
2459
	for (address = start; address < end; address += sz) {
2460
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2461
		if (!ptep)
2462 2463
			continue;

2464 2465 2466
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2467 2468 2469 2470 2471 2472 2473
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2474
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2475
			huge_pte_clear(mm, address, ptep);
2476
			continue;
2477
		}
2478 2479

		page = pte_page(pte);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2497
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2498
		tlb_remove_tlb_entry(tlb, ptep, address);
2499
		if (huge_pte_dirty(pte))
2500
			set_page_dirty(page);
2501

2502 2503 2504 2505
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2506 2507 2508
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2509
	}
2510
	spin_unlock(&mm->page_table_lock);
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2521
	}
2522
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2523
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2524
}
D
David Gibson 已提交
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2545
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2546
			  unsigned long end, struct page *ref_page)
2547
{
2548 2549 2550 2551 2552
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2553
	tlb_gather_mmu(&tlb, mm, start, end);
2554 2555
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2556 2557
}

2558 2559 2560 2561 2562 2563
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2564 2565
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2566
{
2567
	struct hstate *h = hstate_vma(vma);
2568 2569 2570 2571 2572 2573 2574 2575
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2576
	address = address & huge_page_mask(h);
2577 2578
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2579
	mapping = file_inode(vma->vm_file)->i_mapping;
2580

2581 2582 2583 2584 2585
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2586
	mutex_lock(&mapping->i_mmap_mutex);
2587
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2600 2601
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2602
	}
2603
	mutex_unlock(&mapping->i_mmap_mutex);
2604 2605 2606 2607

	return 1;
}

2608 2609
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2610 2611 2612
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2613
 */
2614
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2615 2616
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2617
{
2618
	struct hstate *h = hstate_vma(vma);
2619
	struct page *old_page, *new_page;
2620
	int outside_reserve = 0;
2621 2622
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2623 2624 2625

	old_page = pte_page(pte);

2626
retry_avoidcopy:
2627 2628
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2629 2630
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2631
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2632
		return 0;
2633 2634
	}

2635 2636 2637 2638 2639 2640 2641 2642 2643
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2644
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2645 2646 2647
			old_page != pagecache_page)
		outside_reserve = 1;

2648
	page_cache_get(old_page);
2649 2650 2651

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2652
	new_page = alloc_huge_page(vma, address, outside_reserve);
2653

2654
	if (IS_ERR(new_page)) {
2655
		long err = PTR_ERR(new_page);
2656
		page_cache_release(old_page);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2669
				spin_lock(&mm->page_table_lock);
2670 2671 2672 2673 2674 2675 2676 2677
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2678 2679 2680 2681
			}
			WARN_ON_ONCE(1);
		}

2682 2683
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2684 2685 2686 2687
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2688 2689
	}

2690 2691 2692 2693
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2694
	if (unlikely(anon_vma_prepare(vma))) {
2695 2696
		page_cache_release(new_page);
		page_cache_release(old_page);
2697 2698
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2699
		return VM_FAULT_OOM;
2700
	}
2701

A
Andrea Arcangeli 已提交
2702 2703
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2704
	__SetPageUptodate(new_page);
2705

2706 2707 2708
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2709 2710 2711 2712 2713
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2714
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2715
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2716 2717
		ClearPagePrivate(new_page);

2718
		/* Break COW */
2719
		huge_ptep_clear_flush(vma, address, ptep);
2720 2721
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2722
		page_remove_rmap(old_page);
2723
		hugepage_add_new_anon_rmap(new_page, vma, address);
2724 2725 2726
		/* Make the old page be freed below */
		new_page = old_page;
	}
2727 2728
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2729 2730
	page_cache_release(new_page);
	page_cache_release(old_page);
2731 2732 2733

	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
N
Nick Piggin 已提交
2734
	return 0;
2735 2736
}

2737
/* Return the pagecache page at a given address within a VMA */
2738 2739
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2740 2741
{
	struct address_space *mapping;
2742
	pgoff_t idx;
2743 2744

	mapping = vma->vm_file->f_mapping;
2745
	idx = vma_hugecache_offset(h, vma, address);
2746 2747 2748 2749

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2750 2751 2752 2753 2754
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2770
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2771
			unsigned long address, pte_t *ptep, unsigned int flags)
2772
{
2773
	struct hstate *h = hstate_vma(vma);
2774
	int ret = VM_FAULT_SIGBUS;
2775
	int anon_rmap = 0;
2776
	pgoff_t idx;
A
Adam Litke 已提交
2777 2778 2779
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2780
	pte_t new_pte;
A
Adam Litke 已提交
2781

2782 2783 2784
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2785
	 * COW. Warn that such a situation has occurred as it may not be obvious
2786 2787
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2788 2789
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2790 2791 2792
		return ret;
	}

A
Adam Litke 已提交
2793
	mapping = vma->vm_file->f_mapping;
2794
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2795 2796 2797 2798 2799

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2800 2801 2802
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2803
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2804 2805
		if (idx >= size)
			goto out;
2806
		page = alloc_huge_page(vma, address, 0);
2807
		if (IS_ERR(page)) {
2808 2809 2810 2811 2812
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2813 2814
			goto out;
		}
A
Andrea Arcangeli 已提交
2815
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2816
		__SetPageUptodate(page);
2817

2818
		if (vma->vm_flags & VM_MAYSHARE) {
2819
			int err;
K
Ken Chen 已提交
2820
			struct inode *inode = mapping->host;
2821 2822 2823 2824 2825 2826 2827 2828

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2829
			ClearPagePrivate(page);
K
Ken Chen 已提交
2830 2831

			spin_lock(&inode->i_lock);
2832
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2833
			spin_unlock(&inode->i_lock);
2834
		} else {
2835
			lock_page(page);
2836 2837 2838 2839
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2840
			anon_rmap = 1;
2841
		}
2842
	} else {
2843 2844 2845 2846 2847 2848
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2849
			ret = VM_FAULT_HWPOISON |
2850
				VM_FAULT_SET_HINDEX(hstate_index(h));
2851 2852
			goto backout_unlocked;
		}
2853
	}
2854

2855 2856 2857 2858 2859 2860
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2861
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2862 2863 2864 2865
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2866

2867
	spin_lock(&mm->page_table_lock);
2868
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2869 2870 2871
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2872
	ret = 0;
2873
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2874 2875
		goto backout;

2876 2877
	if (anon_rmap) {
		ClearPagePrivate(page);
2878
		hugepage_add_new_anon_rmap(page, vma, address);
2879
	}
2880 2881
	else
		page_dup_rmap(page);
2882 2883 2884 2885
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2886
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2887
		/* Optimization, do the COW without a second fault */
2888
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2889 2890
	}

2891
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2892 2893
	unlock_page(page);
out:
2894
	return ret;
A
Adam Litke 已提交
2895 2896 2897

backout:
	spin_unlock(&mm->page_table_lock);
2898
backout_unlocked:
A
Adam Litke 已提交
2899 2900 2901
	unlock_page(page);
	put_page(page);
	goto out;
2902 2903
}

2904
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2905
			unsigned long address, unsigned int flags)
2906 2907 2908
{
	pte_t *ptep;
	pte_t entry;
2909
	int ret;
2910
	struct page *page = NULL;
2911
	struct page *pagecache_page = NULL;
2912
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2913
	struct hstate *h = hstate_vma(vma);
2914

2915 2916
	address &= huge_page_mask(h);

2917 2918 2919
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2920
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2921
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2922 2923
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2924
			return VM_FAULT_HWPOISON_LARGE |
2925
				VM_FAULT_SET_HINDEX(hstate_index(h));
2926 2927
	}

2928
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2929 2930 2931
	if (!ptep)
		return VM_FAULT_OOM;

2932 2933 2934 2935 2936 2937
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2938 2939
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2940
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2941
		goto out_mutex;
2942
	}
2943

N
Nick Piggin 已提交
2944
	ret = 0;
2945

2946 2947 2948 2949 2950 2951 2952 2953
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2954
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2955 2956
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2957
			goto out_mutex;
2958
		}
2959

2960
		if (!(vma->vm_flags & VM_MAYSHARE))
2961 2962 2963 2964
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2965 2966 2967 2968 2969 2970 2971 2972
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2973
	get_page(page);
2974
	if (page != pagecache_page)
2975 2976
		lock_page(page);

2977 2978
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2979 2980 2981 2982
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2983
	if (flags & FAULT_FLAG_WRITE) {
2984
		if (!huge_pte_write(entry)) {
2985 2986
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2987 2988
			goto out_page_table_lock;
		}
2989
		entry = huge_pte_mkdirty(entry);
2990 2991
	}
	entry = pte_mkyoung(entry);
2992 2993
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2994
		update_mmu_cache(vma, address, ptep);
2995 2996

out_page_table_lock:
2997
	spin_unlock(&mm->page_table_lock);
2998 2999 3000 3001 3002

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3003 3004
	if (page != pagecache_page)
		unlock_page(page);
3005
	put_page(page);
3006

3007
out_mutex:
3008
	mutex_unlock(&hugetlb_instantiation_mutex);
3009 3010

	return ret;
3011 3012
}

3013 3014 3015 3016
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3017
{
3018 3019
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3020
	unsigned long remainder = *nr_pages;
3021
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3022

3023
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
3024
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3025
		pte_t *pte;
H
Hugh Dickins 已提交
3026
		int absent;
A
Adam Litke 已提交
3027
		struct page *page;
D
David Gibson 已提交
3028

A
Adam Litke 已提交
3029 3030
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3031
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3032 3033
		 * first, for the page indexing below to work.
		 */
3034
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
3035 3036 3037 3038
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3039 3040 3041 3042
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3043
		 */
H
Hugh Dickins 已提交
3044 3045
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
3046 3047 3048
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3049

3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3061 3062
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3063
			int ret;
D
David Gibson 已提交
3064

A
Adam Litke 已提交
3065
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
3066 3067
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
3068
			spin_lock(&mm->page_table_lock);
3069
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3070
				continue;
D
David Gibson 已提交
3071

A
Adam Litke 已提交
3072 3073 3074 3075
			remainder = 0;
			break;
		}

3076
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3077
		page = pte_page(huge_ptep_get(pte));
3078
same_page:
3079
		if (pages) {
H
Hugh Dickins 已提交
3080
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3081
			get_page(pages[i]);
3082
		}
D
David Gibson 已提交
3083 3084 3085 3086 3087

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3088
		++pfn_offset;
D
David Gibson 已提交
3089 3090
		--remainder;
		++i;
3091
		if (vaddr < vma->vm_end && remainder &&
3092
				pfn_offset < pages_per_huge_page(h)) {
3093 3094 3095 3096 3097 3098
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3099
	}
3100
	spin_unlock(&mm->page_table_lock);
3101
	*nr_pages = remainder;
D
David Gibson 已提交
3102 3103
	*position = vaddr;

H
Hugh Dickins 已提交
3104
	return i ? i : -EFAULT;
D
David Gibson 已提交
3105
}
3106

3107
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3108 3109 3110 3111 3112 3113
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3114
	struct hstate *h = hstate_vma(vma);
3115
	unsigned long pages = 0;
3116 3117 3118 3119

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3120
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3121
	spin_lock(&mm->page_table_lock);
3122
	for (; address < end; address += huge_page_size(h)) {
3123 3124 3125
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3126 3127
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3128
			continue;
3129
		}
3130
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3131
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3132
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3133
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3134
			set_huge_pte_at(mm, address, ptep, pte);
3135
			pages++;
3136 3137 3138
		}
	}
	spin_unlock(&mm->page_table_lock);
3139 3140 3141 3142 3143 3144
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3145
	flush_tlb_range(vma, start, end);
3146
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3147 3148

	return pages << h->order;
3149 3150
}

3151 3152
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3153
					struct vm_area_struct *vma,
3154
					vm_flags_t vm_flags)
3155
{
3156
	long ret, chg;
3157
	struct hstate *h = hstate_inode(inode);
3158
	struct hugepage_subpool *spool = subpool_inode(inode);
3159

3160 3161 3162
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3163
	 * without using reserves
3164
	 */
3165
	if (vm_flags & VM_NORESERVE)
3166 3167
		return 0;

3168 3169 3170 3171 3172 3173
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3174
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3175
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3176 3177 3178 3179 3180
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3181
		chg = to - from;
3182

3183 3184 3185 3186
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3187 3188 3189 3190
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3191

3192
	/* There must be enough pages in the subpool for the mapping */
3193 3194 3195 3196
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3197 3198

	/*
3199
	 * Check enough hugepages are available for the reservation.
3200
	 * Hand the pages back to the subpool if there are not
3201
	 */
3202
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3203
	if (ret < 0) {
3204
		hugepage_subpool_put_pages(spool, chg);
3205
		goto out_err;
K
Ken Chen 已提交
3206
	}
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3219
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3220
		region_add(&inode->i_mapping->private_list, from, to);
3221
	return 0;
3222
out_err:
3223 3224
	if (vma)
		resv_map_put(vma);
3225
	return ret;
3226 3227 3228 3229
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3230
	struct hstate *h = hstate_inode(inode);
3231
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3232
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3233 3234

	spin_lock(&inode->i_lock);
3235
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3236 3237
	spin_unlock(&inode->i_lock);

3238
	hugepage_subpool_put_pages(spool, (chg - freed));
3239
	hugetlb_acct_memory(h, -(chg - freed));
3240
}
3241

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3362 3363 3364 3365 3366 3367 3368
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3369 3370
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3452 3453
#ifdef CONFIG_MEMORY_FAILURE

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3468 3469 3470 3471
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3472
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3473 3474 3475
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3476
	int ret = -EBUSY;
3477 3478

	spin_lock(&hugetlb_lock);
3479
	if (is_hugepage_on_freelist(hpage)) {
3480 3481 3482 3483 3484 3485 3486
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3487
		set_page_refcounted(hpage);
3488 3489 3490 3491
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3492
	spin_unlock(&hugetlb_lock);
3493
	return ret;
3494
}
3495
#endif
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537

bool is_hugepage_active(struct page *page)
{
	VM_BUG_ON(!PageHuge(page));
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}